Search results for: Damage scenarios
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3769

Search results for: Damage scenarios

949 Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit

Authors: Fanyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling.

Keywords: polycrystalline diamond compact, scanning electron microscope, wear resistance, cutting distance

Procedia PDF Downloads 198
948 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones

Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu

Abstract:

In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.

Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV

Procedia PDF Downloads 174
947 The Effect of the COVID-19 on Alzheimer’s Disease

Authors: Ayşe Defne Öz, Özlem Bozkurt

Abstract:

Alzheimer's Disease (AD) is counted as one of the most important global health problems and the main cause of dementia. The term dementia refers to a wide spectrum of disorders characterized by global, chronic, and generally irreversible cognitive deterioration. It is estimated that %60 % to 80 of the cases of dementia are because of AD. Alzheimer's is a slowly progressive brain disease. The reason for AD is unknown to the author's best knowledge, yet it is one of the topics that is most researched. AD shows the histopathologically abnormal accumulation of the protein beta-amyloid (plague) outside neurons and twisted strands of the protein tau (tangles) inside neurons in the brain. These changes are accompanied by damage to the brain tissue and the death of neurons. AD causes people to have difficulty remembering names or conversations. Some of the later symptoms are difficulty in talking and walking. Alzheimer's Disease is elevated by the illness and mortality of COVID-19. COVID-19 has affected many lives globally and had profound effects on human lives. COVID-19 is caused by SARS-CoV-2, which is a virus that attacks the respiratory and central nervous system and has neuroinvasive potential. More than %80 of COVID-19 patients have ageusia or anosmia, representing the pathognomic features of the disease. Patients with dementia are frail, and with the COVID-19 pandemic, including isolation, cognitive decline may exacerbate. Furthermore, patients with AD can be unable to follow the directions, such as covering their mouth and nose while coughing and can live in nursing homes which makes them more open to being infected. As COVID-19 is highly infectious and its management requires isolation and quarantine, the need for caregivers for AD management conflicts with that of COVID-19 and adds an extra burden on AD patients, caregivers, families, society, and the economy. Due to the entry of SARS-CoV-2 into the central nervous system, inflammation caused by COVID-19, prolonged hospitalization, and delirium, it has been reported that COVID-19 causes many neurological disorders and predisposition to AD.

Keywords: Alzheimer's disease, COVID-19, dementia, SARS-CoV-2

Procedia PDF Downloads 76
946 Design of Sustainable Concrete Pavement by Incorporating RAP Aggregates

Authors: Selvam M., Vadthya Poornachandar, Surender Singh

Abstract:

These Reclaimed Asphalt Pavement (RAP) aggregates are generally dumped in the open area after the demolition of Asphalt Pavements. The utilization of RAP aggregates in cement concrete pavements may provide several socio-economic-environmental benefits and could embrace the circular economy. The cross recycling of RAP aggregates in the concrete pavement could reduce the consumption of virgin aggregates and saves the fertile land. However, the structural, as well as functional properties of RAP-concrete could be significantly lower than the conventional Pavement Quality Control (PQC) pavements. This warrants judicious selection of RAP fraction (coarse and fine aggregates) along with the accurate proportion of the same for PQC highways. Also, the selection of the RAP fraction and its proportion shall not be solely based on the mechanical properties of RAP-concrete specimens but also governed by the structural and functional behavior of the pavement system. In this study, an effort has been made to predict the optimum RAP fraction and its corresponding proportion for cement concrete pavements by considering the low-volume and high-volume roads. Initially, the effect of inclusions of RAP on the fresh and mechanical properties of concrete pavement mixes is mapped through an extensive literature survey. Almost all the studies available to date are considered for this study. Generally, Indian Roads Congress (IRC) methods are the most widely used design method in India for the analysis of concrete pavements, and the same has been considered for this study. Subsequently, fatigue damage analysis is performed to evaluate the required safe thickness of pavement slab for different fractions of RAP (coarse RAP). Consequently, the performance of RAP-concrete is predicted by employing the AASHTO-1993 model for the following distresses conditions: faulting, cracking, and smoothness. The performance prediction and total cost analysis of RAP aggregates depict that the optimum proportions of coarse RAP aggregates in the PQC mix are 35% and 50% for high volume and low volume roads, respectively.

Keywords: concrete pavement, RAP aggregate, performance prediction, pavement design

Procedia PDF Downloads 158
945 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving

Authors: Svenja Pieritz, Jakab Pilaszanovich

Abstract:

Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.

Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing

Procedia PDF Downloads 132
944 Chinese Early Childhood Parenting Style as a Moderator of the Development of Social Competence Based on Mindreading

Authors: Arkadiusz Gut, Joanna Afek

Abstract:

The first issue that we discuss in this paper is a battery of research demonstrating that culture influences children’s performance in tasks testing their theory of mind, also known as mindreading. We devote special attention to research done within Chinese culture; namely, studies with children speaking Cantonese and Mandarin natively and growing up in an environment dominated by the Chinese model of informal home education. Our attention focuses on the differences in development and functioning of social abilities and competences between children from China and the West. Another matter we turn to is the description of the nature of Chinese early childhood education. We suggest that the differences between the Chinese model and that of the West reveal a set of modifiers responsible for the variation observed in empirical research on children’s theory of mind (mindreading). The modifiers we identify are the following: (1) early socialization – that is, the transformation of the child into a member of the family and society that set special value by the social and physical environment; (2) the Confucian model of education – that is, the Chinese alphabet and tradition that determine a certain way of education in China; (3) the authoritarian style of upbringing – that is, reinforcing conformism, discouraging voicing of private opinions, and respect for elders; (4) the modesty of children and protectiveness of parents – that is, obedience as a desired characteristic in the child, overprotectiveness of parents, especially mothers; and (5) gender differences – that is, different educational styles for girls and boys. In our study, we conduct a thorough meta-analysis of empirical data on the development of mindreading and ToM (children’s theory of mind), as well as a cultural analysis of early childhood education in China. We support our analyses with questionnaire and narrative studies conducted in China that use the ‘Children’s Social Understanding Scale’ questionnaire, conversations based on the so-called ‘Scenarios Presented to Parents’, and questions designed to measure the ‘my child and I’ relation. With our research we aim to identify the factors in early childhood education that serve as moderators explaining the nature of the development and functioning of social cognition based on mind reading in China. Additionally, our study provides a valuable insight for comparative research of social cognition between China and the West.

Keywords: early childhood education, China, mindreading, parenting

Procedia PDF Downloads 386
943 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 93
942 Induction of Cellular and Humoral Immune Responses in BALB/c Mice Immunized With rB2L and rF1L Proteins of Orf Virus Adjuvanted With Alumina Nanoparticles

Authors: Alhaji Modu Bukar, Faez Firdaus Abdullah Jesse, Che Azurahanim Che Abdullah, Mustapha M. Noordin, Mohd-Lila Mohd Azmia

Abstract:

Orf virus (ORFV) is the causative agent of a proliferative skin lesion known as contagious ecthyma in sheep and goats. Currently used live attenuated vaccines against ORFV infection have been reported to cause severe outbreaks in vaccinated animals. In this study, we investigated the immunogenicity of the B2L and F1L proteins of the virus, which are thought to elicit a protective immune response The 6-week-old 50 female mice were divided into 8 groups: seven experimental groups and one control group. Each animal in the experimental group received an initial immunisation with the nanoparticles or proteins coated with the nanoparticles, followed by two booster immunizations with the same products 14 days apart. Ten days after the last booster inoculation, the mice were either humanely killed or lethally challenged with UPM /HSN-2-ORFV at a dose of 106 TCID50/mL in a volume of 50 μl. The spleen was examined for histopathological changes and quantification of T cells by flow cytometry. On the other hand, the degree of protection of mice from the lethal virus was evaluated by lesion size, weight loss, and histopathological examination of skin and liver. The results showed that mice immunised with rB2L alone, rB2L-Al₂O₃-NPs, rB2L/rF1L, and rB2L/rF1L-Al₂O₃-NPs elicited statistically higher levels of anti-rB2L and/or rF1L-specific IgA/IgG and CD4/CD8 cell immune responses than mice in the control groups (p < 0.01). The vaccine candidate did not exhibit severe skin damage after monitoring histopathology, morbidity, and mortality. Overall, the results suggest that recombinant rB2L and rF1L antigens may be useful universal vaccine candidates against ORFV infections.

Keywords: orf virus, antigen nanoparticles, virus, nanoparticles

Procedia PDF Downloads 70
941 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia

Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa

Abstract:

Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.

Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling

Procedia PDF Downloads 275
940 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: fashion, infringement, blockchain, artificial intelligence, textiles supply chain

Procedia PDF Downloads 261
939 Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder

Authors: Francisco Javier Montes Ruiz-Cabello, Guillermo Guerrero-Vacas, Sara Bermudez-Romero, Miguel Cabrerizo Vilchez, Miguel Angel Rodriguez-Valverde

Abstract:

Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored.

Keywords: galvanaized steel, superhydrophobic surfaces, sintering nanoparticles, zinc nanopowder

Procedia PDF Downloads 150
938 The Impact of Lipids on Lung Fibrosis

Authors: G. Wojcik, J. Gindlhuber, A. Syarif, K. Hoetzenecker, P. Bohm, P. Vesely, V. Biasin, G. Kwapiszewska

Abstract:

Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship.

