Search results for: recycling cost estimates
4405 The Impact of Research Anxiety on Research Orientation and Interest in Research Courses in Social Work Students
Authors: Daniel Gredig, Annabelle Bartelsen-Raemy
Abstract:
Social work professionals should underpin their decisions with scientific knowledge and research findings. Hence, research is used as a framework for social work education and research courses have become a taken-for-granted component of study programmes. However, it has been acknowledged that social work students have negative beliefs and attitudes as well as frequently feelings of fear of research courses. Against this background, the present study aimed to establish the relationship between student’s fear of research courses, their research orientation and interest in research courses. We hypothesized that fear predicts the interest in research courses. Further, we hypothesized that research orientation (perceived importance and attributed usefulness for research for social work practice and perceived unbiased nature of research) was a mediating variable. In the years 2014, 2015 and 2016, we invited students enrolled for a bachelor programme in social work in Switzerland to participate in the study during their introduction day to the school taking place two weeks before their programme started. For data collection, we used an anonymous self-administered on-line questionnaire filled in on site. Data were analysed using descriptive statistics and structural equation modelling (generalized least squares estimates method). The sample included 708 students enrolled in a social work bachelor-programme, 501 being female, 184 male, and 5 intersexual, aged 19–56, having various entitlements to study, and registered for three different types of programme modes (full time programme; part time study with field placements in blocks; part time study involving concurrent field placement). Analysis showed that the interest in research courses was predicted by fear of research courses (β = -0.29) as well as by the perceived importance (β = 0.27), attributed usefulness of research (β = 0.15) and perceived unbiased nature of research (β = 0.08). These variables were predicted, in turn, by fear of research courses (β = -0.10, β = -0.23, and β = -0.13). Moreover, interest was predicted by age (β = 0.13). Fear of research courses was predicted by age (β = -0.10) female gender (β = 0.28) and having completed a general baccalaureate (β = -0.09). (GFI = 0.997, AGFI = 0.988, SRMR = 0.016, CMIN/df = 0.946, adj. R2 = 0.312). Findings evidence a direct as well as a mediated impact of fear on the interest in research courses in entering first-year students in a social work bachelor-programme. It highlights one of the challenges social work education in a research framework has to meet with. It seems, there have been considerable efforts to address the research orientation of students. However, these findings point out that, additionally, research anxiety in terms of fear of research courses should be considered and addressed by teachers when conceptualizing research courses.Keywords: research anxiety, research courses, research interest, research orientation, social work students, teaching
Procedia PDF Downloads 1914404 Flexible Alternative Current Transmission System Impact on Grid Stability and Power Markets
Authors: Abdulrahman M. Alsuhaibani, Martin Maken
Abstract:
FACTS devices have great influence on the grid stability and power markets price. Recently, there is intent to integrate a large scale of renewable energy sources to the power system which in turn push the power system to operate closer to the security limits. This paper discusses the power system stability and reliability improvement that could be achieved by using FACTS. There is a comparison between FACTS devices to evaluate their performance for different functions. A case study has also been made about its effect on reducing generation cost and minimizing transmission losses which have good impact on efficient and economic operation of electricity marketsKeywords: FACTS, grid stability, spot price, OPF
Procedia PDF Downloads 1664403 Assessment of Marine Diversity on Rocky Shores of Triporti, Vlore, Albania
Authors: Ina Nasto, Denada Sota, Kerol Sacaj, Brunilda Veshaj, Hajdar Kicaj
Abstract:
