Search results for: maritimus species
354 Characterization of the Blood Microbiome in Rheumatoid Arthritis Patients Compared to Healthy Control Subjects Using V4 Region 16S rRNA Sequencing
Authors: D. Hammad, D. P. Tonge
Abstract:
Rheumatoid arthritis (RA) is a disabling and common autoimmune disease during which the body's immune system attacks healthy tissues. This results in complicated and long-lasting actions being carried out by the immune system, which typically only occurs when the immune system encounters a foreign object. In the case of RA, the disease affects millions of people and causes joint inflammation, ultimately leading to the destruction of cartilage and bone. Interestingly, the disease mechanism still remains unclear. It is likely that RA occurs as a result of a complex interplay of genetic and environmental factors including an imbalance in the microorganism population inside our body. The human microbiome or microbiota is an extensive community of microorganisms in and on the bodies of animals, which comprises bacteria, fungi, viruses, and protozoa. Recently, the development of molecular techniques to characterize entire bacterial communities has renewed interest in the involvement of the microbiome in the development and progression of RA. We believe that an imbalance in some of the specific bacterial species in the gut, mouth and other sites may lead to atopobiosis; the translocation of these organisms into the blood, and that this may lead to changes in immune system status. The aim of this study was, therefore, to characterize the microbiome of RA serum samples in comparison to healthy control subjects using 16S rRNA gene amplification and sequencing. Serum samples were obtained from healthy control volunteers and from patients with RA both prior to, and following treatment. The bacterial community present in each sample was identified utilizing V4 region 16S rRNA amplification and sequencing. Bacterial identification, to the lowest taxonomic rank, was performed using a range of bioinformatics tools. Significantly, the proportions of the Lachnospiraceae, Ruminococcaceae, and Halmonadaceae families were significantly increased in the serum of RA patients compared with healthy control serum. Furthermore, the abundance of Bacteroides and Lachnospiraceae nk4a136_group, Lachnospiraceae_UGC-001, RuminococcaceaeUCG-014, Rumnococcus-1, and Shewanella was also raised in the serum of RA patients relative to healthy control serum. These data support the notion of a blood microbiome and reveal RA-associated changes that may have significant implications for biomarker development and may present much-needed opportunities for novel therapeutic development.Keywords: blood microbiome, gut and oral bacteria, Rheumatoid arthritis, 16S rRNA gene sequencing
Procedia PDF Downloads 132353 In silico Statistical Prediction Models for Identifying the Microbial Diversity and Interactions Due to Fixed Periodontal Appliances
Authors: Suganya Chandrababu, Dhundy Bastola
Abstract:
Like in the gut, the subgingival microbiota plays a crucial role in oral hygiene, health, and cariogenic diseases. Human activities like diet, antibiotics, and periodontal treatments alter the bacterial communities, metabolism, and functions in the oral cavity, leading to a dysbiotic state and changes in the plaques of orthodontic patients. Fixed periodontal appliances hinder oral hygiene and cause changes in the dental plaques influencing the subgingival microbiota. However, the microbial species’ diversity and complexity pose a great challenge in understanding the taxa’s community distribution patterns and their role in oral health. In this research, we analyze the subgingival microbial samples from individuals with fixed dental appliances (metal/clear) using an in silico approach. We employ exploratory hypothesis-driven multivariate and regression analysis to shed light on the microbial community and its functional fluctuations due to dental appliances used and identify risks associated with complex disease phenotypes. Our findings confirm the changes in oral microbiota composition due to the presence and type of fixed orthodontal devices. We identified seven main periodontic pathogens, including Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Firmicutes, whose abundances were significantly altered due to the presence and type of fixed appliances used. In the case of metal braces, the abundances of Bacteroidetes, Proteobacteria, Fusobacteria, Candidatus saccharibacteria, and Spirochaetes significantly increased, while the abundance of Firmicutes and Actinobacteria decreased. However, in individuals With clear braces, the abundance of Bacteroidetes and Candidatus saccharibacteria increased. The highest abundance value (P-value=0.004 < 0.05) was observed with Bacteroidetes in individuals with the metal appliance, which is associated with gingivitis, periodontitis, endodontic infections, and odontogenic abscesses. Overall, the bacterial abundances decrease with clear type and increase with metal type of braces. Regression analysis further validated the multivariate analysis of variance (MANOVA) results, supporting the hypothesis that the presence and type of the fixed oral appliances significantly alter the bacterial abundance and composition.Keywords: oral microbiota, statistical analysis, fixed or-thodontal appliances, bacterial abundance, multivariate analysis, regression analysis
Procedia PDF Downloads 194352 Moderate Electric Field Influence on Carotenoids Extraction Time from Heterochlorella luteoviridis
Authors: Débora P. Jaeschke, Eduardo A. Merlo, Rosane Rech, Giovana D. Mercali, Ligia D. F. Marczak
Abstract:
Carotenoids are high value added pigments that can be alternatively extracted from some microalgae species. However, the application of carotenoids synthetized by microalgae is still limited due to the utilization of organic toxic solvents. In this context, studies involving alternative extraction methods have been conducted with more sustainable solvents to replace and reduce the solvent volume and the extraction time. The aim of the present work was to evaluate the extraction time of carotenoids from the microalgae Heterochlorella luteoviridis using moderate electric field (MEF) as a pre-treatment to the extraction. The extraction methodology consisted of a pre-treatment in the presence of MEF (180 V) and ethanol (25 %, v/v) for 10 min, followed by a diffusive step performed for 50 min using a higher ethanol concentration (75 %, v/v). The extraction experiments were conducted at 30 °C and, to keep the temperature at this value, it was used an extraction cell with a water jacket that was connected to a water bath. Also, to enable the evaluation of MEF effect on the extraction, control experiments were performed using the same cell and conditions without voltage application. During the extraction experiments, samples were withdrawn at 1, 5 and 10 min of the pre-treatment and at 1, 5, 30, 40 and 50 min of the diffusive step. Samples were, then, centrifuged and carotenoids analyses were performed in the supernatant. Furthermore, an exhaustive extraction with ethyl acetate and methanol was performed, and the carotenoids content found for this analyses was considered as the total carotenoids content of the microalgae. The results showed that the application of MEF as a pre-treatment to the extraction influenced the extraction yield and the extraction time during the diffusive step; after the MEF pre-treatment and 50 min of the diffusive step, it was possible to extract up to 60 % of the total carotenoids content. Also, results found for carotenoids concentration of the extracts withdrawn at 5 and 30 min of the diffusive step did not presented statistical difference, meaning that carotenoids diffusion occurs mainly in the very beginning of the extraction. On the other hand, the results for control experiments showed that carotenoids diffusion occurs mostly during 30 min of the diffusive step, which evidenced MEF effect on the extraction time. Moreover, carotenoids concentration on samples withdrawn during the pre-treatment (1, 5 and 10 min) were below the quantification limit of the analyses, indicating that the extraction occurred in the diffusive step, when ethanol (75 %, v/v) was added to the medium. It is possible that MEF promoted cell membrane permeabilization and, when ethanol (75 %) was added, carotenoids interacted with the solvent and the diffusion occurred easily. Based on the results, it is possible to infer that MEF promoted the decrease of carotenoids extraction time due to the increasing of the permeability of the cell membrane which facilitates the diffusion from the cell to the medium.Keywords: moderate electric field (MEF), pigments, microalgae, ethanol
