Search results for: surface reaction rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15092

Search results for: surface reaction rate

12332 Improved Soil and Snow Treatment with the Rapid Update Cycle Land-Surface Model for Regional and Global Weather Predictions

Authors: Tatiana G. Smirnova, Stan G. Benjamin

Abstract:

Rapid Update Cycle (RUC) land surface model (LSM) was a land-surface component in several generations of operational weather prediction models at the National Center for Environment Prediction (NCEP) at the National Oceanic and Atmospheric Administration (NOAA). It was designed for short-range weather predictions with an emphasis on severe weather and originally was intentionally simple to avoid uncertainties from poorly known parameters. Nevertheless, the RUC LSM, when coupled with the hourly-assimilating atmospheric model, can produce a realistic evolution of time-varying soil moisture and temperature, as well as the evolution of snow cover on the ground surface. This result is possible only if the soil/vegetation/snow component of the coupled weather prediction model has sufficient skill to avoid long-term drift. RUC LSM was first implemented in the operational NCEP Rapid Update Cycle (RUC) weather model in 1998 and later in the Weather Research Forecasting Model (WRF)-based Rapid Refresh (RAP) and High-resolution Rapid Refresh (HRRR). Being available to the international WRF community, it was implemented in operational weather models in Austria, New Zealand, and Switzerland. Based on the feedback from the US weather service offices and the international WRF community and also based on our own validation, RUC LSM has matured over the years. Also, a sea-ice module was added to RUC LSM for surface predictions over the Arctic sea-ice. Other modifications include refinements to the snow model and a more accurate specification of albedo, roughness length, and other surface properties. At present, RUC LSM is being tested in the regional application of the Unified Forecast System (UFS). The next generation UFS-based regional Rapid Refresh FV3 Standalone (RRFS) model will replace operational RAP and HRRR at NCEP. Over time, RUC LSM participated in several international model intercomparison projects to verify its skill using observed atmospheric forcing. The ESM-SnowMIP was the last of these experiments focused on the verification of snow models for open and forested regions. The simulations were performed for ten sites located in different climatic zones of the world forced with observed atmospheric conditions. While most of the 26 participating models have more sophisticated snow parameterizations than in RUC, RUC LSM got a high ranking in simulations of both snow water equivalent and surface temperature. However, ESM-SnowMIP experiment also revealed some issues in the RUC snow model, which will be addressed in this paper. One of them is the treatment of grid cells partially covered with snow. RUC snow module computes energy and moisture budgets of snow-covered and snow-free areas separately by aggregating the solutions at the end of each time step. Such treatment elevates the importance of computing in the model snow cover fraction. Improvements to the original simplistic threshold-based approach have been implemented and tested both offline and in the coupled weather model. The detailed description of changes to the snow cover fraction and other modifications to RUC soil and snow parameterizations will be described in this paper.

Keywords: land-surface models, weather prediction, hydrology, boundary-layer processes

Procedia PDF Downloads 74
12331 Passive Solar-Driven Membrane Distiller for Desalination: Effect of Middle Layer Material and Thickness on Desalination Performance

Authors: Glebert C. Dadol, Camila Flor Y. Lobarbio, Noel Peter B. Tan

Abstract:

Water scarcity is a global problem. One of the promising solutions to this challenge is the use of membrane-based desalination technologies. In this study, a passive solar-driven membrane (PSDM) distillation was employed to test its desalination performance. The PSDM was fabricated using a TiNOX sheet solar absorber, cellulose-based hydrophilic top and bottom layers, and a middle layer. The effects of the middle layer material and thickness on the desalination performance in terms of distillate flow rate, productivity, and salinity were investigated. An air-gap screen mesh (2 mm, 4 mm, 6 mm thickness) and a hydrophobic PTFE membrane (0.3 mm thickness) were used as middle-layer materials. Saltwater input (35 g/L NaCl) was used for the PSDM distiller on a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate flow rate and productivity of 1.08 L/m²-h and 1.47 L/kWh, respectively, were achieved using a 2 mm air-gap middle layer, but it also resulted in a high salinity of 25.20 g/L. Increasing the air gap lowered the salinity but also decreased the flow rate and productivity. The lowest salinity of 1.07 g/L was achieved using 6 mm air gap, but the flow rate and productivity were reduced to 0.08 L/m²-h and 0.17 L/kWh, respectively. The use of a hydrophobic PTFE membrane, on the other hand, did not offer a significant improvement in its performance. A PDSM distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. Various modifications and optimizations to the distiller can be done to improve its performance further.

Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation

Procedia PDF Downloads 111
12330 Influence of Glenohumeral Joint Approximation Technique on the Cardiovascular System in the Acute Phase after Stroke

Authors: Iva Hereitova, Miroslav Svatek, Vit Novacek

Abstract:

Background and Aim: Autonomic imbalance is one of the complications for immobilized patients in the acute stage after a stroke. The predominance of sympathetic activity significantly increases cardiac activity. The technique of glenohumeral joint approximation may contribute in a non-pharmacological way to the regulation of blood pressure and heart rate in patients in this risk group. The aim of the study was to evaluate the effect of glenohumeral joint approximation on the change in heart rate and blood pressure in immobilized patients in the acute phase after a stroke. Methods: The experimental study bilaterally evaluated heart rate, systolic and diastolic pressure values before and after glenohumeral joint approximation in 40 immobilized participants (72.6 ± 10.2 years) in the acute phase after stroke. The experimental group was compared with 40 healthy participants in the control group (68.6 ± 14.2 years). An SpO2 vital signs monitor and a validated Microlife WatchBP Office blood pressure monitor were used for evaluation. Statistical processing and evaluation were performed in MATLAB R2019 (The Math Works®, Inc., Natick, MA, USA). Results: Approximation of the glenohumeral joint resulted in a statistically significant decrease in systolic and diastolic pressure. An average decrease in systolic pressure for individual groups ranged from 8.2 to 11.3 mmHg (p <0.001). For diastolic pressure, the average decrease ranged from 5.0 - 14.2 mmHg (p <0.001). There was a statistically significant reduction in heart rate (p <0.01) only in patients after ischemic stroke in the inferior cerebral artery. There was the average decrease in heart rate of 3.9 beats per minute (median 4 beats per minute). Conclusion: Approximation of the glenohumeral joint leads to a statistically significant decrease in systolic and diastolic pressure in immobilized patients in the acute phase after stroke.

Keywords: Aproximation technique, Cardiovaskular system, Glenohumeral joint, Stroke

Procedia PDF Downloads 190
12329 Development of new Ecological Cleaning Process of Metal Sheets

Authors: L. M. López López, J. V. Montesdeoca Contreras, A. R. Cuji Fajardo, L. E. Garzón Muñoz, J. I. Fajardo Seminario

Abstract:

In this article a new method of cleaning process of metal sheets for household appliances was developed, using low-pressure cold plasma. In this context, this research consist in analyze the results of metal sheets cleaning process using plasma and compare with pickling process to determinate the efficiency of each process and the level of contamination produced. Surface Cleaning was evaluated by measuring the contact angle with deionized water, diiodo methane and ethylene glycol, for the calculus of the surface free energy by means of the Fowkes theories and Wu. Showing that low-pressure cold plasma is very efficient both in cleaning process how in environment impact.

Keywords: efficient use of plasma, ecological impact of plasma, metal sheets cleaning means, plasma cleaning process.

Procedia PDF Downloads 337
12328 Wetting Treatement: Comparative Overview: Case of Polypropylene Top Sheet Layer on Disposable Baby Diaper

Authors: Tilouche Rahma, Sayeb Soumaya, Ben Hassen Mohamed

Abstract:

The wettability of materials is a very important aspect of surface science, it presents a key factor providing the best characteristic of product, especially in hygienic field. Hydrophobic polypropylene is used as nonwoven topsheet in disposable diaper, for its interesting properties (toughness, lightness...) by comparing with traditional product previously used. SURFACTANTs are widely used to reduce contact angle (water contact angles larger than 90° on smooth surfaces) and to change wetting properties. In the present work, we study ways to obtain hydrophilic polypropylene surface, by the deposition of a variety of surfactant on surfaces of varying morphology. We used two different methods for surface wetting: Spraying method and the coating method. The concentration of the wetting agent, the type of non-woven fabric and the parameters in the method for controlling, hugely affect the quality of treatment. Therefore need that the treatment is effective in terms of contact angle without affecting the mechanical properties of the nonwoven. For the assessment of the quality of treatment, two methods are used: The measurement of the contact angle and the strike trough time. Also, with subjective evaluation by Hedonic test (which involves the consumer preference (naive panel: group of moms). Finally, we selected the better treated topsheet referring to the assessment results.

Keywords: SURFACTANT, topsheet polypropylene, hydrophilic, hydrophobic

Procedia PDF Downloads 534
12327 The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell

Authors: Ahmed Khalaf Reyad Raslan

Abstract:

Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells.