Rocky shores are often used as models to describe the dynamics of biodiversity around the world, making them one of the most studied marine habitats and their communities. The variability in the number of species and the abundance of hard-bottom benthic animal communities on the coast of Triporti, north of the Bay of Vlora, Albania is described in relation to environmental variables using multivariate analysis. The purpose of this study is to monitor the species composition, quantitative characteristics, and seasonal variations of the benthic macroinvertebrate populations of the shallow rocky shores of the Triportit-Vlora area, as well as the assessment of the ecological condition of these populations. The rocky coast of Triport, with a length of 7 km, was divided into three sampling stations, with three transects each of 50m. The monitoring of benthic macroinvertebrates in these areas was carried out in two seasons, spring and summer (June and August 2021). In each station and sampling season, estimates of the total and average density for each species, the presence constant, and the assessment of biodiversity were calculated using the Shannon–Wiener and the Simpson index. The species composition, the quantitative characteristics of the populations, and the indicators mentioned above were analyzed in a comparative way, both between the seasons within one station and between the three stations with each other. Statistical processing of the data was carried out to analyze the changes between the seasons and between the sampling stations for the species composition, population density, as well as correlation between them. A total of 105 benthic macroinvertebrate taxa were found, dominated by Molluscs, Annelids, and Arthropods. The small density of species and the low degree of stability of the macrozoobenthic community are indicators of the poor ecological condition and environmental impact in the studied areas. Algal cover, the diversity of coastal microhabitats, and the degree of coastal exposure to waves play an important role in the characteristics of macrozoobenthos populations in the studied areas. Also, the rocky shores are of special interest because, in the infralittoral of these areas, there are dense kelp forests with Gongolaria barbata, Ericaria crinita as well as fragmented areas with Posidonia oceanica that reach the coast, priority habitats of special conservation importance in the Mediterranean.Keywords: Macrozoobenthic communities, Shannon–Wiener, Triporti, Vlore, rocky shore
Procedia PDF Downloads 1024402 Patterns of Associations between Child Maltreatment, Maternal Childhood Adversity, and Maternal Mental Well-Being: A Cross-Sectional Study in Tirana, Albania
Authors: Klea Ramaj
Abstract:
Objectives: There have recently been increasing calls to better understand the intergenerational transmission of adverse childhood experiences (ACEs). In particular, little is known about the links between maternal (ACEs), maternal stress, maternal depression, and child abuse against toddlers in countries in South-East Europe. This paper, therefore, aims to present new descriptive data on the epidemiology of maternal mental well-being and maternal ACEs in the capital of Albania, Tirana. It also aims to advance our understanding of the overlap between maternal stress, maternal depression, maternal exposure to ACEs, and child abuse toward two-to-three-year-old. Methods: This is a cross-sectional study conducted with a representative sample of 328 mothers of two-to-three-year-olds, recruited through public nurseries located in 8 diverse socio-economic and geographical areas in Tirana, Albania. Maternal stress was measured through the perceived stress scale (α = 0.78); maternal depression was measured via the patient health questionnaire (α = 0.77); maternal exposure to ACEs was captured via the ACEs international questionnaire (α = 0.77); and child maltreatment was captured via ISPCAN ICAST-P (α = 0.66). The main outcome examined here will be child maltreatment. The paper will first present estimates of maternal stress, depression, and child maltreatment by demographic groups. It will then use multiple regression to examine associations between child maltreatment and risk factors in the domains of maternal stress, maternal depression, and maternal ACEs. Results: Mothers' mean age was 32.3 (SD = 4.24), 87.5% were married, 51% had one child, and 83.5% had completed higher education. Analyses show high levels of stress and exposure to childhood adversity among mothers in Tirana. 97.5% of mothers perceived stress during the last month, and 89% had experienced at least one childhood adversity as measured by the ACE questionnaire, with 20.2% having experienced 4+ ACEs. Analyses show significant positive associations between maternal ACEs and maternal stress r(325) = 0.25, p = 0.00. Mothers with a high number of ACEs were more likely to abuse their children r(327) = .43, p = 0.00. 32% of mothers have used physical discipline with their 2–3-year-old, 84% have used psychological discipline, and 35% have neglected their toddler at least once or twice. The mothers’ depression levels were also positively and significantly associated with child maltreatment r(327) = .34, p = 0.00. Conclusions: This study provides cross-sectional data on the link between maternal exposure to early adversity, maternal mental well-being, and child maltreatment within the context of Tirana, Albania. The results highlight the importance of establishing policies that encourage maternal support, positive parenting, and family well-being in order to help break the cycle of transgenerational violence.Keywords: child maltreatment, maternal mental well-being, intergenerational abuse, Tirana, Albania