Procedia PDF Downloads 463351 Gut Microbiota in Patients with Opioid Use Disorder: A 12-week Follow up Study
Authors: Sheng-Yu Lee
Abstract:
Aim: Opioid use disorder is often characterized by repetitive drug-seeking and drug-taking behaviors with severe public health consequences. Animal model showed that opioid-induced perturbations in the gut microbiota causally relate to neuroinflammation, deficits in reward responding, and opioid tolerance, possibly due to changes in gut microbiota. Therefore, we propose that the dysbiosis of gut microbiota can be associated with pathogenesis of opioid dependence. In this current study, we explored the differences in gut microbiota between patients and normal controls and in patients before and after initiation of methadone treatment program for 12 weeks. Methods: Patients with opioid use disorder between 20 and 65 years were recruited from the methadone maintenance outpatient clinic in 2 medical centers in the Southern Taiwan. Healthy controls without any family history of major psychiatric disorders (schizophrenia, bipolar disorder and major depressive disorder) were recruited from the community. After initial screening, 15 patients with opioid use disorder joined the study for initial evaluation (Week 0), 12 of them completed the 12-week follow-up while receiving methadone treatment and ceased heroin use (Week 12). Fecal samples were collected from the patients at baseline and the end of 12th week. A one-time fecal sample was collected from the healthy controls. The microbiota of fecal samples were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. Results: We found no significant differences in species diversity in opioid dependent patients between Week 0 and Week 12, nor compared between patients at both points and controls. For beta diversity, using principal component analysis, we found no significant differences between patients at Week 0 and Week 12, however, both patient groups showed significant differences compared to control (P=0.011). Furthermore, the linear discriminant analysis effect size (LEfSe) analysis was used to identify differentially enriched bacteria between opioid use patients and healthy controls. Compared to controls, the relative abundance of Lactobacillaceae Lactobacillus (L. Lactobacillus), Megasphaera Megasphaerahexanoica (M. Megasphaerahexanoica) and Caecibacter Caecibactermassiliensis (C Caecibactermassiliensis) were increased in patients at Week 0, while Coriobacteriales Atopobiaceae (C. Atopobiaceae), Acidaminococcus Acidaminococcusintestini (A. Acidaminococcusintestini) and Tractidigestivibacter Tractidigestivibacterscatoligenes (T. Tractidigestivibacterscatoligenes) were increased in patients at Week 12. Conclusion: In conclusion, we suggest that the gut microbiome community maybe linked to opioid use disorder, such differences may not be altered even after 12-week of cessation of opioid use.Keywords: opioid use disorder, gut microbiota, methadone treatment, follow up study
Procedia PDF Downloads 106350 Assessment of the State of Hygiene in a Tunisian Hospital Kitchen: Interest of Mycological and Parasitological Samples from Food Handlers and Environment
Authors: Bouchekoua Myriam, Aloui Dorsaf, Trabelsi Sonia
Abstract:
Introduction Food hygiene in hospitals is important, particularly among patients who could be more vulnerable than healthy subjects to microbiological and nutritional risks. The consumption of contaminated food may be responsible for foodborne diseases, which can be severe among hospitalized patients, especially those immunocompromised. The aim of our study was to assess the state of hygiene in the internal catering department of a Tunisian hospital. Methodology and major results: A prospective study was conducted for one year in the Parasitology-Mycology laboratory of Charles Nicolle Hospital. Samples were taken from the kitchen staff, worktops, and cooking utensils used in the internal catering department. Thirty one employees have benefited from stool exams and scotch tape in order to evaluate the degree of infestation of parasites. 35% of stool exams were positive. Protozoa were the only parasites detected. Blastocystis sp was the species mostly found in nine food handlers. Its role as a human pathogen is still controversial. Pathogenic protozoa were detected in two food handlers (Giardia intestinalis in one person and Dientamoeba fragilis in the other one. Non-pathogenic protozoa were found in two cases; among them, only one had digestive symptoms without a statistically significant association with the carriage of intestinal parasites. Moreover, samples were performed from the hands of the staff in order to search for a fungal carriage. Thus, 25 employees (81%) were colonized by fungi, including molds. Besides, mycological examination among food handlers with a suspected dermatomycosis for diagnostic confirmation concluded foot onychomycosis in 32% of cases and interdigital intertrigo in 26%. Only one person had hand onychomycosis. Among the 17 samples taken from worktops and kitchen utensils, fungal contamination was detected in 13 sites. Hot and cold equipment were the most contaminated. Molds were mainly identified as belonging to five different genera. Cladosporium sp was predominant. Conclusion: In the view of the importance of intestinal parasites among food handlers, the intensity of fungi hand carriage among these employees, and the high level of fungal contamination in worktops and kitchen utensils, a reinforcement of hygiene measures is more than essential in order to minimize the alimentary contamination-risk.Keywords: hospital kitchen, environment, intestinal parasitosis, fungal carriage, fungal contamination
Procedia PDF Downloads 117349 Synthesis of Porphyrin-Functionalized Beads for Flow Cytometry
Authors: William E. Bauta, Jennifer Rebeles, Reggie Jacob
Abstract:
Porphyrins are noteworthy in biomedical science for their cancer tissue accumulation and photophysical properties. The preferential accumulation of some porphyrins in cancerous tissue has been known for many years. This, combined with their characteristic photophysical and photochemical properties, including their strong fluorescence and their ability to generate reactive oxygen species in vivo upon laser irradiation, has led to much research into the application of porphyrins as cancer diagnostic and therapeutic agents. Porphyrins have been used as dyes to detect cancer cells both in vivo and, less commonly, in vitro. In one example, human sputum samples from lung cancer patients and patients without the disease were dissociated and stained with the porphyrin TCPP (5,10,15,20-tetrakis-(4-carboxyphenyl)-porphine). Cells were analyzed by flow cytometry. Cancer samples were identified by their higher TCPP fluorescence intensity relative to the no-cancer controls. However, quantitative analysis of fluorescence in cell suspensions stained with multiple fluorophores requires particles stained with each of the individual fluorophores as controls. Fluorescent control particles must be compatible in size with flow cytometer fluidics and have favorable hydrodynamic properties in suspension. They must also display fluorescence comparable to the cells of interest and be stable upon storage amine-functionalized spherical polystyrene beads in the 5 to 20-micron diameter range that was reacted with TCPP and EDC in aqueous pH six buffer overnight to form amide bonds. Beads were isolated by centrifugation and tested by flow cytometry. The 10-micron amine-functionalized beads displayed the best combination of fluorescence intensity and hydrodynamic properties, such as lack of clumping and remaining in suspension during the experiment. These beads were further optimized by varying the stoichiometry of EDC and TCPP relative to the amine. The reaction was accompanied by the formation of a TCPP-related particulate, which was removed, after bead centrifugation, using a microfiltration process. The resultant TCPP-functionalized beads were compatible with flow cytometry conditions and displayed a fluorescence comparable to that of stained cells, which allowed their use as fluorescence standards. The beads were stable in refrigerated storage in the dark for more than eight months. This work demonstrates the first preparation of porphyrin-functionalized flow cytometry control beads.Keywords: tetraaryl porphyrin, polystyrene beads, flow cytometry, peptide coupling
