Search results for: high-intensity interval training
1918 A Comprehensive Model of Professional Ethics Based on the Teachings of the Holy Quran
Authors: Zahra Mohagheghian, Fatema Agharebparast
Abstract:
Professional ethic is a subject that has been an issue today, so most of the businesses, including the teaching profession, understand the need and importance of it. So they need to develop a code of professional ethics for their own. In this regard, this study seeks to answer the question, with respect to the integrity of the Qur'an (Nahl / 89), is it possible to contemplate the divine teachers conduct to extract the divine pattern for teaching and training? In the code of conduct for divine teachers what are the most important moral obligations and duties of the teaching professionals? The results of this study show that the teaching of Khidr, according to the Quran’s verses, Abundant and subtle hints emphasized that it can be as comprehensive and divine pattern used in teaching and in the drafting of the charter of professional ethics of teachers used it. Also, the results show that in there have been many ethical principles in prophet Khidr’s teaching pattern.The most important ethical principles include: Student assessment, using objective and not subjective examples, assessment during teaching, flexibility, and others. According to each of these principles can help teachers achieve their educational goals and lead human being in their path toward spiritual evaluation.Keywords: professional ethics, teaching-learning process, teacher, student, Quran
Procedia PDF Downloads 2981917 Information Technology and Professional Behavior: An Empirical Examination of Auditing and Accounting Tasks
Authors: Michael C. Nwaohia
Abstract:
Whereas anecdotal evidence supports the notion that increase in information technology (IT) know-how may enhance output of professionals in the accounting sector, this has not been systematically explored in the Nigerian context. Against this background, this paper examines the correlation between knowledgeability of IT and level of performance at everyday auditing and accounting tasks. It utilizes primary and secondary data from selected business organizations in Lagos, Nigeria. Accounting staff were administered structured questionnaires which, amongst other things, sought to examine knowledge and exposure to information technology prior to joining the firms and current level of performance based on self-reporting and supervisor comments. In addition, exposure to on-the-job IT training and current level of performance was examined. The statistical analysis of the data was done using the SPSS package. The results strongly suggest that prior exposure to IT skills enabled accounting professionals to better flexibly fit into the dynamic environment in which contemporary business takes place. Ultimately, the paper attempts to explicate some of the implications of these findings for individuals and business firms.Keywords: accounting, firms, information technology, professional behavior
Procedia PDF Downloads 2351916 Distributed Multi-Agent Based Approach on Intelligent Transportation Network
Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar
Abstract:
With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of humans, vehicle, roadside infrastructure, and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the report proposes a distributed multi-agent C-ITS. The system consists of Roadside Sub-system, Vehicle Sub-system, and Personal Sub-system. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.Keywords: distributed system, artificial intelligence, multi-agent, cooperative intelligent transportation system
Procedia PDF Downloads 2141915 Summer STEM Camp for Elementary Students: A Conduit to Pre-Service Teacher Training to Learn How to Include a Makerspace for an Inclusive Classroom
Authors: Jennifer Gallup, Beverly Ray, Esther Ntuli
Abstract:
Many students such as students from linguistically or culturally diverse backgrounds and those with a disability remain chronically underrepresented in higher level science and mathematics disciplines as well as many hands-on-lab-based activities due to the need for remedial reading and mathematics instruction. Makerspace labs can be a conduit for supporting inclusive learning for these students through hands-on active learning strategies that support equitable access to STEM disciplines. Makerspace is a physical space where individuals gather to create, invent, innovate, and learn while using hands-on materials such as 2D and 3D printers, software programs, electronics, and other tools and supplies. Makerspaces are emerging across many P-12 settings; however, many teachers enter the field not prepared to harness the power inherent in a makerspace, especially for those with disabilities and differing needs. This paper offers suggestions on teaching pre-service teachers and practicing teachers how to incorporate a makerspace into their professional practice through guided instruction and hands-on practice. Recommendations for interested stakeholders are included as well.Keywords: STEM learning, technology, autism, students with disabilities, makerspace
Procedia PDF Downloads 951914 The Dilemma of Giving Mathematics Homework from the Perspective of Pre-Service Elementary Teachers