Keywords: collagen, fibroblasts, lipidomics, lung, pulmonary fibrosis

Procedia PDF Downloads 84
937 Analysis of the Introduction of Carsharing in the Context of Developing Countries: A Case Study Based on On-Board Carsharing Survey in Kabul, Afghanistan

Authors: Mustafa Rezazada, Takuya Maruyama

Abstract:

Cars have a strong integration with the human being since its introduction, and this interaction is more evident in the urban context. Therefore, shifting city residents from driving private vehicles to public transits has been a big challenge. Accordingly, carsharing as an innovative, environmentally friendly transport alternative had a significant contribution to this transition so far. It helped to reduce the numbers of household car ownership, declining demand for on-street parking, dropping the numbers of kilometers traveled by car, and affects the future of mobility by decreasing the Green House Gases (GHS) emissions’ and the numbers of new cars to be purchased otherwise. However, majorities of carsharing researches were conducted in highly developed cities, and less attention has been paid to the cities of developing countries. This study is conducted in the Capital of Afghanistan, Kabul to investigate the current transport pattern, user behavior, and to examine the possibility of introducing the carsharing system. This study established a new survey method called Onboard Carsharing Survey OCS. In this survey, the carpooling passengers aboard are interviewed following the Onboard Transit Survey OTS guideline with a few refinements. The survey focuses on respondents’ daily travel behavior and hypothetical stated choice of carsharing opportunities. Moreover, it followed by an aggregate analysis at the end. The survey results indicate the following: two-thirds of the respondents 62% have been carpooling every day since 5 years or more, more than half of the respondents are not satisfied with current modes, besides other attributes the Traffic Congestion, Environment and Insufficient Public Transport were ranked the most critical in daily transportation by survey participants. Moreover, 68.24% of the respondent chose Carsharing over carpooling under different choice game scenarios. Overall, the findings in this research show that Kabul City is a potential underground for the introduction of Carsharing in the future. Taken together, insufficient public transit, dissatisfaction with current modes, and their stated interest will affect the future of carsharing positively in Kabul City. The modal choice in this study is limited to carpooling and carsharing; more choice sets, including bus, cycling, and walking, will have to be added to evaluate further.

Keywords: carsharing, developing countries, Kabul Afghanistan, onboard carsharing survey, transportation, urban planning

Procedia PDF Downloads 135
936 Assessment of Some Biological Activities of Methanolic Crude Extract from Polygonum maritimum L.

Authors: Imad Abdelhamid El-Haci, Wissame Mazari, Fayçal Hassani, Fawzia Atik Bekkara

Abstract:

Much attention has been paid to the antioxidants, which are expected to prevent food and living systems from peroxidative damage. Incorporation of synthetic antioxidants in food products is under strict regulation due to the potential health hazards caused by such compounds. The use of plants as traditional health remedies is very popular and important for 80% of the world’s population in African, Asian, Latin America and Middle Eastern Countries. Their use is reported to have minimal side effects. In recent years, pharmaceutical companies have spent considerable time and money in developing therapeutics based upon natural products extracted from plants. In other part, due to the continuous emergence of antibiotic-resistant strains there is continual demand for new antibiotics. Chemical compounds from medicinal plant especially are targeted by many researches. In this light, genus Polygonum (Polygonaceae), comprising about 45 genera (300 species), is distributed worldwide, mostly in north temperate regions. They have been reported to have uses in traditional medicine, such as anti-inflammation, promoting blood circulation, dysentery, diuretic, haemorrhage and many other uses. In our study, Polygonum maritimum (from Algerian coast) was extracted with 80% methanol to obtain a crude extract. P. maritimum extract (PME) had a very high content of total phenol, which was 352.49 ± 18.03 mg/g dry weight, expressed as gallic acid equivalent. PME exhibited excellent antioxidant activity, as measured using DPPH and H2O2 scavenging assays. It also showed a high antibacterial activity against gram positive bacterial strains: Bacillus cereus, Bacillus subtilis and Staphylococcus aureus with an MIC 0,12 mg/mL.