Procedia PDF Downloads 93348 In vitro Evaluation of Capsaicin Patches for Transdermal Drug Delivery
Authors: Alija Uzunovic, Sasa Pilipovic, Aida Sapcanin, Zahida Ademovic, Berina Pilipović
Abstract:
Capsaicin is a naturally occurring alkaloid extracted from capsicum fruit extracts of different of Capsicum species. It has been employed topically to treat many diseases such as rheumatoid arthritis, osteoarthritis, cancer pain and nerve pain in diabetes. The high degree of pre-systemic metabolism of intragastrical capsaicin and the short half-life of capsaicin by intravenous administration made topical application of capsaicin advantageous. In this study, we have evaluated differences in the dissolution characteristics of capsaicin patch 11 mg (purchased from market) at different dissolution rotation speed. The proposed patch area is 308 cm2 (22 cm x 14 cm; it contains 36 µg of capsaicin per square centimeter of adhesive). USP Apparatus 5 (Paddle Over Disc) is used for transdermal patch testing. The dissolution study was conducted using USP apparatus 5 (n=6), ERWEKA DT800 dissolution tester (paddle-type) with addition of a disc. The fabricated patch of 308 cm2 is to be cut into 9 cm2 was placed against a disc (delivery side up) retained with the stainless-steel screen and exposed to 500 mL of phosphate buffer solution pH 7.4. All dissolution studies were carried out at 32 ± 0.5 °C and different rotation speed (50± 5; 100± 5 and 150± 5 rpm). 5 ml aliquots of samples were withdrawn at various time intervals (1, 4, 8 and 12 hours) and replaced with 5 ml of dissolution medium. Withdrawn were appropriately diluted and analyzed by reversed-phase liquid chromatography (RP-LC). A Reversed Phase Liquid Chromatography (RP-LC) method has been developed, optimized and validated for the separation and quantitation of capsaicin in a transdermal patch. The method uses a ProntoSIL 120-3-C18 AQ 125 x 4,0 mm (3 μm) column maintained at 600C. The mobile phase consisted of acetonitrile: water (50:50 v/v), the flow rate of 0.9 mL/min, the injection volume 10 μL and the detection wavelength 222 nm. The used RP-LC method is simple, sensitive and accurate and can be applied for fast (total chromatographic run time was 4.0 minutes) and simultaneous analysis of capsaicin and dihydrocapsaicin in a transdermal patch. According to the results obtained in this study, we can conclude that the relative difference of dissolution rate of capsaicin after 12 hours was elevated by increase of dissolution rotation speed (100 rpm vs 50 rpm: 84.9± 11.3% and 150 rpm vs 100 rpm: 39.8± 8.3%). Although several apparatus and procedures (USP apparatus 5, 6, 7 and a paddle over extraction cell method) have been used to study in vitro release characteristics of transdermal patches, USP Apparatus 5 (Paddle Over Disc) could be considered as a discriminatory test. would be able to point out the differences in the dissolution rate of capsaicin at different rotation speed.Keywords: capsaicin, in vitro, patch, RP-LC, transdermal
Procedia PDF Downloads 227347 In vitro and in vivo Infectivity of Coxiella burnetii Strains from French Livestock
Authors: Joulié Aurélien, Jourdain Elsa, Bailly Xavier, Gasqui Patrick, Yang Elise, Leblond Agnès, Rousset Elodie, Sidi-Boumedine Karim
Abstract:
Q fever is a worldwide zoonosis caused by the gram-negative obligate intracellular bacterium Coxiella burnetii. Following the recent outbreaks in the Netherlands, a hyper virulent clone was found to be the cause of severe human cases of Q fever. In livestock, Q fever clinical manifestations are mainly abortions. Although the abortion rates differ between ruminant species, C. burnetii’s virulence remains understudied, especially in enzootic areas. In this study, the infectious potential of three C. burnetii isolates collected from French farms of small ruminants were compared to the reference strain Nine Mile (in phase II and in an intermediate phase) using an in vivo (CD1 mice) model. Mice were challenged with 105 live bacteria discriminated by propidium monoazide-qPCR targeting the icd-gene. After footpad inoculation, spleen and popliteal lymph node were harvested at 10 days post-inoculation (p.i). The strain invasiveness in spleen and popliteal nodes was assessed by qPCR assays targeting the icd-gene. Preliminary results showed that the avirulent strains (in phase 2) failed to pass the popliteal barrier and then to colonize the spleen. This model allowed a significant differentiation between strain’s invasiveness on biological host and therefore identifying distinct virulence profiles. In view of these results, we plan to go further by testing fifteen additional C. burnetii isolates from French farms of sheep, goat and cattle by using the above-mentioned in vivo model. All 15 strains display distant MLVA (multiple-locus variable-number of tandem repeat analysis) genotypic profiles. Five of the fifteen isolates will bee also tested in vitro on ovine and bovine macrophage cells. Cells and supernatants will be harvested at day1, day2, day3 and day6 p.i to assess in vitro multiplication kinetics of strains. In conclusion, our findings might help the implementation of surveillance of virulent strains and ultimately allow adapting prophylaxis measures in livestock farms.Keywords: Q fever, invasiveness, ruminant, virulence
Procedia PDF Downloads 361346 The Response of Mammal Populations to Abrupt Changes in Fire Regimes in Montane Landscapes of South-Eastern Australia
Authors: Jeremy Johnson, Craig Nitschke, Luke Kelly
Abstract:
Fire regimes, climate and topographic gradients interact to influence ecosystem structure and function across fire-prone, montane landscapes worldwide. Biota have developed a range of adaptations to historic fire regime thresholds, which allow them to persist in these environments. In south-eastern Australia, a signal of fire regime changes is emerging across these landscapes, and anthropogenic climate change is likely to be one of the main drivers of an increase in burnt area and more frequent wildfire over the last 25 years. This shift has the potential to modify vegetation structure and composition at broad scales, which may lead to landscape patterns to which biota are not adapted, increasing the likelihood of local extirpation of some mammal species. This study aimed to address concerns related to the influence of abrupt changes in fire regimes on mammal populations in montane landscapes. It first examined the impact of climate, topography, and vegetation on fire patterns and then explored the consequences of these changes on mammal populations and their habitats. Field studies were undertaken across diverse vegetation, fire severity and fire frequency gradients, utilising camera trapping and passive acoustic monitoring methodologies and the collection of fine-scale vegetation data. Results show that drought is a primary contributor to fire regime shifts at the landscape scale, while topographic factors have a variable influence on wildfire occurrence at finer scales. Frequent, high severity wildfire influenced forest structure and composition at broad spatial scales, and at fine scales, it reduced occurrence of hollow-bearing trees and promoted coarse woody debris. Mammals responded differently to shifts in forest structure and composition depending on their habitat requirements. This study highlights the complex interplay between fire regimes, environmental gradients, and biotic adaptations across temporal and spatial scales. It emphasizes the importance of understanding complex interactions to effectively manage fire-prone ecosystems in the face of climate change.Keywords: fire, ecology, biodiversity, landscape ecology
