Search results for: product optimization
3965 Implication of Fractal Kinetics and Diffusion Limited Reaction on Biomass Hydrolysis
Authors: Sibashish Baksi, Ujjaini Sarkar, Sudeshna Saha
Abstract:
In the present study, hydrolysis of Pinus roxburghi wood powder was carried out with Viscozyme, and kinetics of the hydrolysis has been investigated. Finely ground sawdust is submerged into 2% aqueous peroxide solution (pH=11.5) and pretreated through autoclaving, probe sonication, and alkaline peroxide pretreatment. Afterward, the pretreated material is subjected to hydrolysis. A chain of experiments was executed with delignified biomass (50 g/l) and varying enzyme concentrations (24.2–60.5 g/l). In the present study, 14.32 g/l of glucose, along with 7.35 g/l of xylose, have been recovered with a viscozyme concentration of 48.8 g/l and the same condition was treated as optimum condition. Additionally, thermal deactivation of viscozyme has been investigated and found to be gradually decreasing with escalated enzyme loading from 48.4 g/l (dissociation constant= 0.05 h⁻¹) to 60.5 g/l (dissociation constant= 0.02 h⁻¹). The hydrolysis reaction is a pseudo first-order reaction, and therefore, the rate of the hydrolysis can be expressed as a fractal-like kinetic equation that communicates between the product concentration and hydrolytic time t. It is seen that the value of rate constant (K) increases from 0.008 to 0.017 with augmented enzyme concentration from 24.2 g/l to 60.5 g/l. Greater value of K is associated with stronger enzyme binding capacity of the substrate mass. However, escalated concentration of supplied enzyme ensures improved interaction with more substrate molecules resulting in an enhanced de-polymerization of the polymeric sugar chains per unit time which eventually modifies the physiochemical structure of biomass. All fractal dimensions are in between 0 and 1. Lower the value of fractal dimension, more easily the biomass get hydrolyzed. It can be seen that with increased enzyme concentration from 24.2 g/l to 48.4 g/l, the values of fractal dimension go down from 0.1 to 0.044. This indicates that the presence of more enzyme molecules can more easily hydrolyze the substrate. However, an increased value has been observed with a further increment of enzyme concentration to 60.5g/l because of diffusional limitation. It is evident that the hydrolysis reaction system is a heterogeneous organization, and the product formation rate depends strongly on the enzyme diffusion resistances caused by the rate-limiting structures of the substrate-enzyme complex. Value of the rate constant increases from 1.061 to 2.610 with escalated enzyme concentration from 24.2 to 48.4 g/l. As the rate constant is proportional to Fick’s diffusion coefficient, it can be assumed that with a higher concentration of enzyme, a larger amount of enzyme mass dM diffuses into the substrate through the surface dF per unit time dt. Therefore, a higher rate constant value is associated with a faster diffusion of enzyme into the substrate. Regression analysis of time curves with various enzyme concentrations shows that diffusion resistant constant increases from 0.3 to 0.51 for the first two enzyme concentrations and again decreases with enzyme concentration of 60.5 g/l. During diffusion in a differential scale, the enzyme also experiences a greater resistance during diffusion of larger dM through dF in dt.Keywords: viscozyme, glucose, fractal kinetics, thermal deactivation
Procedia PDF Downloads 1143964 The Influence of Absorptive Capacity on Process Innovation: An Exploratory Study in Seven Leading and Emerging Countries
Authors: Raphael M. Rettig, Tessa C. Flatten
Abstract:
This empirical study answer calls for research on Absorptive Capacity and Process Innovation. Due to the fourth industrial revolution, manufacturing companies face the biggest disruption of their production processes since the rise of advanced manufacturing technologies in the last century. Therefore, process innovation will become a critical task to master in the future for many manufacturing firms around the world. The general ability of organizations to acquire, assimilate, transform, and exploit external knowledge, known as Absorptive Capacity, was proven to positively influence product innovation and is already conceptually associated with process innovation. The presented research provides empirical evidence for this influence. The findings are based on an empirical analysis of 732 companies from seven leading and emerging countries: Brazil, China, France, Germany, India, Japan, and the United States of America. The answers to the survey were collected in February and March 2018 and addressed senior- and top-level management with a focus on operations departments. The statistical