Keywords: Polygonum maritimum, crude extract, antioxidant activity, antibacterial activity

Procedia PDF Downloads 311
935 Free Radical Scavenging Activity and Total Phenolic Assessment of Drug Repurposed Medicinal Plant Metabolites: Promising Tools against Post COVID-19 Syndromes and Non-Communicable Diseases in Botswana

Authors: D. Motlhanka, M. Mine, T. Bagaketse, T. Ngakane

Abstract:

There is a plethora of evidence from numerous sources that highlights the triumph of naturally derived medicinal plant metabolites with antioxidant capability for repurposed therapeutics. As post-COVID-19 syndromes and non-communicable diseases are on the rise, there is an urgent need to come up with new therapeutic strategies to address the problem. Non-communicable diseases and Post COVID-19 syndromes are classified as socio-economic diseases and are ranked high among threats to health security due to the economic burden they pose to any government budget commitment. Research has shown a strong link between accumulation of free radicals and oxidative stress critical for pathogenesis of non-communicable diseases and COVID-19 syndromes. Botswana has embarked on a robust programme derived from ethno-pharmacognosy and drug repurposing to address these threats to health security. In the current approach, a number of medicinally active plant-derived polyphenolics are repurposed and combined into new medicinal tools to target diabetes, Hypertension, Prostate Cancer and oxidative stress induced Post COVID 19 syndromes such as “brain fog”. All four formulants demonstrated Free Radical scavenging capacities above 95% at 200µg/ml using the diphenylpicryalhydrazyl free radical scavenging assay and the total phenolic contents between 6899-15000GAE(g/L) using the folin-ciocalteau assay respectively. These repurposed medicinal tools offer new hope and potential in the fight against emerging health threats driven by hyper-inflammation and free radical-induced oxidative stress.

Keywords: drug repurposed plant polyphenolics, free radical damage, non-communicable diseases, post COVID 19 syndromes

Procedia PDF Downloads 128
934 Define Immersive Need Level for Optimal Adoption of Virtual Words with BIM Methodology

Authors: Simone Balin, Cecilia M. Bolognesi, Paolo Borin

Abstract:

In the construction industry, there is a large amount of data and interconnected information. To manage this information effectively, a transition to the immersive digitization of information processes is required. This transition is important to improve knowledge circulation, product quality, production sustainability and user satisfaction. However, there is currently a lack of a common definition of immersion in the construction industry, leading to misunderstandings and limiting the use of advanced immersive technologies. Furthermore, the lack of guidelines and a common vocabulary causes interested actors to abandon the virtual world after the first collaborative steps. This research aims to define the optimal use of immersive technologies in the AEC sector, particularly for collaborative processes based on the BIM methodology. Additionally, the research focuses on creating classes and levels to structure and define guidelines and a vocabulary for the use of the " Immersive Need Level." This concept, matured by recent technological advancements, aims to enable a broader application of state-of-the-art immersive technologies, avoiding misunderstandings, redundancies, or paradoxes. While the concept of "Informational Need Level" has been well clarified with the recent UNI EN 17412-1:2021 standard, when it comes to immersion, current regulations and literature only provide some hints about the technology and related equipment, leaving the procedural approach and the user's free interpretation completely unexplored. Therefore, once the necessary knowledge and information are acquired (Informational Need Level), it is possible to transition to an Immersive Need Level that involves the practical application of the acquired knowledge, exploring scenarios and solutions in a more thorough and detailed manner, with user involvement, via different immersion scales, in the design, construction or management process of a building or infrastructure. The need for information constitutes the basis for acquiring relevant knowledge and information, while the immersive need can manifest itself later, once a solid information base has been solidified, using the senses and developing immersive awareness. This new approach could solve the problem of inertia among AEC industry players in adopting and experimenting with new immersive technologies, expanding collaborative iterations and the range of available options.

Keywords: AECindustry, immersive technology (IMT), virtual reality, augmented reality, building information modeling (BIM), decision making, collaborative process, information need level, immersive level of need

Procedia PDF Downloads 99
933 Evaluation of Washing Performance of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Stressing the importance of water conservation, emphasizing the need for efficient management of household water, and underlining the significance of alternative solutions are important. In this context, advanced solutions based on technologies such as the advanced oxidation process have emerged as promising methods for treating household wastewater. Evaluating household water usage holds critical importance for the sustainability of water resources. Researchers and experts are examining various technological approaches to effectively treat and reclaim water for reuse. In this framework, the advanced oxidation process has proven to be an effective method for the removal of various organic and inorganic pollutants in the treatment of household wastewater. In this study, performance will be evaluated by comparing it with the reference case. This international criterion simulates the washing of home textile products, determining various performance parameters. The specially designed stain strips, including sebum, carbon black, blood, cocoa, and red wine, used in experiments, represent various household stains. These stain types were carefully selected to represent challenging stain scenarios, ensuring a realistic assessment of washing performance. Experiments conducted under different temperatures and program conditions successfully demonstrate the practical applicability of the advanced oxidation process for treating household wastewater. It is important to note that both adherence to standards and the use of real-life stain types contribute to the broad applicability of the findings. In conclusion, this study strongly supports the effectiveness of treating household wastewater with the advanced oxidation process in terms of washing performance under both standard and practical application conditions. The study underlines the importance of alternative solutions for sustainable water resource management and highlights the potential of the advanced oxidation process in the treatment of household water, contributing significantly to optimizing water usage and developing sustainable water management solutions.