Procedia PDF Downloads 1304401 Fabrication of Zeolite Modified Cu Doped ZnO Films and Their Response towards Nitrogen Monoxide
Authors: Irmak Karaduman, Tugba Corlu, Sezin Galioglu, Burcu Akata, M. Ali Yildirim, Aytunç Ateş, Selim Acar
Abstract:
Breath analysis represents a promising non-invasive, fast and cost-effective alternative to well-established diagnostic and monitoring techniques such as blood analysis, endoscopy, ultrasonic and tomographic monitoring. Portable, non-invasive, and low-cost breath analysis devices are becoming increasingly desirable for monitoring different diseases, especially asthma. Beacuse of this, NO gas sensing at low concentrations has attracted progressive attention for clinical analysis in asthma. Recently, nanomaterials based sensors are considered to be a promising clinical and laboratory diagnostic tool, because its large surface–to–volume ratio, controllable structure, easily tailored chemical and physical properties, which bring high sensitivity, fast dynamic processand even the increasing specificity. Among various nanomaterials, semiconducting metal oxides are extensively studied gas-sensing materials and are potential sensing elements for breathanalyzer due to their high sensitivity, simple design, low cost and good stability.The sensitivities of metal oxide semiconductor gas sensors can be enhanced by adding noble metals. Doping contents, distribution, and size of metallic or metal oxide catalysts are key parameters for enhancing gas selectivity as well as sensitivity. By manufacturing doping MOS structures, it is possible to develop more efficient sensor sensing layers. Zeolites are perhaps the most widely employed group of silicon-based nanoporous solids. Their well-defined pores of sub nanometric size have earned them the name of molecular sieves, meaning that operation in the size exclusion regime is possible by selecting, among over 170 structures available, the zeolite whose pores allow the pass of the desired molecule, while keeping larger molecules outside.In fact it is selective adsorption, rather than molecular sieving, the mechanism that explains most of the successful gas separations achieved with zeolite membranes. In view of their molecular sieving and selective adsorption properties, it is not surprising that zeolites have found use in a number of works dealing with gas sensing devices. In this study, the Cu doped ZnO nanostructure film was produced by SILAR method and investigated the NO gas sensing properties. To obtain the selectivity of the sample, the gases including CO,NH3,H2 and CH4 were detected to compare with NO. The maximum response is obtained at 85 C for 20 ppb NO gas. The sensor shows high response to NO gas. However, acceptable responses are calculated for CO and NH3 gases. Therefore, there are no responses obtain for H2 and CH4 gases. Enhanced to selectivity, Cu doped ZnO nanostructure film was coated with zeolite A thin film. It is found that the sample possess an acceptable response towards NO hardly respond to CO, NH3, H2 and CH4 at room temperature. This difference in the response can be expressed in terms of differences in the molecular structure, the dipole moment, strength of the electrostatic interaction and the dielectric constant. The as-synthesized thin film is considered to be one of the extremely promising candidate materials in electronic nose applications. This work is supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) under Project No, 115M658 and Gazi University Scientific Research Fund under project no 05/2016-21.Keywords: Cu doped ZnO, electrical characterization, gas sensing, zeolite
Procedia PDF Downloads 2864400 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution
Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques
Abstract:
The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)
Procedia PDF Downloads 2994399 Benefit Of Waste Collection Route Optimisation
Authors: Bojana Tot, Goran BošKović, Goran Vujić
Abstract:
Route optimisation is a process of planning one or multiple routes, with the purpose of minimizing overall costs, while achieving the highest possible performance under a set of given constraints. It combines routing or route planning, which is the process of creating the most cost-effective route by minimizing the distance or travelled time necessary to reach a set of planned stops, and route scheduling, which is the process of assigning an arrival and service time for each stop, with drivers being given shifts that adhere to their working hours. The objective of this paper is to provide benefits on the implementation of waste collection route optimisation and thus achieve economic efficiency for public utility companies, better service for citizens and positive environment and health.Keywords: waste management, environment, collection route optimisation, GIS
Procedia PDF Downloads 1674398 Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods
Authors: Getalem E. Haylia
Abstract:
The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir.Keywords: catchment, reservoir effective life, reservoir sedimentation, Ribb, sediment yield, SWAT model
Procedia PDF Downloads 1924397 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework
Authors: Iulia E. Falcan
Abstract:
The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization
Procedia PDF Downloads 1744396 Automation of Student Attendance Management System Using BPM
Authors: Kh. Alaa, Sh. Sarah, J. Khowlah, S. Liyakathunsia
Abstract:
Education has become very important nowadays and with the rapidly increasing number of student, taking the attendance manually is getting very difficult and time wasting. In order to solve this problem, an automated solution is required. An effective automated system can be implemented to manage student attendance in different ways. This research will discuss a unique class attendance system which integrates both Face Recognition and RFID technique. This system focuses on reducing the time spent on submitting of the lecture and the wastage of time on submitting and getting approval for the absence excuse and sick leaves. As a result, the suggested solution will enhance not only the time, also it will also be helpful in eliminating fake attendance.Keywords: attendance system, face recognition, RFID, process model, cost, time
Procedia PDF Downloads 3814395 A Survey of Crowdsourcing Technology
Authors: Qianjia Cheng, Hongquan Jiang
Abstract:
Crowdsourcing solves the problems that computers can't handle by integrating computers and the Internet. Its extensive knowledge sources, high efficiency and high quality, make crowdsourcing attract wide attention in industry and academia in recent years. The development of online crowdsourcing platforms such as Clickworker and Amazon Mechanical Turk(Mturk) tend to mature gradually. This paper sorts out the concept of crowdsourcing, sorts out the workflow of competitive crowdsourcing, summarizes the related technologies of crowdsourcing based on the workflow, quality control, cost control and delay control, introduces the typical crowdsourcing platform. Finally, we highlight some open problems of the current crowdsourcing and present some future research direction in this area.Keywords: application, crowdsourcing, crowdsourcing platform, system architecture
Procedia PDF Downloads 744394 Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets
Authors: Ayodeji Fasuyi
Abstract:
Telfairia occidentalis is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of Telfairia occidentalis. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (Turbotox), a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/Turbotox mixtures were used in diets containing four varying levels of Telfairia occidentalis leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and Turbotox additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds.Keywords: Telfairia occidentalis leaf meal, enzymes, probiotics, additives
Procedia PDF Downloads 1444393 Accessibility of the Labor Market in Indonesian Cities
Authors: Hananto Prakoso, Jean-Pierre Orfeuil
Abstract:
The relationship between city size, urban transport efficiency (speed), employment proximity (distance) and accessibility of labour market is rarely examined especially in developing countries. This paper reveals the relationship using 2 points of views (active population and company). Then the analysis is divided according to 3 transport modes (car, public transport and motorcycle) and takes into account the vehicle ownership rate. We employ data across 111 districts in 4 big cities of Indonesia. In our result, speed indicator contributed positively to accessibility of labour market while distance elasticity is negative. In absolute value, elasticity of speed indicator is higher than that of distance.Keywords: labour market, travel time, travel cost threshold, transportation
Procedia PDF Downloads 3804392 CFD Simulation for Development of Cooling System in a Cooking Oven
Authors: V. Jagadish, Mathiyalagan V.
