Search results for: nitrification and denitrification parameters
6040 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window
Authors: Khaled Moh. Alhamad
Abstract:
This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.Keywords: heuristic, scheduling, tabu search, transportation
Procedia PDF Downloads 5076039 Shear Strength Characteristics of Sand Mixed with Particulate Rubber
Authors: Firas Daghistani, Hossam Abuel Naga
Abstract:
Waste tyres is a global problem that has a negative effect on the environment, where there are approximately one billion waste tyres discarded worldwide yearly. Waste tyres are discarded in stockpiles, where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. Contradicting results were found in the literature on the inclusion of particulate rubber to sand, where some experiments found that the inclusion of particulate rubber can increase the shear strength of the mixture, while other experiments stated that the addition of particulate rubber decreases the shear strength of the mixture. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests were performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performedon four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages ofparticulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states, namely loose, slight dense, and dense state. The size ratio of the mixture,which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber tosand showed a decrease to the internal friction angle and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influenceon the shear strength of the mixture. For all the dense states at the low normal stresses 33 and 55 kPa, the inclusion of particulate rubber showed aslight increase in the shear strength where the peak was at 20% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength.Keywords: shear strength, direct shear, sand-rubber mixture, waste material, granular material
Procedia PDF Downloads 1336038 Comparison of Soils of Hungarian Dry and Humid Oak Forests Based on Changes in Nutrient Content
Authors: István Fekete, Imre Berki, Áron Béni, Katalin Juhos, Marianna Makádi, Zsolt Kotroczó
Abstract:
The average annual precipitation significantly influences the moisture content of the soils and, through this, the decomposition of the organic substances in the soils, the leaching of nutrients from the soils, and the pH of the soils. Climate change, together with the lengthening of the vegetation period and the increasing CO₂ level, can increase the amount of biomass that is formed. Degradation processes, which accelerate as the temperature increases and slow down due to the drying climate, and the change in the degree of leaching can cancel out or strengthen each other's effects. In the course of our research, we looked for oak forests with climate-zonal soils where the geological, geographical and ecological background conditions are as similar as possible, apart from the different annual precipitation averages and the differences that can arise from them. We examined 5 dry and 5 humid Hungarian oak soils. Climate change affects the soils of drier and wetter forests differently. The aim of our research was to compare the content of carbon, nitrogen and some other nutrients, as well as the pH of the soils of humid and dry forests. Showing the effects of the drier climate on the tested soil parameters. In the case of the examined forest soils, we found a significant difference between the soils of dry and humid forests: in the case of the annual average precipitation values (p≥ 0.0001, for dry forest soils: 564±5.2 mm; for humid forest soils: 716±3.8 mm) for pH (p= 0.0004, for dry forest soils: 5.49±0.16; for wet forest soils: 5.36±0.21); for C content (p= 0.0054, for dry forest soils: 6.92%±0.59; for humid forest soils 3.09%±0.24), for N content (p= 0.0022, dry forest in the case of soils: 0.44%±0.047; in the case of humid forest soils: 0.23%±0.013), for the K content (p=0.0017, in the case of dry forest soils: 5684±732 (mg/kg); in the case of humid forest soils 2169±196 (mg/kg)), for the Ca content (p= 0.0096, for dry forest soils: 8207±2118 (mg/kg); for wet forest soils 957±320 (mg/kg)). No significant difference was found in the case of Mg. In a wetter environment, especially if the moisture content of the soil is also optimal for the decomposing organisms during the growing season, the decomposition of organic residues accelerates, and the processes of leaching from the soil are also intensified. The different intensity of the leaching processes is also well reflected in the quantitative differences of Ca and K, and in connection with these, it is also reflected in the difference in pH values. The differences in the C and N content can be explained by differences in the intensity of the decomposition processes. In addition to warming, drying is expected in a significant part of Hungary due to climate change. Thus, the comparison of the soils of dry and humid forests allows us to predict the subsequent changes in the case of the examined parameters.Keywords: soil nutrients, precipitation difference, climate change, organic matter decomposition, leaching