Keywords: advanced oxidation process, household water usage, household appliance waste water, modelling, water reuse

Procedia PDF Downloads 65
932 Controlling Olive Anthracnose with Antifungal Metabolites from Bacillus Species: A Biological Approach

Authors: Hafiz Husnain Nawaz

Abstract:

Anthracnose disease in olive, caused by the fungal pathogen Colletotrichum acutatum, is considered one of the most critical issues in olive orchards in Pakistan. This disease poses a significant threat as it results in infections that can lead to the complete damage of olive plants, affecting leaves, stems, and fruits in the field. Controlling this disease is particularly challenging due to the absence of an effective fungicide that does not pose risks to farmer health and the environment. To address this challenge, our study aimed to evaluate the antagonistic activity of a biosurfactant produced by the Bacillus subtilis PE-07 strain against the anthracnose-causing agent in olive plants. This strain was selected after screening sixty rhizobacteria strains. Additionally, we assessed the heat stability, pH range, and toxicity of the biosurfactant produced by strain PE-07. Our results revealed that the biosurfactant exhibited maximum antifungal activity against C. acutatum. In vitro studies indicated that the biosurfactant could reduce fungal activity by inhibiting the spore germination of C. acutatum. Furthermore, the biosurfactant demonstrated a wide pH and temperature range, displaying antifungal activity at pH levels ranging from 5 to 10 and a temperature range from room temperature to 110°C. To evaluate the biosurfactant's safety, we conducted toxicity tests on zebra fish (Danio rerio). The results showed that the biosurfactant had minimal harmful effects, even at maximum concentrations. In conclusion, our study confirmed that the biosurfactant produced by B. subtilis exhibited high pH and heat stability with minimal harmful effects. Therefore, it presents a promising alternative to chemical pesticides for effectively controlling olive anthracnose in Pakistan.

Keywords: biological control, heat stability and PH range, toxicity, Danio rerio

Procedia PDF Downloads 60
931 Assessing Local Authorities’ Interest in Addressing Urban Challenges through Nature Based Solutions in Romania

Authors: Athanasios A. Gavrilidis, Mihai R. Nita, Larissa N. Stoia, Diana A. Onose

Abstract:

Contemporary global environmental challenges must be primarily addressed at local levels. Cities are under continuous pressure as they must ensure high quality of life levels for their citizens and at the same time to adapt and address specific environmental issues. Innovative solutions using natural features or mimicking natural systems are endorsed by the scientific community as efficient approaches for both mitigating climate change effects and the decrease of environmental quality and for maintaining high standards of living for urban dwellers. The aim of this study was to assess whether Romanian cities’ authorities are considering nature-based innovation as solutions for their planning, management, and environmental issues. Data were gathered by applying 140 questionnaires to urban authorities throughout the country. The questionnaire was designed for assessinglocal policy makers’ perspective over the efficiency of nature-based innovations as a tool to address specific challenges. It also focused on extracting data about financing sources and challenges they must overcome for adopting nature-based approaches. The gather results from the municipalities participating in our study were statistically processed, and they revealed that Romanian city managers acknowledge the benefits of nature-based innovations, but investments in this sector are not on top of their priorities. More than 90% of the selected cities have agreed that in the last 10 years, their major concern was to expand the grey infrastructure (roads and public amenities) using traditional approaches. When asked how they would react if faced with different socio-economic and environmental challenges, local urban managers indicated investments nature-based solutions as a priority only in case of biodiversity loss and extreme weather, while for other 14 proposed scenarios, they would embrace the business-as-usual approach. Our study indicates that while new concepts of sustainable urban planning emerge within the scientific community, local authorities need more time to understand and implement them. Without the proper knowledge, personnel, policies, or dedicated budgets, local administrators will not embrace nature-based innovations as solutions for their challenges.

Keywords: nature based innovations, perception analysis, policy making, urban planning

Procedia PDF Downloads 174
930 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding

Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha

Abstract:

The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.

Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits

Procedia PDF Downloads 341
929 Nanoparticles Activated Inflammasome Lead to Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma

Authors: Pureun-Haneul Lee, Byeong-Gon Kim, Sun-Hye Lee, An-Soo Jang

Abstract:

Background: Nanoparticles may pose adverse health effects due to particulate matter inhalation. Nanoparticle exposure induces cell and tissue damage, causing local and systemic inflammatory responses. The inflammasome is a major regulator of inflammation through its activation of pro-caspase-1, which cleaves pro-interleukin-1β (IL-1β) into its mature form and may signal acute and chronic immune responses to nanoparticles. Objective: The aim of the study was to identify whether nanoparticles exaggerates inflammasome pathway leading to airway inflammation and hyperresponsiveness in an allergic mice model of asthma. Methods: Mice were treated with saline (sham), OVA-sensitized and challenged (OVA), or titanium dioxide nanoparticles. Lung interleukin 1 beta (IL-1β), interleukin 18 (IL-18), NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and caspase-1 levels were assessed with Western Blot. Caspase-1 was checked by immunohistochemical staining. Reactive oxygen species were measured for the marker 8-isoprostane and carbonyl by ELISA. Results: Airway inflammation and hyperresponsiveness increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. TiO2 nanoparticles treatment increased IL-1β and IL-18 protein expression in OVA-sensitized/challenged mice. TiO2 nanoparticles augmented the expression of NLRP3 and caspase-1 leading to the formation of an active caspase-1 in the lung. Lung caspase-1 expression was increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. Reactive oxygen species was increased in OVA-sensitized/challenged mice and in OVA-sensitized/challenged plus TiO2 exposed mice. Conclusion: Our data demonstrate that inflammasome pathway activates in asthmatic lungs following nanoparticles exposure, suggesting that targeting the inflammasome may help control nanoparticles-induced airway inflammation and responsiveness.

Keywords: bronchial asthma, inflammation, inflammasome, nanoparticles

Procedia PDF Downloads 375
928 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay

Abstract:

Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 262
927 Anti-Ulcer Activity of Hydro Alcoholic Extract of Ficus bengalensis Linn Bark in Experimental Rats

Authors: Jagdish Baheti, Sampat Navale

Abstract:

The present study was performed to evaluate the anti-ulcerogenic activity of hydro-alcoholic extract of Ficus bengalensis Linn. against ethanol-induced gastric mucosal injury in rats and pylorus ligation gastric secretion in rats. Five groups of adult wistar rats were orally pre-treated respectively with carboxy methyl cellulose (CMC) solution (ulcer control group), Omeprazole 20 mg/kg (reference group), and 100, 200 and 300 mg/kg F. bengalensis Linn. bark extract in CMC solution (experimental groups), one hour before oral administration of absolute ethanol to generate gastric mucosal injury. Rats were sacrificed and the ulcer index, gastric volume, gastric pH, free acidity, total acidity of the gastric content was determined. Grossly, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with F. bengalensis Linn. bark extract exhibited significant protection of gastric mucosal injury in both model. Histological studies revealed that ulcer control group exhibited severe damage of gastric mucosa, along with edema and leucocytes infiltration of submucosal layer compared to rats pre-treated with F. bengalensis Linn. bark extract which showed gastric mucosal protection, reduction or absence of edema and leucocytes infiltration of submucosal layer. Acute toxicity study did not manifest any toxicological signs in rats. The present finding suggests that F. bengalensis Linn. bark extract promotes ulcer protection as ascertained grossly and histologically compared to the ulcer control group.

Keywords: Ficus bengalensis Linn., gastric ulcer, hydroalcoholic, pylorus ligation

Procedia PDF Downloads 294
926 Removal of Pb²⁺ from Waste Water Using Nano Silica Spheres Synthesized on CaCO₃ as a Template: Equilibrium and Thermodynamic Studies

Authors: Milton Manyangadze, Joseph Govha, T. Bala Narsaiah, Ch. Shilpa Chakra

Abstract:

The availability and access to fresh water is today a serious global challenge. This has been a direct result of factors such as the current rapid industrialization and industrial growth, persistent droughts in some parts of the world, especially in the sub-Saharan Africa as well as population growth. Growth of the chemical processing industry has also seen an increase in the levels of pollutants in our water bodies which include heavy metals among others. Heavy metals are known to be dangerous to both human and aquatic life. As such, they have been linked to several diseases. This is mainly because they are highly toxic. They are also known to be bio accumulative and non-biodegradable. Lead for example, has been linked to a number of health problems which include damage of vital internal body systems like the nervous and reproductive system as well as the kidneys. From this background therefore, the removal of the toxic heavy metal, Pb2+ from waste water was investigated using nano silica hollow spheres (NSHS) as the adsorbent. Synthesis of NSHS was done using a three-stage process in which CaCO3 nanoparticles were initially prepared as a template. This was followed by treatment of the formed oxide particles with NaSiO3 to give a nanocomposite. Finally, the template was destroyed using 2.0M HCl to give NSHS. Characterization of the nanoparticles was done using analytical techniques like XRD, SEM, and TGA. For the adsorption process, both thermodynamic and equilibrium studies were carried out. Thermodynamic studies were carried out and the Gibbs free energy, Enthalpy and Entropy of the adsorption process were determined. The results revealed that the adsorption process was both endothermic and spontaneous. Equilibrium studies were also carried out in which the Langmuir and Freundlich isotherms were tested. The results showed that the Langmuir model best described the adsorption equilibrium.