analysis reveals the positive influence of potential and Realized Absorptive Capacity on successful process innovation taking the implementation of new digital manufacturing processes as an example. Potential Absorptive Capacity covering the acquisition and assimilation capabilities of an organization showed a significant positive influence (β = .304, p < .05) on digital manufacturing implementation success and therefore on process innovation. Realized Absorptive Capacity proved to have significant positive influence on process innovation as well (β = .461, p < .01). The presented study builds on prior conceptual work in the field of Absorptive Capacity and process innovation and contributes theoretically to ongoing research in two dimensions. First, the already conceptually associated influence of Absorptive Capacity on process innovation is backed by empirical evidence in a broad international context. Second, since Absorptive Capacity was measured with a focus on new product development, prior empirical research on Absorptive Capacity was tailored to the research and development departments of organizations. The results of this study highlight the importance of Absorptive Capacity as a capability in mechanical engineering and operations departments of organizations. The findings give managers an indication of the importance of implementing new innovative processes into their production system and fostering the right mindset of employees to identify new external knowledge. Through the ability to transform and exploit external knowledge, own production processes can be innovated successfully and therefore have a positive influence on firm performance and the competitive position of their organizations.Keywords: absorptive capacity, digital manufacturing, dynamic capabilities, process innovation
Procedia PDF Downloads 1473963 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 2863962 Optimization of Human Hair Concentration for a Natural Rubber Based Composite
Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob
Abstract:
Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.Keywords: human hair, natural rubber, composite, vulcanization, fiber loading
Procedia PDF Downloads 3863961 Matrix Completion with Heterogeneous Cost
Authors: Ilqar Ramazanli
Abstract:
The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.Keywords: matroid optimization, matrix completion, linear algebra, algorithms
Procedia PDF Downloads 1123960 Motion Planning and Posture Control of the General 3-Trailer System
Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general 3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.Keywords: artificial potential fields, 3-trailer systems, motion planning, posture
Procedia PDF Downloads 4313959 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5
Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying
Abstract:
Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.Keywords: alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition
Procedia PDF Downloads 2213958 Parallel Computing: Offloading Matrix Multiplication to GPU
Authors: Bharath R., Tharun Sai N., Bhuvan G.
Abstract:
This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks
Procedia PDF Downloads 633957 A Review on the Outlook of the Circular Economy in the Automotive Industry
Abstract:
The relationship of the automotive industry with raw material supply is a major challenge and presents obstacles. Automobiles are ones of the most complex products using a large variety of materials. Safety, eco-friendliness and comfort requirements, physical, chemical and economic limitations set the framework in which this industry continuously optimizes the efficient and responsible use of resources. The concept of circular economy covers the issues of waste generation, resource scarcity and economic advantages. However, circularity is already known for the automobile industry – several efforts are done to foster material reuse, product remanufacturing and recycling. The aim of this study is to give an overview on how the producers comply with the growing demands on one hand, and gain efficiency and increase profitability on the other hand from circular economy.Keywords: automotive industry, circular economy, international requirements, natural resources
Procedia PDF Downloads 3303956 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation
Authors: Li-hsing Shih, Wei-Jen Hsu
Abstract:
Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation
Procedia PDF Downloads 763955 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 8563954 Stability Indicating RP – HPLC Method Development, Validation and Kinetic Study for Amiloride Hydrochloride and Furosemide in Pharmaceutical Dosage Form
Authors: Jignasha Derasari, Patel Krishna M, Modi Jignasa G.