Abstract:
Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis
Procedia PDF Downloads 1644391 Better Knowledge and Understanding of the Behavior of Masonry Buildings in Earthquake
Authors: A. R. Mirzaee, M. Khajehpour
Abstract:
Due to Simple Design, reasonable cost and easy implementation most people are reluctant to build buildings with masonry construction. Masonry Structures performance at earthquake are so limited. Of most earthquakes occurred in Iran and other countries, we can easily see that most of the damages are for masonry constructions and this is the evidence that we lack proper understanding of the performance of masonry buildings in earthquake. In this paper, according to field studies, conducted in past earthquakes. To evaluate the strengths and weaknesses points of the masonry constructions and also provide a solution to prevent such damage should be presented, and also program Examples of the correct bearing wall and tie-column design with the valid regulations (MSJC-08 (ASD)) will be explained.Keywords: Masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column
Procedia PDF Downloads 4364390 Value Generation of Construction and Demolition Waste Originated in the Building Rehabilitation to Improve Energy Efficiency; From Waste to Resources
Authors: Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Paola Villoria Saez, Carmen Viñas Arrebola
Abstract:
The lack of treatment of the waste from construction and demolition waste (CDW) is a problem that must be solved immediately. It is estimated that in the world not to use CDW generates an increase in the use of new materials close to 20% of the total value of the materials used. The problem is even greater in case these wastes are considered hazardous because the final deposition of them may also generate significant contamination. Therefore, the possibility of including CDW in the manufacturing of building materials, represents an interesting alternative to ensure their use and to reduce their possible risk. In this context and in the last years, many researches are being carried out in order to analyze the viability of using CDW as a substitute for the traditional raw material of high environmental impact. Even though it is true, much remains to be done, because these works generally characterize materials but not specific applications that allow the agents of the construction to have the guarantees required by the projects. Therefore, it is necessary the involvement of all the actors included in the life cycle of these new construction materials, and also to promote its use for, for example, definition of standards, tax advantages or market intervention is necessary. This paper presents the main findings reached in "Waste to resources (W2R)" project since it began in October 2014. The main goal of the project is to develop new materials, elements and construction systems, manufactured from CDW, to be used in improving the energy efficiency of buildings. Other objectives of the project are: to quantify the CDW generated in the energy rehabilitation works, specifically wastes from the building envelope; and to study the traceability of CDW generated and promote CDW reuse and recycle in order to get close to the life cycle of buildings, generating zero waste and reducing the ecological footprint of the construction sector. This paper determines the most important aspects to consider during the design of new constructive solutions, which improve the energy efficiency of buildings and what materials made with CDW would be the most suitable for that. Also, a survey to select best practices for reducing "close to zero waste" in refurbishment was done. Finally, several pilot rehabilitation works conform the parameters analyzed in the project were selected, in order to apply the results and thus compare the theoretical with reality. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under "Waste 2 Resources" Project (BIA2013-43061-R).Keywords: building waste, construction and demolition waste, recycling, resources
Procedia PDF Downloads 2544389 Estimates of Freshwater Content from ICESat-2 Derived Dynamic Ocean Topography
Authors: Adan Valdez, Shawn Gallaher, James Morison, Jordan Aragon
Abstract:
Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport and modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116 km3/year. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff. The total climatological freshwater content is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity driven pycnocline as opposed to the temperature driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and remotely sensed dynamic ocean topography (DOT). In-situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time consuming. NASA’s Advanced Topographic Laser Altimeter System (ATLAS) derived dynamic ocean topography (DOT), and Air Expendable CTD (AXCTD) derived Freshwater Content are used to develop a linear regression model. In-situ data for the regression model is collected across the 150° West meridian, which typically defines the centerline of the Beaufort Gyre. Two freshwater content models are determined by integrating the freshwater volume between the surface and an isopycnal corresponding to reference salinities of 28.7 and 34.8. These salinities correspond to those of the winter pycnocline and total climatological freshwater content, respectively. Using each model, we determine the strength of the linear relationship between freshwater content and satellite derived DOT. The result of this modeling study could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non in-situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially reduce reliance on field deployment platforms to characterize physical ocean properties.Keywords: ICESat-2, dynamic ocean topography, freshwater content, beaufort gyre
Procedia PDF Downloads 914388 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 424387 Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers
Authors: E. Taslak, C. Kocatepe, O. Arıkan, C. F. Kumru
Abstract:
In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards.Keywords: breakdown voltage, corn oil, dissipation factor, mineral oil, power loss, relative dielectric constant, resistivity
Procedia PDF Downloads 5824386 Electric Vehicles Charging Stations: Strategies and Algorithms Integrated in a Power-Sharing Model
Authors: Riccardo Loggia, Francesca Pizzimenti, Francesco Lelli, Luigi Martirano
Abstract:
Recent air emission regulations point toward the complete electrification of road vehicles. An increasing number of users are beginning to prefer full electric or hybrid, plug-in vehicle solutions, incentivized by government subsidies and the lower cost of electricity compared to gasoline or diesel. However, it is necessary to optimize charging stations so that they can simultaneously satisfy as many users as possible. The purpose of this paper is to present optimization algorithms that enable simultaneous charging of multiple electric vehicles while ensuring maximum performance in relation to the type of charging station.Keywords: electric vehicles, charging stations, sharing model, fast charging, car park, power profiles
Procedia PDF Downloads 1584385 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment
Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan
Abstract:
MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.Keywords: bio-electrochemical, nanowires, novel, wastewater
Procedia PDF Downloads 3884384 Understanding the Benefits of Multiple-Use Water Systems (MUS) for Smallholder Farmers in the Rural Hills of Nepal
Authors: RAJ KUMAR G.C.