Procedia PDF Downloads 746037 Measurement and Analysis of Human Hand Kinematics
Authors: Tamara Grujic, Mirjana Bonkovic
Abstract:
Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement
Procedia PDF Downloads 4646036 Polymeric Sustained Biodegradable Patch Formulation for Wound Healing
Authors: Abhay Asthana, Gyati Shilakari Asthana
Abstract:
It’s the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation was developed using component including polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) upto 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles.Keywords: sustained biodegradation, wound healing, polymers, stability
Procedia PDF Downloads 3326035 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys
Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche
Abstract:
Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS
Procedia PDF Downloads 3976034 A Numerical Investigation of Segmental Lining Joints Interactions in Tunnels
Authors: M. H. Ahmadi, A. Mortazavi, H. Zarei
Abstract:
Several authors have described the main mechanism of formation of cracks in the segment lining during the construction of tunnels with tunnel boring machines. A comprehensive analysis of segmental lining joints may help to guarantee a safe construction during Tunneling and serviceable stages. The most frequent types of segment damage are caused by a condition of uneven segment matching due to contact deficiencies. This paper investigated the interaction mechanism of precast concrete lining joints in tunnels. The Discrete Element Method (DEM) was used to analyze a typical segmental lining model consisting of six segment rings. In the analyses, typical segmental lining design parameters of the Ghomrood water conveyance tunnel, Iran were employed in the study. In the conducted analysis, the worst-case scenario of loading faced during the boring of Ghomrood tunnel was considered. This was associated with the existence of a crushed zone dipping at 75 degree at the location of the key segment. In the analysis, moreover, the effect of changes in horizontal stress ratio on the loads on the segment was assessed. The boundary condition associated with K (ratio of the horizontal to the vertical stress) values of 0.5, 1, 1.5 and 2 were applied to the model and separate analysis was conducted for each case. Important parameters such as stress, moments, and displacements were measured at joint locations and the surrounding rock. Accordingly, the segment joint interactions were assessed and analyzed. Moreover, rock mass properties of the Ghomrood in Ghom were adopted. In this study, the load acting on segments joints are included a crushed zone stratum force that intersect tunnel with 75 slopes in the location of the key segment, gravity force of segments and earth pressures. A numerical investigation was used for different coefficients of stress concentration of 0.5, 1, 1.5, 2 and different geological conditions of saturated crushed zone under the critical scenario. The numerical results also demonstrate that maximum bending moments in longitudinal joints occurred for crushed zone with the weaken strengths (Sandstone). Besides that, increasing the load in segment-stratum interfaces affected radial stress in longitudinal joints and finally the opening of joints occurred.Keywords: joint, interface, segment, contact
Procedia PDF Downloads 2596033 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia
Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo
Abstract:
Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.Keywords: climate variability, crop income, household, rainfall, temperature
Procedia PDF Downloads 3776032 Characterization of an Extrapolation Chamber for Dosimetry of Low Energy X-Ray Beams
Authors: Fernanda M. Bastos, Teógenes A. da Silva
Abstract:
Extrapolation chambers were designed to be used as primary standard dosimeter for measuring absorbed dose in a medium in beta radiation and low energy x-rays. The International Organization for Standardization established series of reference x-radiation for calibrating and determining the energy dependence of dosimeters that are to be reproduced in metrology laboratories. Standardization of the low energy x-ray beams with tube potential lower than 30 kV may be affected by the instrument used for dosimetry. In this work, parameters of a 23392 model PTW extrapolation chamber were determined aiming its use in low energy x-ray beams as a reference instrument.Keywords: extrapolation chamber, low energy x-rays, x-ray dosimetry, X-ray metrology