Authors: Myla Zenaida Cabrillas-Torio, Von Anthony G. Torio
Abstract:
Homework is defined as an additional task that a student does outside of the school. This added activity is in recognition of the necessity to spend additional time for subjects such as Mathematics. The dilemma comes in the form of the advantages and disadvantages that can be derived from homework. Studies have revealed varying effects to students on academic and non-academic areas. Teachers are at the forefront of the decision towards the giving or not of homework. Pre-service teachers at the elementary level represent the future leaders of the educational system and should be acquainted and involved at the onset of the dilemma. The main objective of this study is to determine the perspective of pre-service elementary teachers towards homework. The anatomy of their belief can be key towards addressing the issue via teacher training. Salient results revealed that the subjects favor the giving homework on the following grounds: it helps add knowledge and confidence. Those who do not favor homework find it as an additional burden. Difficulties in complying with homework are usually associated with lack of references and performance of other household chores. Students usually spend late nights to comply with homework and are unable to perform at the best of their potentials.Keywords: attitude, homework, pre-service teachers, mathematics education, Philippines
Procedia PDF Downloads 5011913 Qualitative Analysis of Healthcare Providers and Administrators’ Perceptions, Expectations, Barriers, and Facilitators Towards Pharmacists in Mental Healthcare in Saudi Arabia
Authors: Badar Dhehawi A. Aldhafeeri
Abstract:
Objective: To explore the views and experiences of healthcare providers (HCPs) and their expectations toward pharmacists in mental healthcare, in addition to their acceptance of new pharmacist roles. Barriers and facilitators that are emerging in the process of developing enhanced pharmacist-related roles were also explored. Methods: Qualitative semi-structured face-to-face interviews were conducted with HCPs who had worked in mental health services in Saudi Arabia. The data were thematically analysed using a constant comparison with NVivo software to develop a series of key themes from the interviews. Results: Most HCPs indicated that they rarely interacted with pharmacists. They expected pharmacists to educate both patients and other healthcare workers in the future. Concerns were raised regarding inadequate pharmacy education and lack of clinical training for pharmacists. Conclusion: This study revealed that interactions between HCPs and pharmacists concerning mental health are still limited. A communication strategy for addressing mental health issues should be developed among pharmacists and other HCPs.Keywords: pharmacist, pharmacy student, saudi arabia, qualitative research
Procedia PDF Downloads 961912 Comparative Analysis of Integrated and Non-Integrated Fish Farming in Ogun State, Nigeria
Authors: B. G. Abiona
Abstract:
This study compared profitability analysis of integrated and non-integrated fish farming in Ogun State, Nigeria. Primary data were collected using interview guide. Random sampling techniques was used to select 133 non-integrated fish farmers (NIFF) and 216 integrated fish farmers (IFF) (n = 349) from the study area. Data were analyzed using Chi-square, T-test and Pearson Product moment correlation. Results showed that 92.5% of NIFF was male compared to IFF (90.7%). Also, 96.8% of IFF and 79.7% of NIFF were married. The mean ages of sampled farmers were 44 years (NIFF) and 46 years (IFF) while the mean fish farming experiences were 4 years (NIFF) and 5 years (IFF). Also, the average net profit per year of integrated fish farmers was ₦162,550 compared to NIFF (₦61,638). The chi-square analyses showed that knowledge of fish farming had significant relationship with respondents sex (χ2 = 9.44, df = 2, p < 0.05), age (r = 0.20, p< 0.05) and farming experience (r = p = 0.05). Significant differences exist between integrated and non-integrated fish farming, considering their knowledge of fish farming (t = 21.5, χ = 43.01, p < 0.05). The study concluded that IFF are more profitable compared to NIFF. It was recommended that private investors and NGOs should sponsor short training and courses which will enhance efficiency of fish farming to boost productivity among fish farmers.Keywords: profitability analysis, farms, integration
Procedia PDF Downloads 3361911 Personalized Infectious Disease Risk Prediction System: A Knowledge Model
Authors: Retno A. Vinarti, Lucy M. Hederman
Abstract:
This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk
Procedia PDF Downloads 2421910 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1711909 Factors Contributing to Adverse Maternal and Fetal Outcome in Patients with Eclampsia
Authors: T. Pradhan, P. Rijal, M. C. Regmi
Abstract:
Background: Eclampsia is a multisystem disorder that involves vital organs and failure of these may lead to deterioration of maternal condition and hypoxia and acidosis of fetus resulting in high maternal and perinatal mortality and morbidity. Thus, evaluation of the contributing factors for this condition and its complications leading to maternal deaths should be the priority. Formulating the plan and protocol to decrease these losses should be our goal. Aims and Objectives: To evaluate the risk factors associated with adverse maternal and fetal outcome in patients with eclampsia and to correlate the risk factors associated with maternal and fetal morbidity and mortality. Methods: All patients with eclampsia admitted in Department of Obstetrics and Gynecology, B. P. Koirala Institute of Health Sciences were enrolled after informed consent from February 2013 to February 2014. Questions as per per-forma were asked to patients, and attendants like Antenatal clinic visits, parity, number of episodes of seizures, duration from onset of seizure to magnesium sulfate and the patients were followed as per the hospital protocol, the mode of delivery, outcome of baby, post partum maternal condition like maternal Intensive Care Unit admission, neurological impairment and mortality were noted before discharge. Statistical analysis was done using Statistical Package for the Social Sciences (SPSS 11). Mean and percentage were calculated for demographic variables. Pearson’s correlation test and chi-square test were applied to find the relation between the risk factors and the outcomes. P value less than 0.05 was considered significant. Results: There were 10,000 antenatal deliveries during the study period. Fifty-two patients with eclampsia were admitted. All of the patients were unbooked for our institute. Thirty-nine patients were antepartum eclampsia. Thirty-one patients required mechanical ventilator support. Twenty-four patients were delivered by emergency c-section and 21 babies were Low Birth Weight and there were 9 stillbirths. There was one maternal mortality and 45 patients were discharged with improvement but 3 patients had neurological impairment. Mortality was significantly related with number of seizure episodes and time interval between seizure onset and administration of magnesium sulphate. Conclusion: Early detection and management of hypertensive complicating pregnancy during antenatal clinic check up. Early hospitalization and management with magnesium sulphate for eclampsia can help to minimize the maternal and fetal adverse outcomes.Keywords: eclampsia, maternal mortality, perinatal mortality, risk factors
Procedia PDF Downloads 1691908 Efficiency and Factors Affecting Inefficiency in the Previous Enclaves of Northern Region of Bangladesh: An Analysis of SFA and DEA Approach
Authors: Md. Mazharul Anwar, Md. Samim Hossain Molla, Md. Akkas Ali, Mian Sayeed Hassan
Abstract:
After 68 years, the agreement between Bangladesh and India was ratified on 6 June 2015 and Bangladesh received 111 Indian enclaves. Millions of farm household lived in these previous enclaves, being detached from the mainland of the country, they were socially, economically and educationally deprived people in the world. This study was undertaken to compare of the Stochastic Frontier Analysis (SFA) and the constant returns to scale (CRS) and variable returns to scale (VRS) output-oriented DEA models, based on a sample of 300 farms from the three largest enclaves of Bangladesh in 2017. However, the aim of the study was not only to compare estimates of technical efficiency obtained from the two approaches, but also to examine the determinants of inefficiency. The results from both the approaches indicated that there is a potential for increasing farm production through efficiency improvement and that farmers' age, educational level, new technology dissemination and training on crop production technology have a significant effect on efficiency. The detection and measurement of technical inefficiency and its determinants can be used as a basis of policy recommendations.Keywords: DEA approach, previous enclaves, SFA approach, technical inefficiency
Procedia PDF Downloads 1291907 Lacustrine Sediments of the Poljanska Locality in the Miocene Climatic Optimum North Croatian Basin, Croatia
Authors: Marijan KovačIć, Davor Pavelić, Darko Tibljaš, Ivo Galić, Frane Marković, Ivica PavičIć
Abstract:
The North Croatian Basin (NCB) occupies the southwestern part of the Pannonian Basin System and belongs to the Central Paratethys realm. In a quarry near the village of Poljanska, on the southern slopes of Mt. Papuk in eastern Croatia, a 40-meter-thick section is exposed, consisting of well-bedded, mixed, carbonate-siliciclastic deposits with occurrences of pyroclastics. Sedimentological investigation indicates that a salina lake developed in the central NCB during the late early Miocene. Field studies and mineralogical and petrological analyses indicate that alternations of laminated crypto- characterize the lower part of the section to microcrystalline dolomite and analcimolite (sedimentary rocks composed essentially of authigenic analcime) associated with tuffites and marls. The pyroclastic material is a product of volcanic activity at the end of the early Miocene, while the formation of analcime, the zeolite group mineral, is a result of an alteration of pyroclastic material in an alkaline lacustrine environment. These sediments were deposited in a shallow, hydrologically closed lake that was controlled by an arid climate during the first phase of its development. The