Abstract:
There are tremendous opportunities to maximize smallholder farmers’ income from small-scale water resource development through micro irrigation and multiple-use water systems (MUS). MUS are an improved water management approach, developed and tested successfully by iDE that pipes water to a community both for domestic use and for agriculture using efficient micro irrigation. Different MUS models address different landscape constraints, water demand, and users’ preferences. MUS are complemented by micro irrigation kits, which were developed by iDE to enable farmers to grow high-value crops year-round and to use limited water resources efficiently. Over the last 15 years, iDE’s promotion of the MUS approach has encouraged government and other key stakeholders to invest in MUS for better planning of scarce water resources. Currently, about 60% of the cost of MUS construction is covered by the government and community. Based on iDE’s experience, a gravity-fed MUS costs approximately $125 USD per household to construct, and it can increase household income by $300 USD per year. A key element of the MUS approach is keeping farmers well linked to input supply systems and local produce collection centers, which helps to ensure that the farmers can produce a sufficient quantity of high-quality produce that earns a fair price. This process in turn creates an enabling environment for smallholders to invest in MUS and micro irrigation. Therefore, MUS should be seen as an integrated package of interventions –the end users, water sources, technologies, and the marketplace– that together enhance technical, financial, and institutional sustainability. Communities are trained to participate in sustainable water resource management as a part of the MUS planning and construction process. The MUS approach is cost-effective, improves community governance of scarce water resources, helps smallholder farmers to improve rural health and livelihoods, and promotes gender equity. MUS systems are simple to maintain and communities are trained to ensure that they can undertake minor maintenance procedures themselves. All in all, the iDE Nepal MUS offers multiple benefits and represents a practical and sustainable model of the MUS approach. Moreover, there is a growing national consensus that rural water supply systems should be designed for multiple uses, acknowledging that substantial work remains in developing national-level and local capacity and policies for scale-up.Keywords: multiple-use water systems , small scale water resources, rural livelihoods, practical and sustainable model
Procedia PDF Downloads 2964383 Alkali Activated Materials Based on Natural Clay from Raciszyn
Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda
Abstract:
Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.Keywords: alkaline activation, aluminosilicates, calcination, compressive strength
Procedia PDF Downloads 1554382 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases
Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar
Abstract:
Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases
Procedia PDF Downloads 1604381 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 1704380 Improving Engagement: Dental Veneers, a Qualitative Analysis of Posts on Instagram
Authors: Matthew Sedgwick
Abstract:
Introduction: Social media continues to grow in popularity and Instagram is one of the largest platforms available. It provides an invaluable method of communication between health care professionals and patients. Both patients and dentists can benefit from seeing clinical cases posted by other members of the profession. It can prompt discussion about how the outcome was achieved and showcases what is possible with the right techniques and planning. This study aimed to identify what people were posting about the topic ‘veneers’ and inform health care professionals as to what content had the most engagement and make recommendations as to how to improve the quality of social media posts. Design: 150 consecutive posts for the search term ‘veneers’ were analyzed retrospectively between 21st October 2021 to 31st October 2021. Non-English language posts duplicated posts, and posts not about dental veneers were excluded. After exclusions were applied, 80 posts were included in the study for analysis. The content of the posts was analyzed and coded and the main themes were identified. The number of comments, likes and views were also recorded for each post. Results: The themes were: before and after treatment, cost, dental training courses, treatment process and trial smiles. Dentists were the most common posters of content (82.5%) and it was interesting to note that there were no patients who posted about treatment in this sample. The main type of media was photographs (93.75%) compared to video (6.25%). Videos had an average of 45,541 views and more comments and likes than the average for photographs. The average number of comments and likes per post were 20.88 and 761.58, respectively. Conclusion: Before and after photographs were the most common finding as this is how dentists showcase their work. The study showed that videos showing the