Procedia PDF Downloads 3966031 Practical Application of Business Processes Simulation
Authors: M. Gregušová, V. Schindlerová, I. Šajdlerová, P. Mohyla, J. Kedroň
Abstract:
Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. Maintain your place among the successful companies on the market today or come up with a revolutionary business idea; it is much more difficult than before. Each new or improved method, tools, or the approach that can improve the functioning of business processes or even the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk to find the optimal parameters of manufacturing processes and systems. The paper presents an example of using simulation to solve the bottleneck problem in concrete company.Keywords: practical applications, business processes, systems, simulation
Procedia PDF Downloads 6386030 Possible Endocrinal and Liver Enzymes Toxicities Associated with Long Term Exposure to Benzene in Saudi Arabia
Authors: Faizah Asiri, Mohammed Fathy, Saeed Alghamdi, Nahlah Ayoub, Faisal Asiri
Abstract:
Background: - The strategies for this study were based on the toxic effect of long-term inhalation of Benzene on hormones and liver enzymes and various parameters related to it. The following databases were searched: benzene, hepatotoxic, benzene metabolism, hormones, testosterone, hemotoxic, and prolonged exposure. A systematic strategy is designed to search the literature that links benzene with the multiplicity and different types of intoxication or the medical abbreviations of diseases relevant to benzene exposure. Evidence suggests that getting rid of inhaled gasoline is by exhalation. Absorbed benzene is metabolized by giving phenolic acid as well as meconic acid, followed by urinary excretion of conjugate sulfates and glucuronides. Materials and Methods :- This work was conducted in the Al-Khadra laboratory in Taif 2020/2021 and aimed to measure some of the possible endocrinal and liver toxicities associated with benzene's long-term exposure in Saudi Arabia at the station workers who are considered the most exposed category to gasoline. One hundred ten station workers were included in this study. They were divided into four patient groups according to the chronic exposure rate to benzene, one control group, and three other groups of exposures. As follows: patient Group 1 (controlled group), patient Group 2 (exposed less than 1y), patient Group 3 (exposed 1-5 y), patient Group 4 (more than 5). Each group is compared with blood sample parameters (ALT, FSH and Testosterone, TSH). Blood samples were drawn from the participants, and statistical tests were performed. Significant change (p≤0.05) was examined compared to the control group. Workers' exposure to benzene led to a significant change in hematological, hormonal, and hepatic factors compared to the control group. Results:- The results obtained a relationship between long-term exposure to benzene and a decrease in the level of testosterone and FSH hormones, including that it poses a toxic risk in the long term (p≤0.05) when compared to the control. We obtained results confirming that there is no significant coloration between years of exposure and TSH level (p≤0.05) when compared to the control. Conclusion:- We conclude that some hormones and liver enzymes are affected by chronic doses of benzene through inhalation after our study was on the group most exposed to benzene, which is gas station workers.Keywords: toxicities, benzene, hormones, station workers
Procedia PDF Downloads 906029 The Generalized Pareto Distribution as a Model for Sequential Order Statistics
Authors: Mahdy Esmailian, Mahdi Doostparast, Ahmad Parsian
Abstract:
In this article, sequential order statistics (SOS) censoring type II samples coming from the generalized Pareto distribution are considered. Maximum likelihood (ML) estimators of the unknown parameters are derived on the basis of the available multiple SOS data. Necessary conditions for existence and uniqueness of the derived ML estimates are given. Due to complexity in the proposed likelihood function, a useful re-parametrization is suggested. For illustrative purposes, a Monte Carlo simulation study is conducted and an illustrative example is analysed.Keywords: bayesian estimation, generalized pareto distribution, maximum likelihood estimation, sequential order statistics
Procedia PDF Downloads 5136028 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation
Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov
Abstract:
The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood
Procedia PDF Downloads 1516027 Effects of Mild Heat Treatment on the Physical and Microbial Quality of Salak Apricot Cultivar
Authors: Bengi Hakguder Taze, Sevcan Unluturk
Abstract:
Şalak apricot (Prunus armeniaca L., cv. Şalak) is a specific variety grown in Igdir, Turkey. The fruit has distinctive properties distinguish it from other cultivars, such as its unique size, color, taste and higher water content. Drying is the widely used method for preservation of apricots. However, fresh consumption is preferred for Şalak apricot instead of drying due to its low dry matter content. Higher amounts of water in the structure and climacteric nature make the fruit sensitive against rapid quality loss during storage. Hence, alternative processing methods need to be introduced to extend the shelf life of the fresh produce. Mild heat (MH) treatment is of great interest as it can reduce the microbial load and inhibit enzymatic activities. Therefore, the aim of this study was to evaluate the impact of mild heat treatment on the natural microflora found on Şalak apricot surfaces and some physical quality parameters of the fruit, such as color and firmness. For this purpose, apricot samples were treated at different temperatures between 40 and 60 ℃ for different periods ranging between 10 to 60 min using a temperature controlled water bath. Natural flora on the fruit surfaces was examined using standard plating technique both before and after the treatment. Moreover, any changes in color and firmness of the fruit samples were also monitored. It was found that control samples were initially containing 7.5 ± 0.32 log CFU/g of total aerobic plate count (TAPC), 5.8±0.31 log CFU/g of yeast and mold count (YMC), and 5.17 ± 0.22 log CFU/g of coliforms. The highest log reductions in TAPC and YMC were observed as 3.87-log and 5.8-log after the treatments at 60 ℃ and 50 ℃, respectively. Nevertheless, the fruit lost its characteristic aroma at temperatures above 50 ℃. Furthermore, great color changes (ΔE ˃ 6) were observed and firmness of the apricot samples was reduced at these conditions. On the other hand, MH treatment at 41 ℃ for 10 min resulted in 1.6-log and 0.91-log reductions in TAPC and YMC, respectively, with slightly noticeable changes in color (ΔE ˂ 3). In conclusion, application of temperatures higher than 50 ℃ caused undesirable changes in physical quality of Şalak apricots. Although higher microbial reductions were achieved at those temperatures, temperatures between 40 and 50°C should be further investigated considering the fruit quality parameters. Another strategy may be the use of high temperatures for short time periods not exceeding 1-5 min. Besides all, MH treatment with UV-C light irradiation can be also considered as a hurdle strategy for better inactivation results.Keywords: color, firmness, mild heat, natural flora, physical quality, şalak apricot
Procedia PDF Downloads 1376026 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics
Authors: Jatin Gupta, Bishakh Bhattacharya
Abstract:
With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design
Procedia PDF Downloads 2026025 Lipase-Mediated Formation of Peroxyoctanoic Acid Used in Catalytic Epoxidation of α-Pinene
Authors: N. Wijayati, Kusoro Siadi, Hanny Wijaya, Maggy Thenawijjaja Suhartono
Abstract:
This work describes the lipase-mediated synthesis of α-pinene oxide at ambient temperature. The immobilized lipase from Pseudomonas aeruginosa is used to generate peroxyoctanoic acid directly from octanoic acid and hydrogen peroxide. The peroxy acid formed is then applied for in situ oxidation of α-pinene. High conversion of α-pinene to α-pinene oxide (approximately 78%) was achieved when using 0,1 g enzim lipase, 6 mmol H2O2, dan 5 mmol octanoic acid. Various parameters affecting the conversion of α-pinene to α pinene oxide were studied.Keywords: α-Pinene; P. aeruginosa; Octanoic acid
Procedia PDF Downloads 2796024 Robotic Solution for Nuclear Facility Safety and Monitoring System
Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin
Abstract:
An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security
Procedia PDF Downloads 2096023 Laser Cooling of Internal Degrees of Freedom of Molecules: Cesium Case
Authors: R. Horchani
Abstract:
Optical pumping technique with laser fields combined with photo-association of ultra-cold atoms leads to control on demand the vibrational and/or the rotational population of molecules. Here, we review the basic concepts and main steps should be followed, including the excitation schemes and detection techniques we use to achieve the ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments since they allow the optimization of several important experimental parameters.Keywords: cold molecule, photo-association, optical pumping, vibrational and rotational cooling
Procedia PDF Downloads 3026022 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment
Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit
Abstract:
Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.