middle part of the section consists of dolomites interbedded with analcimolites and sandstones. The sandstone beds are a result of the increased supply of clastic material derived from the locally uplifted metamorphic and granitoid basement. The emplacement of sandstones and dolomites reflects a distinct alternation of hydrologically open and closed lacustrine environments controlled by the frequent alternation of humid and arid climates, representing the second phase of lake development. The siliciclastics of the third phase of lake development were deposited during the Middle Miocene in a hydrologically mostly open lake. All lacustrine deposition coincides with the Miocene Climatic Optimum, which was characterized by a hot and warm climate. The sedimentological data confirm the mostly wet conditions previously identified by paleobotanical studies in the region. The exception is the relatively long interval of arid climate in the late early Miocene that controlled the first phase of lake evolution, i.e., the salina-type lake.Keywords: early Miocene, Pannonian basin System, pyroclastics, salina-type lake
Procedia PDF Downloads 2131906 Design of an Automatic Saw Cutting Machine for Wood and Aluminum
Authors: Jawad Ul Haq, Evan Mazur, Ahmed Qureshi, Mohamed Al-Hussein
Abstract:
The uses of wood in furniture, building, bridges and aluminum in transportation and construction, make aluminum and forest economy a prominent matter in North America. Machines available to date to cut the aforementioned materials are mostly industry oriented with complex structure and operations which require special training and skill. Furthermore, requirements such as pneumatics, 3-phase supply are associated with cost, maintenance, and safety hazards. Power saws are very useful tools used to cut and shape materials; however, they can cause serious hand injuries. Operator’s hands in table saw are vulnerable as they are used to guide pieces into the saw. Apart from hands, saw operator is also prone to material being kicked back out of the saw or sustain eye or respiratory injuries due to rapidly flying sawdust and other debris. In this paper, design of an automatic saw cutting machine has been proposed to ensure safety, portability, usage at domestic level and capability to cut both aluminum and wood. This paper demonstrates detailed Mechanical design in SOLIDWORKS and Control Systems using Programmable Logic Controller (PLC), based on the aforementioned design objectives.Keywords: programmable logic controller, saw cutting, control, automation
Procedia PDF Downloads 2731905 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 751904 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates
Authors: Takashi Mitsuishi
Abstract:
Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation
Procedia PDF Downloads 3631903 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 131902 Human Rights and Juvenile Justice System: A Case Study of Warangal District, Telangana State, India
Authors: Vijaya Chandra Tenneti
Abstract:
The juvenile justice delivery system in India suffers from many lacunae at the operational level and ignores many dimensions of human rights guaranteed to the juvenile delinquents. The present study begins with the hypothesis that the existing justice delivery system seemingly ignores the basic tenets of the fair trial and systemic support to the delinquent juveniles in integrating them into the mainstream of society. As per the designed methodology, data has been collected from the unit of the present study, and other stakeholders, namely, Juvenile Justice Board, Observation Homes etc., of Warangal district of Telangana state, India. The study shows that there is the overemphasis on procedural laws. The juvenile integration programs are not effective. The administrators lack training. Juveniles lack formal education. The study indicates the incidents of juvenile crimes is on the rise and that the majority of the juvenile delinquents hold a low socio-economic profile. Another significant observation of the study is that the juvenile justice system lacks a holistic and human rights-centric approach.Keywords: delinquency, human rights, juvenile justice, rehabilitation
Procedia PDF Downloads 1401901 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method
Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat
Abstract:
Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.Keywords: electric discharge machining (EDM), modeling, optimization, CCRD
Procedia PDF Downloads 3411900 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 981899 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 2711898 Development of Performance Measures for the Implementation of Total Quality Management in Indian Industry
Authors: Perminderjit Singh, Sukhvir Singh
Abstract:
Total Quality Management (TQM) refers to management methods used to enhance quality and productivity in business organizations. Total Quality Management (TQM) has become a frequently used term in discussions concerning quality. Total Quality management has brought rise in demands on the organizations policy and the customers have gained more importance in the organizations focus. TQM is considered as an important management tool, which helps the organizations to satisfy their customers. In present research critical success factors includes management commitment, customer satisfaction, continuous improvement, work culture and environment, supplier quality management, training and development, employee satisfaction and product/process design are studied. A questionnaire is developed to implement these critical success factors in implementation of total quality management in Indian industry. Questionnaires filled by consulting different industrial organizations. Data collected from questionnaires is analyzed by descriptive and importance indexes.Keywords: total quality management, critical success factor, employee satisfaction, supplier quality management, customer focus, quality information, quality measurement
Procedia PDF Downloads 4771897 Influence of Entrepreneurial Passion in the Relationship between the Entrepreneurship Education and Entrepreneurial Intention: The Case of Moroccan Students
Authors: Soukaina Boutaky, Abdelhak Sahibeddine
Abstract:
A study was carried out among students who have especially a scientific and technical educational background and who had opportunities to benefit from a program entrepreneurship course of 50 hours; at Higher School of Technology Khenifra, Morocco. This article has as a goal to explain the relationship between entrepreneurial education, entrepreneurial passion and entrepreneurial intention. The authors chose Bandura’s theory of social cognition as a theoretical framework. The modeling methods equation is adopted to analyze the hypotheses by SMART PLS for 188 students. The results show a strong positive relationship between entrepreneurial education and entrepreneurial passion. They also reveal that entrepreneurship education affects entrepreneurial intention through the effect of entrepreneurial passion, particularly among women than men. In addition, this study contributes in a theoretical way to the level of the relationship between entrepreneurial education and entrepreneurial passion, and these results provide educators and public decision-makers with advice on the importance of entrepreneurship training based on emotional traits such as passion; which constitutes a key and essential element to encourage young graduates to choose an entrepreneurial career as an alternative option or to develop entrepreneurial passion among the business leaders of tomorrow.Keywords: entrepreneurship education, entrepreneurial passion, entrepreneurial intention, equation modeling methods
Procedia PDF Downloads 1931896 Learning to Teach on the Cloud: Preservice EFL Teachers’ Online Project-Based Practicum Experience
Authors: Mei-Hui Liu
Abstract:
This paper reports 20 preservice EFL teachers’ learning-to-teach experience when they were engaged in an online project-based practicum implemented on a Cloud Platform. This 10-month study filled in the literature gap by documenting the impact of online project-based instruction on preservice EFL teachers’ professional development. Data analysis showed that the online practicum was regarded as a flexible mechanism offering chances of teaching practices without geographical barriers. Additionally, this project-based practice helped the participants integrate the theories they had learned and further foster them how to create a self-directed online learning environment. Furthermore, these preservice teachers with experiences of technology-enabled practicum showed their motivation to apply technology and online platforms into future instructional practices. Yet, this study uncovered several concerns encountered by these participants during this online field experience. The findings of this study rendered meaning and lessons for teacher educators intending to integrate online practicum into preservice training courses.Keywords: online teaching practicum, project-based learning, teacher preparation, English language education
Procedia PDF Downloads 3711895 Access to Inclusive and Culturally Sensitive Mental Healthcare in Pharmacy Students and Residents
Authors: Esha Thakkar, Ina Liu, Kalynn Hosea, Shana Katz, Katie Marks, Sarah Hall, Cat Liu, Suzanne Harris
Abstract:
Purpose: Inequities in mental healthcare accessibility are cited as an international public health concern by the World Health Organization (WHO) and National Alliance on Mental Illness (NAMI). These disparities are further exacerbated in racial and ethnic minority groups and are especially concerning in health professional training settings such as Doctor of Pharmacy (PharmD) programs and postgraduate residency training where mental illness rates are high. The purpose of the study was to determine baseline access to culturally sensitive mental healthcare and how to improve such access and communication for racially and ethnically minoritized pharmacy students and residents at one school of pharmacy and a partnering academic medical center in the United States. Methods: This IRB-exempt study included 60-minute focus groups conducted in person or online from November 2021 to February 2022. Eligible participants included PharmD students in their first (P1), second (P2), third (P3), or fourth year (P4) or pharmacy residents completing a postgraduate year 1 (PGY1) or PGY2 who identify as Black, Indigenous, or Person of Color (BIPOC). There were four core