Procedia PDF Downloads 73345 Isolation, Characterization, and Antibacterial Evaluation of Antimicrobial Peptides and Derivatives from Fly Larvae Sarconesiopsis magellanica (Diptera: Calliphoridae)
Authors: A. Díaz-Roa, P. I. Silva Junior, F. J. Bello
Abstract:
Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Dipterous maggots release diverse proteins and peptides contained in larval excretion and secretion (ES) products playing a key role in digestion. The most important mechanism for combating infection using larval therapy depends on larval ES. These larvae are protected against infection by a diverse spectrum of antimicrobial peptides (AMPs), one already known like lucifensin. Special interest in these peptides has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during larval therapy. The action of larvae on wounds occurs through 3 mechanisms of action: removal of necrotic tissue, stimulation of granulation tissue, and antibacterial action of larval ES. Some components of the ES include calcium, urea, allantoin ammonium bicarbonate and reducing the viability of Gram positive and Gram negative bacteria. The Lucilia sericata fly larvae have been the most used, however, we need to evaluate new species that could potentially be similar or more effective than fly above. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES products for the first time and compared them with the common fly used L. sericata. These products were obtained from third-instar larvae taken from a previously established colony. For the first analysis, ES fractions were separate by Sep-Pak C18 disposable columns (first step). The material obtained was fractionated by RP-HPLC by using Júpiter C18 semi-preparative column. The products were then lyophilized and their antimicrobial activity was characterized by incubation with different bacterial strains. The first chromatographic analysis of ES from L. sericata gives 6 fractions with antimicrobial activity against Gram-positive bacteria Micrococus luteus, and 3 fractions with activity against Gram-negative bacteria Pseudomonae aeruginosa while the one from S. magellanica gaves 1 fraction against M. luteus and 4 against P. aeruginosa. Maybe one of these fractions could correspond to the peptide already known from L. sericata. These results show the first work for supporting further experiments aimed at validating S. magellanica use in larval therapy. We still need to search if we find some new molecules, by making mass spectrometry and ‘de novo sequencing’. Further studies are necessary to identify and characterize them to better understand their functioning.Keywords: antimicrobial peptides, larval therapy, Lucilia sericata, Sarconesiopsis magellanica
Procedia PDF Downloads 367344 Investigation and Monitoring Method of Vector Density in Kaohsiung City
Authors: Chiu-Wen Chang, I-Yun Chang, Wei-Ting Chen, Hui-Ping Ho, Chao-Ying Pan, Joh-Jong Huang
Abstract:
Dengue is a ‘community disease’ or ‘environmental disease’, as long as the environment exist suitable container (including natural and artificial) for mosquito breeding, once the virus invade will lead to the dengue epidemic. Surveillance of vector density is critical to effective infectious disease control and play an important role in monitoring the dynamics of mosquitoes in community, such as mosquito species, density, distribution area. The objective of this study was to examine the relationship in vector density survey (Breteau index, Adult index, House index, Container index, and Larvae index) form 2014 to 2016 in Kaohsiung City and evaluate the effects of introducing the Breeding Elimination and Appraisal Team (hereinafter referred to as BEAT) as an intervention measure on eliminating dengue vector breeding site started from May 2016. BEAT were performed on people who were suspected of contracting dengue fever, a surrounding area measuring 50 meters by 50 meters was demarcated as the emergency prevention and treatment zone. BEAT would perform weekly vector mosquito inspections and vector mosquito inspections in regions with a high Gravitrap index and assign a risk assessment index to each region. These indices as well as the prevention and treatment results were immediately reported to epidemic prevention-related units every week. The results indicated that, vector indices from 2014 to 2016 showed no statistically significant differences in the Breteau index, adult index, and house index (p > 0.05) but statistically significant differences in the container index and larvae index (p <0.05). After executing the integrated elimination work, container index and larvae index are statistically significant different from 2014 to 2016 in the (p < 0.05). A post hoc test indicated that the container index of 2014 (M = 12.793) was significantly higher than that of 2016 (M = 7.631), and that the larvae index of 2015 (M = 34.065) was significantly lower than that of 2014 (M = 66.867). The results revealed that effective vector density surveillance could highlight the focus breeding site and then implement the immediate control action (BEAT), which successfully decreased the vector density and the risk of dengue epidemic.Keywords: Breteau index, dengue control, monitoring method, vector density
Procedia PDF Downloads 198343 Changes in Skin Microbiome Diversity According to the Age of Xian Women
Authors: Hanbyul Kim, Hye-Jin Kin, Taehun Park, Woo Jun Sul, Susun An
Abstract:
Skin is the largest organ of the human body and can provide the diverse habitat for various microorganisms. The ecology of the skin surface selects distinctive sets of microorganisms and is influenced by both endogenous intrinsic factors and exogenous environmental factors. The diversity of the bacterial community in the skin also depends on multiple host factors: gender, age, health status, location. Among them, age-related changes in skin structure and function are attributable to combinations of endogenous intrinsic factors and exogenous environmental factors. Skin aging is characterized by a decrease in sweat, sebum and the immune functions thus resulting in significant alterations in skin surface physiology including pH, lipid composition, and sebum secretion. The present study gives a comprehensive clue on the variation of skin microbiota and the correlations between ages by analyzing and comparing the metagenome of skin microbiome using Next Generation Sequencing method. Skin bacterial diversity and composition were characterized and compared between two different age groups: younger (20 – 30y) and older (60 - 70y) Xian, Chinese women. A total of 73 healthy women meet two conditions: (I) living in Xian, China; (II) maintaining healthy skin status during the period of this study. Based on Ribosomal Database Project (RDP) database, skin samples of 73 participants were enclosed with ten most abundant genera: Chryseobacterium, Propionibacterium, Enhydrobacter, Staphylococcus and so on. Although these genera are the most predominant genus overall, each genus showed different proportion in each group. The most dominant genus, Chryseobacterium was more present relatively in Young group than in an old group. Similarly, Propionibacterium and Enhydrobacter occupied a higher proportion of skin bacterial composition of the young group. Staphylococcus, in contrast, inhabited more in the old group. The beta diversity that represents the ratio between regional and local species diversity showed significantly different between two age groups. Likewise, The Principal Coordinate Analysis (PCoA) values representing each phylogenetic distance in the two-dimensional framework using the OTU (Operational taxonomic unit) values of the samples also showed differences between the two groups. Thus, our data suggested that the composition and diversification of skin microbiomes in adult women were largely affected by chronological and physiological skin aging.Keywords: next generation sequencing, age, Xian, skin microbiome