Procedia PDF Downloads 1176021 Coffee Consumption Has No Acute Effects on Glucose Metabolism in Healthy Men: A Randomized Crossover Clinical Trial
Authors: Caio E. G. Reis, Sara Wassell, Adriana L. Porto, Angélica A. Amato, Leslie J. C. Bluck, Teresa H. M. da Costa
Abstract:
Background: Multiple epidemiologic studies have consistently reported association between increased coffee consumption and a lowered risk of Type 2 Diabetes Mellitus. However, the mechanisms behind this finding have not been fully elucidated. Objective: We investigate the effect of coffee (caffeinated and decaffeinated) on glucose effectiveness and insulin sensitivity using the stable isotope minimal model protocol with oral glucose administration in healthy men. Design: Fifteen healthy men underwent 5 arms randomized crossover single-blinding (researchers) clinical trial. They consumed decaffeinated coffee, caffeinated coffee (with and without sugar), and controls – water (with and without sugar) followed 1 hour by an oral glucose tolerance test (75 g of available carbohydrate) with intravenous labeled dosing interpreted by the two compartment minimal model (225 minutes). One-way ANOVA with Bonferroni adjustment were used to compare the effects of the tested beverages on glucose metabolism parameters. Results: Decaffeinated coffee resulted in 29% and 85% higher insulin sensitivity compared with caffeinated coffee and water, respectively, and the caffeinated coffee showed 15% and 60% higher glucose effectiveness compared with decaffeinated coffee and water, respectively. However, these differences were not significant (p > 0.10). In overall analyze (0 – 225 min) there were no significant differences on glucose effectiveness, insulin sensitivity, and glucose and insulin area under the curve between the groups. The beneficial effects of coffee did not seem to act in the short-term (hours) on glucose metabolism parameters mainly on insulin sensitivity indices. The benefits of coffee consumption occur in the long-term (years) as has been shown in the reduction of Type 2 Diabetes Mellitus risk in epidemiological studies. The clinical relevance of the present findings is that there is no need to avoid coffee as the drink choice for healthy people. Conclusions: The findings of this study demonstrate that the consumption of caffeinated and decaffeinated coffee with or without sugar has no acute effects on glucose metabolism in healthy men. Further researches, including long-term interventional studies, are needed to fully elucidate the mechanisms behind the coffee effects on reduced risk for Type 2 Diabetes Mellitus.Keywords: coffee, diabetes mellitus type 2, glucose, insulin
Procedia PDF Downloads 4386020 A Discussion on Electrically Small Antenna Property
Authors: Riki H. Patel, Arpan Desia, Trushit Upadhayay
Abstract:
The demand of compact antenna is ever increasing since the inception of wireless communication devices. In the age of wireless communication, requirement of miniaturized antennas is quite high. It is quite often that antenna dimensions are decided based on application based requirement compared to practical antenna constraints. The tradeoff in efficiency and other antenna parameters against to antenna size is always a debatable issue. The article presents detailed review of fundamentals of electrically small antennas and its potential applications. In addition, constraints and challenges of electrically small antennas are also presented in the article.Keywords: bandwidth, communication, electrically small antenna, communication engineering
Procedia PDF Downloads 5316019 The Effects of Orally Administered Bacillus Coagulans and Inulin on Prevention and Progression of Rheumatoid Arthritis in Rats
Authors: Khadijeh Abhari, Seyed Shahram Shekarforoush, Saeid Hosseinzadeh
Abstract:
Probiotics have been considered as an approach to treat and prevent a wide range of inflammatory diseases. The spore forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic, inulin, also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. An in vivo trial was conducted to evaluate the effects of probiotic B. coagulans, and inulin, either separately or in combination, on down regulate immune responses and progression of rheumatoid arthritis using induced arthritis rat model. Forty-eight male Wistar rats were randomly divided into 6 groups and fed as follow: 1) control: Normal healthy rats fed by standard diet, 2) Disease control (RA): Arthritic induced (RA) rats fed by standard diet, 3) Prebiotic (PRE): RA+ 5% w/w long chain inulin, 4) Probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) Synbiotic (SYN): RA+ 5% w/w long chain inulin and 109 spores/day B. coagulans and 6) Treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with mentioned diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund’s adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by