Abstract:
Chemical stability of pharmaceutical molecules is a matter of great concern as it affects the safety and efficacy of the drug product.Stability testing data provides the basis to understand how the quality of a drug substance and drug product changes with time under the influence of various environmental factors. Besides this, it also helps in selecting proper formulation and package as well as providing proper storage conditions and shelf life, which is essential for regulatory documentation. The ICH guideline states that stress testing is intended to identify the likely degradation products which further help in determination of the intrinsic stability of the molecule and establishing degradation pathways, and to validate the stability indicating procedures. A simple, accurate and precise stability indicating RP- HPLC method was developed and validated for simultaneous estimation of Amiloride Hydrochloride and Furosemide in tablet dosage form. Separation was achieved on an Phenomenexluna ODS C18 (250 mm × 4.6 mm i.d., 5 µm particle size) by using a mobile phase consisting of Ortho phosphoric acid: Acetonitrile (50:50 %v/v) at a flow rate of 1.0 ml/min (pH 3.5 adjusted with 0.1 % TEA in Water) isocratic pump mode, Injection volume 20 µl and wavelength of detection was kept at 283 nm. Retention time for Amiloride Hydrochloride and Furosemide was 1.810 min and 4.269 min respectively. Linearity of the proposed method was obtained in the range of 40-60 µg/ml and 320-480 µg/ml and Correlation coefficient was 0.999 and 0.998 for Amiloride hydrochloride and Furosemide, respectively. Forced degradation study was carried out on combined dosage form with various stress conditions like hydrolysis (acid and base hydrolysis), oxidative and thermal conditions as per ICH guideline Q2 (R1). The RP- HPLC method has shown an adequate separation for Amiloride hydrochloride and Furosemide from its degradation products. Proposed method was validated as per ICH guidelines for specificity, linearity, accuracy; precision and robustness for estimation of Amiloride hydrochloride and Furosemide in commercially available tablet dosage form and results were found to be satisfactory and significant. The developed and validated stability indicating RP-HPLC method can be used successfully for marketed formulations. Forced degradation studies help in generating degradants in much shorter span of time, mostly a few weeks can be used to develop the stability indicating method which can be applied later for the analysis of samples generated from accelerated and long term stability studies. Further, kinetic study was also performed for different forced degradation parameters of the same combination, which help in determining order of reaction.Keywords: amiloride hydrochloride, furosemide, kinetic study, stability indicating RP-HPLC method validation
Procedia PDF Downloads 4683953 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures
Authors: C. Mayr, J. Periya, A. Kariminezhad
Abstract:
In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.Keywords: machine learning, radar, signal processing, autonomous driving
Procedia PDF Downloads 2503952 Use of Industrial Wastes for Production of Low-Cost Building Material
Authors: Frank Aneke, Elizabeth Theron
Abstract:
Demand for building materials in the last decade due to growing population, has caused scarcity of low-cost housing in South Africa. The investigation thoroughly examined dolomitic waste (DW), silica fume (SF) and River sand (RS) effects on the geotechnical behaviour of fly ash bricks. Bricks samples were prepared at different ratios as follows: I. FA1 contained FA70% + RS30%, II. FA2 contained FA60% + DW10%+RS30%, III. FA3 has a mix proportion of FA50% + DW20%+RS30%, IV. FA4 has a mix ratio FA40% + DW30%+RS30%, V. FA5 contained FA20% + DW40% + SF10%+RS30% by mass percentage of the FA material. However, utilization of this wastes in production of bricks, does not only produce a valuable commercial product that is cost effective, but also reduces a major waste disposal problem from the surrounding environment.Keywords: bricks, dolomite, fly ash, industrial wastes
Procedia PDF Downloads 2323951 Application of Quality Function Deployment Approach to Industrial Engineering Department of Gaziantep University
Authors: Eren Özceylan, Cihan Çetinkaya
Abstract:
Quality function deployment (QFD) is a technique to assist transform the voice of the customer into engineering characteristics for a product/service. With the difference of existing studies, QFD is applied to an educational area that is a service sector which is not a manufacturing firm. The objective of the study is to design the undergraduate program according to students’ desire and expectations. To do so, third and fourth year students of industrial engineering department of Gaziantep University are considered as customers. Some suggestions about lecturers, courses, exams and facility for how to satisfy students’ demands are presented and as a result, sharing the materials of courses is the most important requirement among others.Keywords: higher education, quality function deployment, quality house, voice of customer