Procedia PDF Downloads 155342 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices
Authors: Ekta, G. K. Darbha
Abstract:
Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology
Procedia PDF Downloads 256341 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 125340 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler
Authors: Tejinder Singh Sidhu
Abstract:
Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.Keywords: hot corrosion, coating, HVOF, oxidation
Procedia PDF Downloads 83339 Individual Differences in Affective Neuroscience Personality Traits Predict Several Dimensions of Psychological Wellbeing. A Cross-Sectional Study in Healthy Subjects
Authors: Valentina Colonnello, Paolo Maria Russo
Abstract:
Decades of cross-species affective neuroscience research by Panksepp and others have identified basic evolutionarily preserved subcortical emotional systems that humans share with mammals and many vertebrates. These primary emotional systems encode unconditional affective responses and contribute to the development of personality traits throughout ontogenesis and interactions with the environment. The Affective Neuroscience Personality Scale (ANPS) measures individual differences in affective personality traits associated with the basic emotional systems of CARE, PLAY, SEEKING, SADNESS, FEAR, and ANGER, along with Spirituality, which is a more cognitively and socially refined expression of affectivity. Though the ANPS’s power to predict human psychological distress has been documented, to the best of our knowledge, its predictive power for psychological wellbeing has not been explored. This study therefore investigates the relationship between affective neuroscience traits and psychological wellbeing facets. Because the emotional systems are thought to influence cognitively-mediated mental processes about the self and the world, understanding the relationship between affective traits and psychological wellbeing is particularly relevant to understanding the affective dimensions of health. In a cross-sectional study, healthy participants (n = 402) completed the ANPS and the Psychological Wellbeing scale. Multiple regressions revealed that each facet of wellbeing was explained by two to four affective traits, and each trait was significantly related to at least one aspect of wellbeing. Specifically, SEEKING predicted all the wellbeing facets, except for positive relations; CARE predicted personal growth, positive relations, purpose in life, and self-acceptance; PLAY and, inversely, ANGER predicted positive relations; SADNESS inversely predicted autonomy, while FEAR inversely predicted purpose in life. SADNESS and FEAR inversely predicted environmental mastery and self-acceptance. Finally, Spirituality predicted personal growth, positive relations, and self-acceptance. These findings are the first to show the relationship between affective neuroscience personality traits and psychological wellbeing. They also call attention to the distinctive role of FEAR and PANIC traits in psychological wellbeing facets, thereby complementing or even overcoming the traditional personality approach to neuroticism as a global trait.Keywords: affective neuroscience, individual differences, personality, wellbeing
Procedia PDF Downloads 120338 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis
Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel
Abstract:
Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility
Procedia PDF Downloads 265337 Diabetes and Medical Plant's Treatment: Ethnobotanical Studies Carried out in Morocco
Authors: Jamila Fakchich, Mostafa Jamila Lazaar Elachouri, Lakhder Fakchich, Fatna Ouali, Abd Errazzak Belkacem
Abstract:
Diabetes is a chronic metabolic disease that has a significant impact on the health, quality of life, and life expectancy of patients as well as the health care system. By its nature diabetes, is a multisystem disease with wide-ranging complication that span nearly all region of the body. This epidemic problem, however, is not unique to the industrialized society, but has also hardly struck the developing countries. In Morocco, as developing country, there is an epidemic rise in diabetes, with ensuing concern about the management and control of this disease; it began a chronic burdensome disease of largely middle-aged and elderly people, with a long course and serious complications often resulting in high death-rate, the treatment of diabetes spent vast amount of resources including medicines, diets, physical training. Treatment of this disease is considered problematic due to the lack of effective and safe drugs capable of inducing sustained clinical, biochemical, and histological cure. In Moroccan society, the phytoremedies are some times the only affordable sources of healthcare, particularly for the people in remote areas. In this paper, we present a synthesis work obtained from the ethnobotanical data reported in different specialized journals. A Synthesis of four published ethnobotanical studies that have been carried out in different region of Morocco by different team seekers during the period from 1997 to 2015. Medicinal plants inventoried by different seekers in four Moroccan’s areas have been regrouped and codified, then, Factorial Analysis (FA) and Principal Components Analysis (PCA) are used to analyse the aggregated data from the four studies and plants are classified according to their frequency of use by population. Our work deals with an attempt to gather information on some traditional uses of medicinal plants from different regions of Morocco, also, it was designed to give a set of medicinal plants commonly used by Moroccan people in the treatment of diabetes; In this paper, we intended to provide a basic knowledge about plant species used by Moroccan society for treatment of diabetes. One of the most interesting aspects of this type of works is to assess the relative cultural importance of medicinal plants for specific illnesses and exploring its usefulness in the context of diabetes.Keywords: Morocco, medicinal plants, ethnobotanical, diabetes, phytoremedies
Procedia PDF Downloads 332336 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress
Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher
Abstract:
Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.Keywords: green roof, plant cover, plant drought stress, rainfall retention
Procedia PDF Downloads 115335 Assessment of OTA Contamination in Rice from Fungal Growth Alterations in a Scenario of Climate Changes
Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha
Abstract:
Rice (Oryza sativa) production plays a vital role in reducing hunger and poverty and assumes particular importance in low-income and developing countries. Rice is a sensitive plant, and production occurs strictly where suitable temperature and water conditions are found. Climatic changes are likely to affect worldwide, and some models have predicted increased temperatures, variations in atmospheric CO₂ concentrations and modification in precipitation patterns. Therefore, the ongoing climatic changes threaten rice production by increasing biotic and abiotic stress factors, and crops will grow in different environmental conditions in the following years. Around the world, the effects will be regional and can be detrimental or advantageous depending on the region. Mediterranean zones have been identified as possible hot spots, where dramatic temperature changes, modifications of CO₂ levels, and rainfall patterns are predicted. The actual estimated atmospheric CO₂ concentration is around 400 ppm, and it is predicted that it can reach up to 1000–1200 ppm, which can lead to a temperature increase of 2–4 °C. Alongside, rainfall patterns are also expected to change, with more extreme wet/dry episodes taking place. As a result, it could increase the migration of pathogens, and a shift in the occurrence of mycotoxins, concerning their types and concentrations, is expected. Mycotoxigenic spoilage fungi can colonize the crops and be present in all rice food chain supplies, especially Penicillium species, mainly resulting in ochratoxin A (OTA) contamination. In this scenario, the objectives of the present study are evaluating the effect of temperature (20 vs. 25 °C), CO₂ (400 vs. 1000 ppm), and water stress (0.93 vs 0.95 water activity) on growth and OTA production by a Penicillium nordicum strain in vitro on rice-based media and when colonizing layers of raw rice. Results demonstrate the effect of temperature, CO₂ and drought on the OTA production in a rice-based environment, thus contributing to the development of mycotoxins predictive models in climate change scenarios. As a result, improving mycotoxins' surveillance and monitoring systems, whose occurrence can be more frequent due to climatic changes, seems relevant and necessary. The development of prediction models for hazard contaminants presents in foods highly sensitive to climatic changes, such as mycotoxins, in the highly probable new agricultural scenarios is of paramount importance.Keywords: climate changes, ochratoxin A, penicillium, rice
Procedia PDF Downloads 69334 Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn
Authors: H. M. El-Rafie, A. H. Abou Zeid, R. S. Mohammed, A. A. Sleem
Abstract:
Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species.Keywords: Acrocarpus fraxinofolius, antidiabetic, cytotoxic, hepatoprotective
Procedia PDF Downloads 196333 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert
Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh
Abstract:
The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara
Procedia PDF Downloads 158332 Entomopathogenic Bacteria as Biological Control Agents: Review Paper
Authors: Tadesse Kebede Dabsu
Abstract:
Insect pest is one the major limiting factor for sustainable food production. To overtake insect pest problem, since Second World War, producers have used excessive insecticide for insect pest management. However, in the era of 21st Century, the excessive use of insecticide caused insect resistant, insecticide bioaccumulation, insecticide hazard to environment, human health problem, and the like. Due to these problems, research efforts have been focused on the development of environmental free sustainable insect pest management method. To minimize all above mentioned risk utilizing of biological control such as entomopathogenicmicroorganism include bacteria, virus, fungus, and their productsare the best option for suppress insect population below certain density level. The objective of this review was to review the updated available studies and recent developments on the entomopathogenic bacteria (EPB) as biological control of insect pest and challenge of using them for control of insect pest. EPB’s mechanisms of insecticidal activities, type, taxonomy, and history are included in this paper body. EPB has been successfully used for the suppression of populations of insect pests. Controlling of harmful insect by entomopathogenic bacteria is an effective, low bioaccumulation in environment and food, very specific, reduce resistance risk in insect pest, economically and sustainable method of major insect pest management method. Identified and reported as potential major common type of entomopathogenic bacteria include Bacillus thuringiensis, Photorhabdus sp., Xenorhabdus spp.Walbachiaspp, Actinomycetesspp.etc. These bacteria being enter into insect body through natural opening or by vector release toxin protein inside of insect and disrupt the cell’s content cause natural mortality under natural condition. As per reported by different scientists, insect orders like Lepidoptera, Hemiptera, Hymenoptera, Coleoptera, and Dipterahave been successful controlled by entomopathogenic bacteria. As per coming across in different scientific research journals, much of the work was emphasised on Bacillus thuringiensisbsp. Therefore, for commercial production like Bacillus thuringiensi, detail research should be done on other bacteria species. The efficacy and practical application of EPB are restricted to some crops and greenhouse area, but their field application at farmers’ level very less. So still much work needs to be done to the practical application of the EPB at widely application. Their efficacy, pathogenicity, and host range test should be tested under environmental condition.Keywords: insect pest, entomopathogenic bacteria, biological control, agent
Procedia PDF Downloads 139331 N-Glycosylation in the Green Microalgae Chlamydomonas reinhardtii
Authors: Pierre-Louis Lucas, Corinne Loutelier-Bourhis, Narimane Mati-Baouche, Philippe Chan Tchi-Song, Patrice Lerouge, Elodie Mathieu-Rivet, Muriel Bardor
Abstract:
N-glycosylation is a post-translational modification taking place in the Endoplasmic Reticulum and the Golgi apparatus where defined glycan features are added on protein in a very specific sequence Asn-X-Thr/Ser/Cys were X can be any amino acid except proline. Because it is well-established that those N-glycans play a critical role in protein biological activity, protein half-life and that a different N-glycan structure may induce an immune response, they are very important in Biopharmaceuticals which are mainly glycoproteins bearing N-glycans. From now, most of the biopharmaceuticals are produced by mammalian cells like Chinese Hamster Ovary cells (CHO) for their N-glycosylation similar to the human, but due to the high production costs, several other species are investigated as the possible alternative system. In this purpose, the green microalgae Chlamydomonas reinhardtii was investigated as the potential production system for Biopharmaceuticals. This choice was influenced by the facts that C. reinhardtii is a well-study microalgae which is growing fast with a lot of molecular biology tools available. This organism is also producing N-glycan on its endogenous proteins. However, the analysis of the N-glycan structure of this microalgae has revealed some differences as compared to the human. Rather than in Human where the glycans are processed by key enzymes called N-acetylglucosaminyltransferase I and II (GnTI and GnTII) adding GlcNAc residue to form a GlcNAc₂Man₃GlcNAc₂ core N-glycan, C. reinhardtii lacks those two enzymes and possess a GnTI independent glycosylation pathway. Moreover, some enzymes like xylosyltransferases and methyltransferases not present in human are supposed to act on the glycans of C. reinhardtii. Furthermore, the recent structural study by mass spectrometry shows that the N-glycosylation precursor supposed to be conserved in almost all eukaryotic cells results in a linear Man₅GlcNAc₂ rather than a branched one in C. reinhardtii. In this work, we will discuss the new released MS information upon C. reinhardtii N-glycan structure and their impact on our attempt to modify the glycan in a Human manner. Two strategies will be discussed. The first one consisted in the study of Xylosyltransferase insertional mutants from the CLIP library in order to remove xyloses from the N-glycans. The second will go further in the humanization by transforming the microalgae with the exogenous gene from Toxoplasma gondii having an activity similar to GnTI and GnTII with the aim to synthesize GlcNAc₂Man₃GlcNAc₂ in C. reinhardtii.Keywords: Chlamydomonas reinhardtii, N-glycosylation, glycosyltransferase, mass spectrometry, humanization
Procedia PDF Downloads 178330 Changes in Amino Acids Content in Muscle of European Eel (Anguilla anguilla) in Relation to Body Size
Authors: L. Gómez-Limia, I. Franco, T. Blanco, S. Martínez
Abstract:
European eels (Anguilla anguilla) belong to Anguilliformes order and Anguillidae family. They are generally classified as warm-water fish. Eels have a great commercial value in Europe and Asian countries. Eels can reach high weights, although their commercial size is relatively low in some countries. The capture of larger eels would facilitate the recovery of the species, as well as having a greater number of either glass eels or elvers for aquaculture. In the last years, the demand and the price of eels have increased significantly. However, European eel is considered critically endangered by the International Union for the Conservation of Nature (IUCN) Red List. The biochemical composition of fishes is an important aspect of quality and affects the nutritional value and consumption quality of fish. In addition, knowing this composition can help predict an individual’s condition for their recovery. Fish is known to be important source of protein rich in essential amino acids. However, there is very little information about changes in amino acids composition of European eels with increase in size. The aim of this study was to evaluate the effect of two different weight categories on the amino acids content in muscle tissue of wild European eels. European eels were caught in River Ulla (Galicia, NW Spain), during winter. The eels were slaughtered in ice water immersion. Then, they were purchased and transferred to the laboratory. The eels were subdivided into two groups, according to the weight. The samples were kept frozen (-20 °C) until their analysis. Frozen eels were defrosted and the white muscle between the head and the anal hole. was extracted, in order to obtain amino acids composition. Thirty eels for each group were used. Liquid chromatography was used for separation and quantification of amino a cids. The results conclude that the eels are rich in glutamic acid, leucine, lysine, threonine, valine, isoleucine and phenylalanine. The analysis showed that there are significant differences (p < 0.05) among the eels with different sizes. Histidine, threonine, lysine, hydroxyproline, serine, glycine, arginine, alanine and proline were higher in small eels. European eels muscle presents between 45 and 46% of essential amino acids in the total amino acids. European eels have a well-balanced and high quality protein source in the respect of E/NE ratio. However, eels with higher weight showed a better ratio of essential and non-essential amino acid.Keywords: European eels, amino acids, HPLC, body size
Procedia PDF Downloads 104329 The Composition and Activity of Germinated Broccoli Seeds and Their Extract
Authors: Boris Nemzer, Tania Reyes-Izquierdo, Zbigniew Pietrzkowski
Abstract:
Glucosinolate is a family of glucosides that can be found in a family of brassica vegetables. Upon the damage of the plant, glucosinolate breakdown by an internal enzyme myrosinase (thioglucosidase; EC 3.2.3.1) into isothiocyanates, such as sulforaphane. Sulforaphane is formed by glucoraphanin cleaving the sugar off by myrosinase and rearranged. Sulforaphane nitrile is formed in the same reaction as sulforaphane with the active of epithiospecifier protein (ESP). Most common food processing procedure would break the plant and mix the glucoraphanin and myrosinase together, and the formed sulforaphane would be further degraded. The purpose of this study is to understand the glucoraphanin/sulforaphane and the myrosinase activity of broccoli seeds germinated at a different time and technological processing conditions that keep the activity of the enzyme to form sulforaphane. Broccoli seeds were germinated in the house. Myrosinase activities were tested as the glucose content using glucose assay kit and measured UV-Vis spectrophotometer. Glucosinolates were measured by HPLC/DAD. Sulforaphane was measured using HPLC-DAD and GC/MS. The 6 hr germinated sprouts have a myrosinase activity 32.2 mg glucose/g, which is comparable with 12 and 24 hour germinated seeds and higher than dry seeds. The glucoraphanin content in 6 hour germinated sprouts is 13935 µg/g which is comparable to 24 hour germinated seeds and lower than the dry seeds. GC/MS results show that the amount of sulforaphane is higher than the amount of sulforaphane nitrile in seeds, 6 hour and 24 hour germinated seeds. The ratio of sulforaphane and sulforaphane nitrile is high in 6 hour germinated seeds, which indicates the inactivated ESP in the reaction. After evaluating the results, the short time germinated seeds can be used as the source of glucoraphanin and myrosinase supply to form potential higher sulforaphane content. Broccoli contains glucosinolates, glucoraphanin (4-methylsulfinylbutyl glucosinolate), which is an important metabolite with health-promoting effects. In the pilot clinical study, we observed the effects of a glucosinolates/glucoraphanin-rich extract from short time germinated broccoli seeds on blood adenosine triphosphate (ATP), reactive oxygen species (ROS) and lactate levels. A single dose of 50 mg of broccoli sprouts extract increased blood levels of ATP up to 61% (p=0.0092) during the first 2 hours after the ingestion. Interestingly, this effect was not associated with an increase in blood ROS or lactate. When compared to the placebo group, levels of lactate were reduced by 10% (p=0.006). These results indicate that broccoli germinated seed extract may positively affect the generation of ATP in humans. Due to the preliminary nature of this work and promising results, larger clinical trials are justified.Keywords: broccoli glucosinolates, glucoraphanin, germinated seeds, myrosinase, adenosine triphosphate
Procedia PDF Downloads 291328 Effects of Nanoencapsulated Echinacea purpurea Ethanol Extract on the Male Reproductive Function in Streptozotocin-Induced Diabetic Rats
Authors: Jia-Ling Ho, Xiu-Ru Zhang, Zwe-Ling Kong
Abstract:
Diabetes mellitus (DM) is a major health problem that affects patients’ life quality throughout the world due to its many complications. It characterized by chronic hyperglycemia with oxidative stress, which impaired male reproductive function. Fibroblast growth factor 21 (FGF21) is a metabolic regulator that is required for normal spermatogenesis and protects against diabetes-induced germ cell apoptosis. Echinacea purpurea ethanol extract (EE), which contain phenolic acid and isobutylamide, had been proven to have antidiabetic property. Silica-chitosan nanoparticles (Nano-CS) has drug delivery and controlled release properties. This study aims to investigate whether silica-chitosan nanoparticles encapsulated EE (Nano-EE) had more ameliorating male infertility by analyzing the effect of testicular FGF21. The Nano-EE was characterized before used to treatment the diabetic rat model. Male Sprague-Dawley (SD) rats were obtained and divided into seven groups. A group was no induced Streptozotocin (STZ), marked as normal group. Diabetic rats were induced into diabetes by STZ (33 mg/kg). A diabetic group was no treatment with sample (diabetic control group), and other groups were treatment by Nano-CS (465 mg/kg), Nano-EE (93, 279, 465 mg/kg), and metformin (Met) (200 mg/kg) used as reference drug for 7 weeks. Our results indicated that the average nanoparticle size and zeta potential of Nano-EE were 2630 nm and -21.3 mV, respectively. The encapsulation ratio of Nano-EE was about 70%. It also confirmed the antioxidative activity was unchanged by comparing the DPPH and ABTS scavenging of Nano-EE and EE. In vivo test, Nano-EE can improve the STZ induced hyperglycemia, insulin resistance, and plasma FGF21 levels. Nano-EE has increased sperm motility, mitochondria membrane potential (MMP), plasma testosterone level, and reduction of abnormal sperm, nitric oxide (NO), superoxide production as well as reactive oxygen species (ROS). In addition, in plasma antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD) was increased whereas pro-inflammatory cytokines TNF-α, and IL-1β were decreased. Further, in testis, protein content of FGF21, PGC-1α, and SIRT1 were improved. Nano-EE might improve diabetes-induced down-regulation of testicular FGF21 and SIRT1/PGC-1α signaling hence maintain spermatogenesis.Keywords: diabetes mellitus, Echinacea purpurea, reproductive dysfunction, silica-chitosan nanoparticles