biochemical parameters and paw thickness. Biochemical assay for Fibrinogen (Fn), Serum Amyloid A (SAA), TNF-α and Alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28 and 35 (1, 2 and 3 weeks post RA induction). Pretreatment with PRE, PRO and SYN diets significantly inhibit SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in production of pro-inflammatory cytokines, TNF-α, was seen in PRE, PRO and SYN groups (P < 0.001) which was similar to the effect of the anti-inflammatory drug Indomethacin. Further, there were no significant anti-inflammatory effects observed following different treatments using α1AGp as a RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion: Results of this study support that oral intake of probiotic B. coagulans and inulin are able to improve biochemical and clinical parameters of induced RA in rat.Keywords: rheumatoid arthritis, bacillus coagulans, inulin, animal model
Procedia PDF Downloads 3586018 Model Predictive Controller for Pasteurization Process
Authors: Tesfaye Alamirew Dessie
Abstract:
Our study focuses on developing a Model Predictive Controller (MPC) and evaluating it against a traditional PID for a pasteurization process. Utilizing system identification from the experimental data, the dynamics of the pasteurization process were calculated. Using best fit with data validation, residual, and stability analysis, the quality of several model architectures was evaluated. The validation data fit the auto-regressive with exogenous input (ARX322) model of the pasteurization process by roughly 80.37 percent. The ARX322 model structure was used to create MPC and PID control techniques. After comparing controller performance based on settling time, overshoot percentage, and stability analysis, it was found that MPC controllers outperform PID for those parameters.Keywords: MPC, PID, ARX, pasteurization
Procedia PDF Downloads 1646017 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition
Procedia PDF Downloads 5126016 Numerical Study of Piled Raft Foundation Under Vertical Static and Seismic Loads
Authors: Hamid Oumer Seid
Abstract:
Piled raft foundation (PRF) is a union of pile and raft working together through the interaction of soil-pile, pile-raft, soil-raft and pile-pile to provide adequate bearing capacity and controlled settlement. A uniform pile positioning is used in PRF; however, there is a wide room for optimization through parametric study under vertical load to result in a safer and economical foundation. Addis Ababa is found in seismic zone 3 with a peak ground acceleration (PGA) above the threshold of damage, which makes investigating the performance of PRF under seismic load considering the dynamic kinematic soil structure interaction (SSI) vital. The study area is located in Addis Ababa around Mexico (commercial bank) and Kirkos (Nib, Zemen and United Bank) in which input parameters (pile length, pile diameter, pile spacing, raft area, raft thickness and load) are taken. A finite difference-based numerical software, FLAC3D V6, was used for the analysis. The Kobe (1995) and Northridge (1994) earthquakes were selected, and deconvolution analysis was done. A close load sharing between pile and raft was achieved at a spacing of 7D with different pile lengths and diameters. The maximum settlement reduction achieved is 9% for a pile of 2m diameter by increasing length from 10m to 20m, which shows pile length is not effective in reducing settlement. The installation of piles results in an increase in the negative bending moment of the raft compared with an unpiled raft. Hence, the optimized design depends on pile spacing and the raft edge length, while pile length and diameter are not significant parameters. An optimized piled raft configuration (𝐴𝐺/𝐴𝑅 = 0.25 at the center and piles provided around the edge) has reduced pile number by 40% and differential settlement by 95%. The dynamic analysis shows acceleration plot at the top of the piled raft has PGA of 0.25𝑚2/𝑠𝑒𝑐 and 0.63𝑚2/𝑠𝑒𝑐 for Northridge (1994) and Kobe (1995) earthquakes, respectively, due to attenuation of seismic waves. Pile head displacement (maximum is 2mm, and it is under the allowable limit) is affected by the PGA rather than the duration of an earthquake. End bearing and friction PRF performed similarly under two different earthquakes except for their vertical settlement considering SSI. Hence, PRF has shown adequate resistance to seismic loads.Keywords: FLAC3D V6, earthquake, optimized piled raft foundation, pile head department
Procedia PDF Downloads 296015 Preconcentration and Determination of Lead Ion in Environmental Samples by Poly Urea-Formaldehyde
Authors: Elham Moniri, Parvane Bozorgniya, Hamidreza Shahbazi
Abstract:
In this research, poly urea-formaldehyde was prepared. The poly urea-formaldehyde was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Pb(II) sorption such as pH, contact time were studied. The optimum pH value for sorption of Pb(II) was 5. The sorption capacity of poly urea-formaldehyde for Pb(II) were 40 mg g−1. A Pb(II) removal of 90% was obtained. The profile of Pb(II) uptake on this sorbent reflects good accessibility of the chelating sites in the poly urea-formaldehyde. The developed method was utilized for determination of Pb(II) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.Keywords: poly urea-formaldehyde, lead Ion, environmental sample, determination
Procedia PDF Downloads 3006014 A Comparative Study on Vowel Articulation in Malayalam Speaking Children Using Cochlear Implant
Authors: Deepthy Ann Joy, N. Sreedevi
Abstract:
Hearing impairment (HI) at an early age, identified before the onset of language development can reduce the negative effect on speech and language development of children. Early rehabilitation is very important in the improvement of speech production in children with HI. Other than conventional hearing aids, Cochlear Implants are being used in the rehabilitation of children with HI. However, delay in acquisition of speech and language milestones persist in children with Cochlear Implant (CI). Delay in speech milestones are reflected through speech sound errors. These errors reflect the temporal and spectral characteristics of speech. Hence, acoustical analysis of the speech sounds will provide a better representation of speech production skills in children with CI. The present study aimed at investigating the acoustic characteristics of vowels in Malayalam speaking children with a cochlear implant. The participants of the study consisted of 20 Malayalam speaking children in the age range of four and seven years. The experimental group consisted of 10 children with CI, and the control group consisted of 10 typically developing children. Acoustic analysis was carried out for 5 short (/a/, /i/, /u/, /e/, /o/) and 5 long vowels (/a:/, /i:/, /u:/, /e:/, /o:/) in word-initial position. The responses were recorded and analyzed for acoustic parameters such as Vowel duration, Ratio of the duration of a short and long vowel, Formant frequencies (F₁ and F₂) and Formant Centralization Ratio (FCR) computed using the formula (F₂u+F₂a+F₁i+F₁u)/(F₂i+F₁a). Findings of the present study indicated that the values for vowel duration were higher in experimental group compared to the control group for all the vowels except for /u/. Ratio of duration of short and long vowel was also found to be higher in experimental group compared to control group except for /i/. Further F₁ for all vowels was found to be higher in experimental group with variability noticed in F₂ values. FCR was found be higher in experimental group, indicating vowel centralization. Further, the results of independent t-test revealed no significant difference across the parameters in both the groups. It was found that the spectral and temporal measures in children with CI moved towards normal range. The result emphasizes the significance of early rehabilitation in children with hearing impairment. The role of rehabilitation related aspects are also discussed in detail which can be clinically incorporated for the betterment of speech therapeutic services in children with CI.Keywords: acoustics, cochlear implant, Malayalam, vowels
Procedia PDF Downloads 1446013 Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method
Authors: Rekab Djabri Hamza, Daoud Salah
Abstract:
We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation.Keywords: LDA, phase transition, properties, DFT
Procedia PDF Downloads 1206012 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties
Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.
Abstract:
Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant
Procedia PDF Downloads 2526011 Cyclostationary Analysis of Polytime Coded Signals for LPI Radars
Authors: Metuku Shyamsunder, Kakarla Subbarao, P. Prasanna
Abstract:
In radars, an electromagnetic waveform is sent, and an echo of the same signal is received by the receiver. From this received signal, by extracting various parameters such as round trip delay, Doppler frequency it is possible to find distance, speed, altitude, etc. However, nowadays as the technology increases, intruders are intercepting transmitted signal as it reaches them, and they will be extracting the characteristics and trying to modify them. So there is a need to develop a system whose signal cannot be identified by no cooperative intercept receivers. That is why LPI radars came into existence. In this paper, a brief discussion on LPI radar and its modulation (polytime code (PT1)), detection (cyclostationary (DFSM & FAM) techniques such as DFSM, FAM are presented and compared with respect to computational complexity.Keywords: LPI radar, polytime codes, cyclostationary DFSM, FAM
Procedia PDF Downloads 476