Keywords: characterization, endothermic, equilibrium studies, Freundlich, Langmuir, nanoparticles, thermodynamic studies

Procedia PDF Downloads 215
925 Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment

Authors: Atif Zafar Khan, Swarnendra Singh, Imrana Naseem

Abstract:

Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells.

Keywords: apoptosis, breast cancer, copper chelation, coumestrol, reactive oxygens species, redox cycling

Procedia PDF Downloads 245
924 Reversal of Testicular Damage and Subfertility by Resveratrol

Authors: Samy S. Eleawa, Mahmoud A. Alkhateeb, Fahaid H. Alhashem, Ismaeel bin-Jaliah, Hussein F. Sakr, Hesham M. Elrefaey, Abbas O. Elkarib, Mohammad A. Haidara, Abdullah S. Shatoor, Mohammad A. Khalil

Abstract:

This effect of Resveratrol (RES) against CdCl2- induced toxicity in the rat testes was investigated. Seven experimental groups of adult male rats were formulated as follows: A) Controls + NS, B) Control+ vehicle (saline solution of hydroxypropyl cyclodextrin), C) RES treated, D) CdCl2 +NS, E) CdCl2+ vehicle, F) RES followed by CdCl2 and M) CdCl2 followed by RES. At the end of the protocol, serum levels of FSH, LH, and testosterone were measured in all groups. Testicular levels of TBARS and Super Oxide Dismutase (SOD) activity were also measured. Epidydidimal semen analysis was performed and testicular expression of Bcl-2, p53 and Bax were assessed by RT-PCR. Also, histopathological changes of testes were examined microscopically and described. Pre and Post administration of RES in cadmium chloride-intoxicated rats improved semen parameters including count, motility, daily sperm production and morphology, increased serum concentrations of gonadotropins and testosterone, decreased testicular lipid peroxidation and increased SOD activity. Not only RES attenuated cadmium chloride induced testicular histopathology but was also able to protect against the onset of cadmium chloride testicular toxicity. Cadmium chloride downregulated the anti-apoptotic gene Bcl2 and upregulated the expression of both pro-apoptotic genes p53 and Bax. Resveratrol protected from and partially reversed cadmium chloride testicular via upregulation of Bcl2 and down regulation of p53 and Bax gene expression. Antioxidant activity of RES protects against cadmium chloride testicular toxicity and partially reverses its effect via upregulation of BCl2 and downregulation of p53 and Bax expression. These findings have far reaching implications on subfertility and impotency frequently seen in hypertensive as well as metabolic syndrome patients.

Keywords: resveratrol, cadmium, infertility, sperm, testis, metabolic syndrome

Procedia PDF Downloads 535
923 Possible Neuroprotective Mechanism of Remote Limb Ischemic Post Conditioning against Global Cerebral Ischemic Injury

Authors: Sruthi Ramagiri, Rajeev Taliyan

Abstract:

Background and purpose: Recent investigations on ischemia and reperfusion injury postulate that transient ischemia of remote organs after a prolonged ischemic insult confers neuroprotection. However, the molecular mechanisms of the remote limb ischemic post-conditioning (RIPOC) are yet to be elucidated. The current study was designed to investigate the protective mechanism of RIPOC against cerebral ischemic injury using global model of stroke. Materials and methods: Global ischemic reperfusion injury (IR) was achieved by 30 minutes ischemia of cerebral artery, followed by reperfusion for 24 hours. Induction of global ischemia was followed by 4 brief episodes (30 seconds each) of ischemia and reperfusion of femoral artery to accomplish RIPOC. 5-Hydroxy Decanoic acid (5-HD), a KATP channel blocker (20 mg/kg) was administered after induction of global ischemia and RIPOC intervention. Results: IR injury ensue significant behavioural deficits as manifested by rotarod performance and spontaneous locomotor activity when compared to sham control. Furthermore, IR injury significantly increased oxidonitrative stress and infarct volume as evidenced by biochemical parameters (MDA, GSH, Nitrite, SOD) and 2,3,5-triphenyltetrazolium chloride (TTC) staining respectively. Moreover, RIPOC intervention ameliorated the behavioural performance, attenuated the oxidative stress and infarct volume when compared to IR injury group. However, administration of 5-HD increased the oxidative stress and infarct size while deteriorating the behavioural parameters when compared to RIPOC group. Conclusions: In a nutshell, cerebral IR injury has significantly induced the neuronal damage, whereas RIPOC intervention decreased the neuronal injury. Moreover, 5-HD abolished the neuroprotection offered by RIPOC indicating the putative role of KATP channel opening in RIPOC against cerebral ischemic injury.