treatment process had more engagement than photographs. Dentists should consider making video posts showing the patient journey, including before and after veneer treatment, as this can result in more potential patients and colleagues viewing the content. Video content could help dentists distinguish their posts from others as it can also be used across other platforms such as TikTok or Facebook reaching a wider audience. More informative posts about how the result has shown are achieved required, including potential costs. This will help increase transparency regarding this treatment method, including the financial and potential biological cost to teeth. As a result, this will improve patient understanding and become an invaluable adjunct in informed consent.Keywords: content analysis, dental veneers, Instagram, social media
Procedia PDF Downloads 1414379 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films
Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh
Abstract:
According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.Keywords: memristor, quantum dot, resistive switching, thin film
Procedia PDF Downloads 1294378 Decision Support System for Solving Multi-Objective Routing Problem
Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal
Abstract:
This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path
Procedia PDF Downloads 4224377 Green-Y Model for Preliminary Sustainable Economical Concept of Renewable Energy Sources Deployment in ASEAN Countries
Authors: H. H. Goh, K. C. Goh, W. N. Z. S. Wan Sukri, Q. S. Chua, S. W. Lee, B. C. Kok
Abstract:
Endowed of renewable energy sources (RES) are the advantages of ASEAN, but they are using a low amount of RES only to generate electricity because their primary energy sources are fossil and coal. The cost of purchasing fossil and coal is cheaper now, but it might be expensive soon, as it will be depleted sooner and after. ASEAN showed that the RES are convenient to be implemented. Some country in ASEAN has huge renewable energy sources potential and use. The primary aim of this project is to assist ASEAN countries in preparing the renewable energy and to guide the policies for RES in the more upright direction. The Green-Y model will help ASEAN government to study and forecast the economic concept, including feed-in tariff.Keywords: ASEAN RES, Renewable Energy, RES Policies, RES Potential, RES Utilization
Procedia PDF Downloads 5064376 MB-Slam: A Slam Framework for Construction Monitoring
Authors: Mojtaba Noghabaei, Khashayar Asadi, Kevin Han
Abstract:
Simultaneous Localization and Mapping (SLAM) technology has recently attracted the attention of construction companies for real-time performance monitoring. To effectively use SLAM for construction performance monitoring, SLAM results should be registered to a Building Information Models (BIM). Registring SLAM and BIM can provide essential insights for construction managers to identify construction deficiencies in real-time and ultimately reduce rework. Also, registering SLAM to BIM in real-time can boost the accuracy of SLAM since SLAM can use features from both images and 3d models. However, registering SLAM with the BIM in real-time is a challenge. In this study, a novel SLAM platform named Model-Based SLAM (MB-SLAM) is proposed, which not only provides automated registration of SLAM and BIM but also improves the localization accuracy of the SLAM system in real-time. This framework improves the accuracy of SLAM by aligning perspective features such as depth, vanishing points, and vanishing lines from the BIM to the SLAM system. This framework extracts depth features from a monocular camera’s image and improves the localization accuracy of the SLAM system through a real-time iterative process. Initially, SLAM can be used to calculate a rough camera pose for each keyframe. In the next step, each SLAM video sequence keyframe is registered to the BIM in real-time by aligning the keyframe’s perspective with the equivalent BIM view. The alignment method is based on perspective detection that estimates vanishing lines and points by detecting straight edges on images. This process will generate the associated BIM views from the keyframes' views. The calculated poses are later improved during a real-time gradient descent-based iteration method. Two case studies were presented to validate MB-SLAM. The validation process demonstrated promising results and accurately registered SLAM to BIM and significantly improved the SLAM’s localization accuracy. Besides, MB-SLAM achieved real-time performance in both indoor and outdoor environments. The proposed method can fully automate past studies and generate as-built models that are aligned with BIM. The main contribution of this study is a SLAM framework for both research and commercial usage, which aims to monitor construction progress and performance in a unified framework. Through this platform, users can improve the accuracy of the SLAM by providing a rough 3D model of the environment. MB-SLAM further boosts the application to practical usage of the SLAM.Keywords: perspective alignment, progress monitoring, slam, stereo matching.
Procedia PDF Downloads 232