theme questions asked during the focus groups to lead the discussion, specifically on the core themes of personal barriers, identities, areas that are working well, and areas for improvement. Participant responses were transcribed and analyzed using an open coding system with two individual reviews, followed by collaborative and intentional discussion and, as needed, an external audit of the coding by a third research team member to reach a consensus on themes. Results: This study enrolled 26 participants, with eight P1, five P2, seven P3, two P4, and four resident participants. Within the four core themes of barriers, identities, areas working well, and areas for improvement, emerging subthemes included: lack of time, access to resources, and stigma under barriers; lack of representation, cultural and family stigma, and gender identities for identity barriers; supportive faculty, sense of community and culture supporting paid time off for areas going well; and wellness days, reduced workload and diversity of the workforce in areas of improvement. Subthemes sometimes varied within a core theme depending on the participant year. Conclusions: There is a gap in the literature in addressing barriers and disparities in mental health access for pharmacy trainees who identify as BIPOC. We identified key findings in regards to barriers, identities, areas going well and areas for improvement that can inform the School and the Residency Program in two priority initiatives of well-being and diversity equity and inclusion in creating actionable recommendations for trainees, program directors, and employers of our institutions, and also has the potential to provide insight for other organizations about the structures influencing access to culturally sensitive care in BIPOC trainees. These findings can inform organizations on how to continue building on communication with those who identify as BIPOC and improve access to care.Keywords: mental health, disparities, minorities, wellbeing, identity, communication, barriers
Procedia PDF Downloads 921894 Effect of Playing Football or Body Building on Measurements of Forward Head Posture
Authors: Mohamed Gomaa Mohamed
Abstract:
Type of study: Observational cross section study. Background and purpose: Forward head posture (FHP) is a common sagittal faulty posture with anterior head translation relative to vertical posture line. FHP related to temporomandibular joint dysfunctions, neck pain and headache. Sports persons usually overuse one side of the body in training and playing leading to postural imbalance, yet the effect of playing football or bodybuilding on measurements of FHP has never been studied. Participants: Thirty six subjects divided into 3 groups of 12 football players, 12 body builders and 12 students. Method: FHP severity was assessed by measuring the craniovertebral (CVA) and gaze angles, using the photogrammetric method. Photos were taken from right side of subjects while assuming standing position. Analysis of variance was used to assess angles difference between the three groups. Results: No significant differences were found in CVA and gaze angles between the three groups (P > 0.05). Conclusion: Playing football or body building doesn't impose significant FHP.Keywords: craniovertebral angle, gaze angle, football, body building
Procedia PDF Downloads 4161893 An Evaluation of Impact of Media on the Electoral Reform Process in Nigeria between 2010–2015
Authors: H. Shola Adeosun, D. Adeoye Odedeji, F. Ajoke Adebiyi
Abstract:
This study examines the impact of media on the electoral process in Nigeria and the roles played by the media in the reform process. Survey research method was adopted as research methodology, and this enables the researcher to use questionnaire, and oral interview to elicit primary data from the respondents was interpreted, analysed and interpreted with statistical tools such as tables, figures, and percentages. The hypothesis formulated were tested with chi-square. The findings revealed that there is significant relationship between the media and electoral reform process in the 2011 and 2015 general elections in Nigeria. The study recommends that electoral committee should implement virile electoral system with the peaceful voting environment. The media should intensify efforts to expose violation of electoral laws; media should play an advocacy role for dialogue and debate on the reform recommendations. The study recommends that media should unite the nation through their reports on peace, national security, national integration and ethnoreligious tolerance and that adequate training should be given to media practitioners on how to report issues relating to elections.Keywords: evaluation, impact, media, electoral reform process
Procedia PDF Downloads 2881892 Effect of Malnutrition at Admission on Length of Hospital Stay among Adult Surgical Patients in Wolaita Sodo University Comprehensive Specialized Hospital, South Ethiopia: Prospective Cohort Study, 2022
Authors: Yoseph Halala Handiso, Zewdi Gebregziabher
Abstract:
Background: Malnutrition in hospitalized patients remains a major public health problem in both developed and developing countries. Despite the fact that malnourished patients are more prone to stay longer in hospital, there is limited data regarding the magnitude of malnutrition and its effect on length of stay among surgical patients in Ethiopia, while nutritional assessment is also often a neglected component of the health service practice. Objective: This study aimed to assess the prevalence of malnutrition at admission and its effect on the length of hospital stay among adult surgical patients in Wolaita Sodo University Comprehensive Specialized Hospital, South Ethiopia, 2022. Methods: A facility-based prospective cohort study was conducted among 398 adult surgical patients admitted to the hospital. Participants in the study were chosen using a convenient sampling technique. Subjective global assessment was used to determine the nutritional status of patients with a minimum stay of 24 hours within 48 hours after admission (SGA). Data were collected using the open data kit (ODK) version 2022.3.3 software, while Stata version 14.1 software was employed for statistical analysis. The Cox regression model was used to determine the effect of malnutrition on the length of hospital stay (LOS) after adjusting for several potential confounders taken at admission. Adjusted hazard ratio (HR) with a 95% confidence interval was used to show the effect of malnutrition. Results: The prevalence of hospital malnutrition at admission was 64.32% (95% CI: 59%-69%) according to the SGA classification. Adult surgical patients who were malnourished at admission had higher median LOS (12 days: 95% CI: 11-13) as compared to well-nourished patients (8 days: 95% CI: 8-9), means adult surgical patients who were malnourished at admission were at higher risk of reduced chance of discharge with improvement (prolonged LOS) (AHR: 0.37, 95% CI: 0.29-0.47) as compared to well-nourished patients. Presence of comorbidity (AHR: 0.68, 95% CI: 0.50-90), poly medication (AHR: 0.69, 95% CI: 0.55-0.86), and history of admission (AHR: 0.70, 95% CI: 0.55-0.87) within the previous five years were found to be the significant covariates of the length of hospital stay (LOS). Conclusion: The magnitude of hospital malnutrition at admission was found to be high. Malnourished patients at admission had a higher risk of prolonged length of hospital stay as compared to well-nourished patients. The presence of comorbidity, polymedication, and history of admission were found to be the significant covariates of LOS. All stakeholders should give attention to reducing the magnitude of malnutrition and its covariates to improve the burden of LOS.Keywords: effect of malnutrition, length of hospital stay, surgical patients, Ethiopia
Procedia PDF Downloads 651891 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1341890 The Effect of Progressive Muscle Relaxation and Sleep Hygiene Education to Change Sleep Quality Index Scores of Patient with Breast Cancer
Authors: Ika Wulansari, Yati Afiyanti, Indang Trihandini
Abstract:
Sleeping disorder experienced by patients with breast cancer can affect the physical, mental, health, and well-being. This study examines the effect of progressive muscle relaxation training and sleep hygiene education to change sleep quality scores of the patient with breast cancer. The study design using quasi-experiment with pre-post test within the control group, involving 62 breast cancer patients using consecutive sampling method in Jakarta. Statistical test results with independent t-test showed a significant difference in score of sleep quality between in intervention group and the control group (6,66±3,815; 9,30±3,334, p-value = 0,005). Progressive muscle relaxation exercise and sleep hygiene education proven to be affective to change the patients sleeping quality, so that it can be an alternative therapeutic option to overcome sleeping disorders.Keywords: sleeping disorders, breast cancer, progressive muscle relaxation, sleep hygiene education
Procedia PDF Downloads 3151889 Architectural Building Safety and Health Performance Model for Stratified Low-Cost Housing: Education and Management Tool for Building Managers
Authors: Zainal Abidin Akasah, Maizam Alias, Azuin Ramli
Abstract:
The safety and health performances aspects of a building are the most challenging aspect of facility management. It requires a deep understanding by the building managers on the factors that contribute to health and safety performances. This study attempted to develop an explanatory architectural safety performance model for stratified low-cost housing in Malaysia. The proposed Building Safety and Health Performance (BSHP) model was tested empirically through a survey on 308 construction practitioners using Partial Least Squares (PLS) and Structural Equation Modelling (SEM) tool. Statistical analysis results supports the conclusion that architecture, building services, external environment, management approaches and maintenance management have positive influence on safety and health performance of stratified low-cost housing in Malaysia. The findings provide valuable insights for construction industry to introduce BSHP model in the future where the model could be used as a guideline for training purposes of managers and better planning and implementation of building management.Keywords: building management, stratified low-cost housing, safety, health model
Procedia PDF Downloads 555