Procedia PDF Downloads 4383950 Design Aspects of 3D Printing for Fashion and Textiles
Authors: Chi-Chung Marven Chick, Chu-Po Ho, Sau-Chuen Joe Au, Wing-Fai Sidney Wong, Chi-Wai Kan
Abstract:
3D printing is now drawing attention to manufacturing process. In fashion and textile industry, many 3D printing applications had been developed for prototyping or even final product production because of its great flexibility in production. However, when compared with conventional manufacturing processes for fashion and textiles, the design aspects and requirements may not be same for using 3D printing process. Therefore, in this paper, we will compare the design aspects between conventional manufacturing processes and 3D printing processes. Also, the material requirements related to the design in 3D printing for fashion and textiles will be reviewed and discussed. This review paper may demonstrate a possible way to develop 3D printing method(s) for fashion and textiles.Keywords: 3D printing, design, textile, applications
Procedia PDF Downloads 623949 Design of Lead-Lag Based Internal Model Controller for Binary Distillation Column
Authors: Rakesh Kumar Mishra, Tarun Kumar Dan
Abstract:
Lead-Lag based Internal Model Control method is proposed based on Internal Model Control (IMC) strategy. In this paper, we have designed the Lead-Lag based Internal Model Control for binary distillation column for SISO process (considering only bottom product). The transfer function has been taken from Wood and Berry model. We have find the composition control and disturbance rejection using Lead-Lag based IMC and comparing with the response of simple Internal Model Controller.Keywords: SISO, lead-lag, internal model control, wood and berry, distillation column
Procedia PDF Downloads 6503948 Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance
Abstract:
A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications.Keywords: aircraft, morphing, skin, twist
Procedia PDF Downloads 3993947 Effect of Ease of Doing Business to Economic Growth among Selected Countries in Asia
Authors: Teodorica G. Ani
Abstract:
Economic activity requires an encouraging regulatory environment and effective rules that are transparent and accessible to all. The World Bank has been publishing the annual Doing Business reports since 2004 to investigate the scope and manner of regulations that enhance business activity and those that constrain it. A streamlined business environment supporting the development of competitive small and medium enterprises (SMEs) may expand employment opportunities and improve the living conditions of low income households. Asia has emerged as one of the most attractive markets in the world. Economies in East Asia and the Pacific were among the most active in making it easier for local firms to do business. The study aimed to describe the ease of doing business and its effect to economic growth among selected economies in Asia for the year 2014. The study covered 29 economies in East Asia, Southeast Asia, South Asia and Middle Asia. Ease of doing business is measured by the Doing Business indicators (DBI) of the World Bank. The indicators cover ten aspects of the ease of doing business such as starting a business, dealing with construction permits, getting electricity, registering property, getting credit, protecting investors, paying taxes, trading across borders, enforcing contracts and resolving insolvency. In the study, Gross Domestic Product (GDP) was used as the proxy variable for economic growth. Descriptive research was the research design used. Graphical analysis was used to describe the income and doing business among selected economies. In addition, multiple regression was used to determine the effect of doing business to economic growth. The study presented the income among selected economies. The graph showed China has the highest income while Maldives produces the lowest and that observation were supported by gathered literatures. The study also presented the status of the ten indicators of doing business among selected economies. The graphs showed varying trends on how easy to start a business, deal with construction permits and to register property. Starting a business is easiest in Singapore followed by Hong Kong. The study found out that the variations in ease of doing business is explained by starting a business, dealing with construction permits and registering property. Moreover, an explanation of the regression result implies that a day increase in the average number of days it takes to complete a procedure will decrease the value of GDP in general. The research proposed inputs to policy which may increase the awareness of local government units of different economies on the simplification of the policies of the different components used in measuring doing business.Keywords: doing business, economic growth, gross domestic product, Asia