Keywords: RIPOC, cerebral injury, KATP channel, neuroprotection

Procedia PDF Downloads 470
922 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
921 A Novel Study Contrasting Traditional Autopsy with Post-Mortem Computed Tomography in Falls Leading to Death

Authors: Balaji Devanathan, Gokul G., Abilash S., Abhishek Yadav, Sudhir K. Gupta

Abstract:

Background: As an alternative to the traditional autopsy, a virtual autopsy is carried out using scanning and imaging technologies, mainly post-mortem computed tomography (PMCT). This facility aims to supplement traditional autopsy results and reduce or eliminate internal dissection in subsequent autopsies. For emotional and religious reasons, the deceased's relatives have historically disapproved such interior dissection. The non-invasive, objective, and preservative PMCT is what friends and family would rather have than a traditional autopsy. Additionally, it aids in the examination of the technologies and the benefits and drawbacks of each, demonstrating the significance of contemporary imaging in the field of forensic medicine. Results: One hundred falls resulting in fatalities was analysed by the writers. Before the autopsy, each case underwent a PMCT examination using a 16-slice Multi-Slice CT spiral scanner. By using specialised software, MPR and VR reconstructions were carried out following the capture of the raw images. The accurate detection of fractures in the skull, face bones, clavicle, scapula, and vertebra was better observed in comparison to a routine autopsy. The interpretation of pneumothorax, Pneumoperitoneum, pneumocephalus, and hemosiuns are much enhanced by PMCT than traditional autopsy. Conclusion. It is useful to visualise the skeletal damage in fall from height cases using a virtual autopsy based on PMCT. So, the ideal tool in traumatising patients is a virtual autopsy based on PMCT scans. When assessing trauma victims, PMCT should be viewed as an additional helpful tool to traditional autopsy. This is because it can identify additional bone fractures in body parts that are challenging to examine during autopsy, such as posterior regions, which helps the pathologist reconstruct the victim's life and determine the cause of death.

Keywords: PMCT, fall from height, autopsy, fracture

Procedia PDF Downloads 37
920 Syndecan -1 as Regulator of Ischemic-Reperfusion Damage Limitation in Experiment

Authors: M. E. Kolpakova, A. A. Jakovleva, L. S. Poliakova, H. El Amghari, S. Soliman, D. R. Faizullina, V. V. Sharoyko

Abstract:

Brain neuroplasticity is associated with blood-brain barrier vascular endothelial proteoglycans and post-stroke microglial activation. The study of the mechanisms of reperfusion injury limitation by remote ischemic postconditioning (RC) is of interest due to the effects on functional recovery after cerebral ischemia. The goal of the study is the assessment of the role of syndecan-1 (SDC-1) in restriction of ischemic-reperfusion injury on middle cerebral artery model in rats using RC protocol. Randomized controlled trials were conducted. Ischemia was performed by middle cerebral artery occlusion by Belayev L. (1996) on the Wistar rat-males (n= 87) weighting 250 ± 50 g. under general anesthesia (Zoletil 100 и Xylazine 2%). Syndecan-1 (SDC-1) concentration difference in plasma samples of false operated animals and animals with brain ischemia was 30% (30 min. МСАо: 41.4 * ± 1.3 ng/ml). SDC-1 concentration in animal plasma samples with ischemia + RC protocol was 112% (30 min МСАо+ RC): 67.8**± 5.8 ng/ml). Calculation of infarction volume in the ischemia group revealed brain injury in 31.97 ± 2.5%; the volume of infarction was 13.6 ± 1.3% in 30 min. МCАо + RC group. Swelling of tissue in the group 30 min. МCАо + RC was 16 ± 2.1%; it was 47 ± 3.3%. in 30 min. МCАо group. Correlation analysis showed a high direct correlation relationship between infarct area and muscle strength in the right forelimb (КК=0.72) in the 30 min. МCАо + RC group. Correlation analysis showed very high inverse correlation between infarct area and capillary blood flow in the 30 min. МCАо + RC group (p <0.01; r = -0.98). We believe the SDC-1 molecule in blood plasma may play role of potential messenger of ischemic-reperfusion injury restriction mechanisms. This leads to infarct-limiting effect of remote ischemic postconditioning and early functioning recovery.

Keywords: ischemia, МСАо, remote ischemic postconditioning, syndecan-1

Procedia PDF Downloads 62