Procedia PDF Downloads 192327 Uncertainty Quantification of Fuel Compositions on Premixed Bio-Syngas Combustion at High-Pressure
Abstract:
Effect of fuel variabilities on premixed combustion of bio-syngas mixtures is of great importance in bio-syngas utilisation. The uncertainties of concentrations of fuel constituents such as H2, CO and CH4 may lead to unpredictable combustion performances, combustion instabilities and hot spots which may deteriorate and damage the combustion hardware. Numerical modelling and simulations can assist in understanding the behaviour of bio-syngas combustion with pre-defined species concentrations, while the evaluation of variabilities of concentrations is expensive. To be more specific, questions such as ‘what is the burning velocity of bio-syngas at specific equivalence ratio?’ have been answered either experimentally or numerically, while questions such as ‘what is the likelihood of burning velocity when precise concentrations of bio-syngas compositions are unknown, but the concentration ranges are pre-described?’ have not yet been answered. Uncertainty quantification (UQ) methods can be used to tackle such questions and assess the effects of fuel compositions. An efficient probabilistic UQ method based on Polynomial Chaos Expansion (PCE) techniques is employed in this study. The method relies on representing random variables (combustion performances) with orthogonal polynomials such as Legendre or Gaussian polynomials. The constructed PCE via Galerkin Projection provides easy access to global sensitivities such as main, joint and total Sobol indices. In this study, impacts of fuel compositions on combustion (adiabatic flame temperature and laminar flame speed) of bio-syngas fuel mixtures are presented invoking this PCE technique at several equivalence ratios. High-pressure effects on bio-syngas combustion instability are obtained using detailed chemical mechanism - the San Diego Mechanism. Guidance on reducing combustion instability from upstream biomass gasification process is provided by quantifying the significant contributions of composition variations to variance of physicochemical properties of bio-syngas combustion. It was found that flame speed is very sensitive to hydrogen variability in bio-syngas, and reducing hydrogen uncertainty from upstream biomass gasification processes can greatly reduce bio-syngas combustion instability. Variation of methane concentration, although thought to be important, has limited impacts on laminar flame instabilities especially for lean combustion. Further studies on the UQ of percentage concentration of hydrogen in bio-syngas can be conducted to guide the safer use of bio-syngas.Keywords: bio-syngas combustion, clean energy utilisation, fuel variability, PCE, targeted uncertainty reduction, uncertainty quantification
Procedia PDF Downloads 276326 An Assessment of Nodulation and Nitrogen Fixation of Lessertia Frutescens Plants Inoculated with Rhizobial Isolates from the Cape Fynbos
Authors: Mokgadi Miranda Hlongwane, Ntebogeng Sharon Mokgalaka, Felix Dapare Dakora
Abstract:
Lessertia (L.) frutescens (syn. Sutherlandia frutescens) is a leguminous medicinal plant indigenous to South Africa. Traditionally, L. frutescens has been used to treat cancer, diabetes, epilepsy, fever, HIV, stomach problems, wounds and other ailments. This legume is endemic to the Cape fynbos, with large populations occurring wild and cultivated in the Cape Florist Region. Its widespread distribution in the Western Cape, Northern Cape, Eastern Cape and Kwazulu-Natal is linked to its increased use as a phytomedicine in the treatment of various diseases by traditional healers. The frequent harvesting of field plants for use as a medicine has made it necessary to undertake studies towards the conservation of Lessertia frutescens. As a legume, this species can form root nodules and fix atmospheric N₂ when in symbiosis with soil bacteria called rhizobia. So far, however, few studies (if any) have been done on the efficacy and diversity of native bacterial symbionts nodulating L. frutescens in South Africa. The aim of this project was to isolate and characterize L. frutescens-nodulating bacteria from five different locations in the Western Cape Province. This was done by trapping soil rhizobia using rhizosphere soil suspension to inoculate L. frutescens seedlings growing in sterilized sand and receiving sterile N-free Hoagland nutrient solution under glasshouse conditions. At 60 days after planting, root nodules were harvested from L. frutescens plants, surface-sterilized, macerated, and streaked on yeast mannitol agar (YMA) plates and incubated at 28 ˚C for observation of bacterial growth. The majority of isolates were slow-growers that took 6-14 days to appear on YMA plates. However, seven isolates were fast-growers, taking 2-4 days to appear on YMA plates. Single-colony cultures of the isolates were assessed for their ability to nodulate L. frutescens as a homologous host under glasshouse conditions. Of the 92 bacterial isolates tested, 63 elicited nodule formation on L. frutescens. Symbiotic effectiveness varied markedly between and among test isolates. There were also significant (p≤0.005) differences in nodulation, shoot biomass, photosynthetic rates, leaf transpiration and stomatal conductance of L. frutescens plants inoculated with the test isolates, which is an indication of their functional diversity.Keywords: lessertia frutescens, nodulating, rhizobia, symbiotic effectiveness
Procedia PDF Downloads 193325 Biodeterioration of Historic Parks of UK by Algae
Authors: Syeda Fatima Manzelat
Abstract:
This chapter investigates the biodeterioration of parks in the UK caused by lichens, focusing on Campbell Park and Great Linford Manor Park in Milton Keynes. The study first isolates and identifies potent biodeteriogens responsible for potential biodeterioration in these parks, enumerating and recording different classes and genera of lichens known for their biodeteriorative properties. It then examines the implications of lichens on biodeterioration at historic sites within these parks, considering impacts on historic structures, the environment, and associated health risks. Conservation strategies and preventive measures are discussed before concluding.Lichens, characterized by their symbiotic association between a fungus and an alga, thrive on various surfaces including building materials, soil, rock, wood, and trees. The fungal component provides structure and protection, while the algal partner performs photosynthesis. Lichens collected from the park sites, such as Xanthoria, Cladonia, and Arthonia, were observed affecting the historic walls, objects, and trees. Their biodeteriorative impacts were visible to the naked eye, contributing to aesthetic and structural damage. The study highlights the role of lichens as bioindicators of pollution, sensitive to changes in air quality. The presence and diversity of lichens provide insights into the air quality and pollution levels in the parks. However, lichens also pose health risks, with certain species causing respiratory issues, allergies, skin irritation, and other toxic effects in humans and animals. Conservation strategies discussed include regular monitoring, biological and chemical control methods, physical removal, and preventive cleaning. The study emphasizes the importance of a multifaceted, multidisciplinary approach to managing lichen-induced biodeterioration. Future management practices could involve advanced techniques such as eco-friendly biocides and self-cleaning materials to effectively control lichen growth and preserve historic structures. In conclusion, this chapter underscores the dual role of lichens as agents of biodeterioration and indicators of environmental quality. Comprehensive conservation management approaches, encompassing monitoring, targeted interventions, and advanced conservation methods, are essential for preserving the historic and natural integrity of parks like Campbell Park and Great Linford Manor Park.Keywords: biodeterioration, historic parks, algae, UK
Procedia PDF Downloads 33