Procedia PDF Downloads 3853946 Graphene Materials for Efficient Hybrid Solar Cells: A Spectroscopic Investigation
Authors: Mohammed Khenfouch, Fokotsa V. Molefe, Bakang M. Mothudi
Abstract:
Nowadays, graphene and its composites are universally known as promising materials. They show their potential in a large field of applications including photovoltaics. This study reports on the role of nanohybrids and nanosystems known as strong light harvesters in the efficiency of graphene hybrid solar cells. Our system included Graphene/ZnO/Porphyrin/P3HT layers. Moreover, the physical properties including surface/interface, optical and vibrational properties were also studied. Our investigations confirmed the interaction between the different components as well as the sensitivity of their photonics to the synthesis conditions. Remarkable energy and charge transfer were detected and deeply investigated. Hence, the optimization of the conditions will lead to the fabrication of higher conversion efficiency in graphene solar cells.Keywords: graphene, optoelectronics, nanohybrids, solar cells
Procedia PDF Downloads 1713945 Bioaccessible Phenolics, Phenolic Bioaccessibility and Antioxidant Activity of Pumpkin Flour
Authors: Emine Aydin, Duygu Gocmen
Abstract:
Pumpkin flour (PF) has a long shelf life and can be used as a nutritive, functional (antioxidant properties, phenolic contents, etc.) and coloring agent in many food items, especially in bakery products, sausages, instant noodles, pasta and flour mixes. Pre-treatment before drying is one of the most important factors affecting the quality of a final powdered product. Pretreatment, such as soaking in a bisulfite solution, provides that total carotenoids in raw materials rich in carotenoids, especially pumpkins, are retained in the dried product. This is due to the beneficial effect of antioxidant additives in the protection of carotenoids in the dehydrated plant foods. The oxygen present in the medium is removed by the radical SO₂, and thus the carotene degradation caused by the molecular oxygen is inhibited by the presence of SO₂. In this study, pumpkin flours (PFs) produced by two different applications (with or without metabisulfite pre-treatment) and then dried in a freeze dryer. The phenolic contents and antioxidant activities of pumpkin flour were determined. In addition to this, the compound of bioavailable phenolic substances which is obtained by PF has also been investigated using in vitro methods. As a result of researches made in recent years, it has been determined that all nutrients taken with foodstuffs are not bioavailable. Bioavailability changes depending on physical properties, chemical compounds, and capacities of individual digestion of foods. Therefore in this study; bioaccessible phenolics and phenolic bioaccessibility were also determined. The phenolics of the samples with metabisulfite application were higher than those of the samples without metabisulfite pre-treatment. Soaking in metabisulfite solution might have a protective effect for phenolic compounds. Phenolics bioaccessibility of pumpkin flours was investigated in order to assess pumpkin flour as sources of accessible phenolics. The higher bioaccessible phenolics (384.19 mg of GAE 100g⁻¹ DW) and phenolic bioaccessibility values (33.65 mL 100 mL⁻¹) were observed in the pumpkin flour with metabisulfite pre-treatment. Metabisulfite application caused an increase in bioaccessible phenolics of pumpkin flour. According to all assay (ABTS, CUPRAC, DPPH, and FRAP) results, both free and bound phenolics of pumpkin flour with metabisulfite pre-treatment had higher antioxidant activity than those of the sample without metabisulfite pre-treatment. The samples subjected to MS pre-treatment exhibited higher antioxidant activities than those of the samples without MS pre-treatment, this possibly due to higher phenolic contents of the samples with metabisulfite applications. As a result, metabisulfite application caused an increase in phenolic contents, bioaccessible phenolics, phenolic bioaccessibility and antioxidant activities of pumpkin flour. It can be said that pumpkin flour can be used as an alternative functional and nutritional ingredient in bakery products, dairy products (yoghurt, ice-cream), soups, sauces, infant formulae, confectionery, etc.Keywords: pumpkin flour, bioaccessible phenolics, phenolic bioaccessibility, antioxidant activity
Procedia PDF Downloads 3273944 Synthesis Characterisation and Evaluation of Co-Processed Wax Matrix Excipient for Controlled Release Tablets Formulation
Authors: M. Kalyan Raj, Vinay Umesh Rao, M. Sudhakar
Abstract:
The work focuses on the development of a directly compressible controlled release co-processed excipient using melt granulation technique. Erodible wax matrix systems are fabricated in which three different types of waxes are co processed separately with Maize starch in different ratios by melt granulation. The resultant free flowing powder is characterized by FTIR, NMR, Mass spectrophotometer and gel permeation chromatography. Also, controlled release tablets of Aripiprazole were formulated and dissolution profile was compared with that of the target product profile given in Zysis patent (Patent no. 20100004262) for Aripiprazole once a week formulation.Keywords: co-processing, hot melt extrusion, direct compression, maize starch, stearic acid, aripiprazole
Procedia PDF Downloads 4113943 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice
Authors: S. Bangphan, P. Bangphan, T.Boonkang
Abstract:
Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.Keywords: rice polished cylinder, statistical process control, control charts, process capability
Procedia PDF Downloads 4913942 Sustainable Tourism from a Multicriteria Analysis Perspective
Authors: Olga Blasco-Blasco, Vicente Liern
Abstract:
The development of tourism since the mid-20th century has raised problems of overcrowding, indiscriminate construction in seaside areas and gentrification. Increasingly, the World Tourism Organisation and public institutions are promoting policies that encourage sustainability. From the perspective of sustainability, three types of tourism can be established: traditional tourism, sustainable tourism and sustainable impact tourism. Measuring sustainability is complex due to its multiple dimensions of different relative importance and diversity in nature. In order to try to answer this problem and to identify the benefits of applying policies that promote sustainable tourism, a decision-making analysis will be carried out through the application of a multicriteria analysis method. The proposal is applied to hotel reservations and to the evaluation and management of tourism sustainability in the Spanish Autonomous Communities.Keywords: sustainable tourism, multicriteria analysis, flexible optimization, composite indicators
Procedia PDF Downloads 3163941 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 3853940 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2353939 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization
Authors: Aitor Bilbao, Dragos Axinte, John Billingham
Abstract:
The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation
Procedia PDF Downloads 2793938 Influence of Silica Fume on Ultrahigh Performance Concrete
Authors: Vitoldas Vaitkevičius, Evaldas Šerelis
Abstract:
Silica fume, also known as microsilica (MS) or condensed silica fume is a by-product of the production of silicon metal or ferrosilicon alloys. Silica fume is one of the most effective pozzolanic additives which could be used for ultrahigh performance and other types of concrete. Despite the fact, however is not entirely clear, which amount of silica fume is most optimal for UHPC. Main objective of this experiment was to find optimal amount of silica fume for UHPC with and without thermal treatment, when different amount of quartz powder is substituted by silica fume. In this work were investigated four different composition of UHPC with different amount of silica fume. Silica fume were added 0, 10, 15 and 20% of cement (by weight) to UHPC mixture. Optimal amount of silica fume was determined by slump, viscosity, qualitative and quantitative XRD analysis and compression strength tests methods.Keywords: compressive strength, silica fume, ultrahigh performance concrete, XRD
Procedia PDF Downloads 2973937 Phasor Measurement Unit Based on Particle Filtering
Authors: Rithvik Reddy Adapa, Xin Wang
Abstract:
Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates.Keywords: phasor measurement unit, particle filter, genetic algorithm, particle swarm optimisation, state estimation
Procedia PDF Downloads 173936 The Marketing Mix in Small Sized Hotels: A Case of Pattaya, Thailand
Authors: Anyapak Prapannetivuth
Abstract:
The purpose of this research is to investigate the marketing mix that is perceived to be important for the small sized hotels in Pattaya. Unlike previous studies, this research provides insights through a review of the marketing activities performed by the small sized hotels. Nine owners and marketing manager of small sized hotels and resorts, all local Chonburi people, were selected for an in-depth interview. A snowball sampling process was employed. The research suggests that seven marketing mixes (e.g. Product, Price, Place, Promotion, People, Physical Evidence and Process) were commonly used by these hotels, however, three types – People, price and physical evidence were considered most important by the owners.Keywords: marketing mix, marketing tools, small sized hotels, pattaya
Procedia PDF Downloads 288