Keywords: hydrogel, alginate, reduced graphene oxide, collagen

Procedia PDF Downloads 131
12326 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers

Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison

Abstract:

Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.

Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing

Procedia PDF Downloads 94
12325 Effect of Joule Heating on Chemically Reacting Micropolar Fluid Flow over Truncated Cone with Convective Boundary Condition Using Spectral Quasilinearization Method

Authors: Pradeepa Teegala, Ramreddy Chetteti

Abstract:

This work emphasizes the effects of heat generation/absorption and Joule heating on chemically reacting micropolar fluid flow over a truncated cone with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence using non-similarity transformations, the governing fluid flow equations along with related boundary conditions are transformed into a set of non-dimensional partial differential equations. Several authors have applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The influence of pertinent parameters namely Biot number, Joule heating, heat generation/absorption, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.

Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, spectral quasilinearization method

Procedia PDF Downloads 333
12324 Predictive Spectral Lithological Mapping, Geomorphology and Geospatial Correlation of Structural Lineaments in Bornu Basin, Northeast Nigeria

Authors: Aminu Abdullahi Isyaku

Abstract:

Semi-arid Bornu basin in northeast Nigeria is characterised with flat topography, thick cover sediments and lack of continuous bedrock outcrops discernible for field geology. This paper presents the methodology for the characterisation of neotectonic surface structures and surface lithology in the north-eastern Bornu basin in northeast Nigeria as an alternative approach to field geological mapping using free multispectral Landsat 7 ETM+, SRTM DEM and ASAR Earth Observation datasets. Spectral lithological mapping herein developed utilised spectral discrimination of the surface features identified on Landsat 7 ETM+ images to infer on the lithology using four steps including; computations of band combination images; band ratio images; supervised image classification and inferences of the lithological compositions. Two complementary approaches to lineament mapping are carried out in this study involving manual digitization and automatic lineament extraction to validate the structural lineaments extracted from the Landsat 7 ETM+ image mosaic covering the study. A comparison between the mapped surface lineaments and lineament zones show good geospatial correlation and identified the predominant NE-SW and NW-SE structural trends in the basin. Topographic profiles across different parts of the Bama Beach Ridge palaeoshorelines in the basin appear to show different elevations across the feature. It is determined that most of the drainage systems in the northeastern Bornu basin are structurally controlled with drainage lines terminating against the paleo-lake border and emptying into the Lake Chad mainly arising from the extensive topographic high-stand Bama Beach Ridge palaeoshoreline.

Keywords: Bornu Basin, lineaments, spectral lithology, tectonics

Procedia PDF Downloads 128
12323 pH and Temperature Triggered Release of Doxorubicin from Hydogen Bonded Multilayer Films of Polyoxazolines

Authors: Meltem Haktaniyan, Eda Cagli, Irem Erel Goktepe

Abstract:

Polymers that change their properties in response to different stimuli (e.g. light, temperature, pH, ionic strength or magnetic field) are called ‘smart’ or ‘stimuli-responsive polymers’. These polymers have been widely used in biomedical applications such as sensors, gene delivery, drug delivery or tissue engineering. Temperature-responsive polymers have been studied extensively for controlled drug delivery applications. As regard of pseudo-peptides, poly (2-alky-2-oxazoline)s are considered as good candidates for delivery systems due to their stealth behavior and nontoxicity. In order to build responsive multilayer films for controlled drug release applications from surface, Layer by layer technique (LBL) is a powerful technique with an advantage of nanometer scale control over spatial architecture and morphology. Multilayers can be constructed on surface where non-covalent interactions including electrostatic interactions, hydrogen bonding, and charge-transfer or hydrophobic-hydrophobic interactions. In the present study, hydrogen bounded multilayer films of poly (2-alky-2-oxazoline) s with tannic acid were prepared in order to use as a platform to release Doxorubicin (DOX) from surface with pH and thermal triggers. For this purpose, poly (2-isopropyl-2-oxazoline) (PIPOX) and poly (2-ethyl-2-oxazoline) (PETOX) were synthesized via cationic ring opening polymerization (CROP) with hydroxyl end groups. Two polymeric multilayer systems ((PETOX)/(DOX)-(TA) complexes and (PIPOX)/(DOX)-(TA) complexes) were designed to investigate of controlled release of Doxorubicin (DOX) from surface with pH and thermal triggers. The drug release profiles from the multilayer thin films with alterations of pH and temperature will been examined with UV-Vis Spectroscopy and Fluorescence Spectroscopy.

Keywords: temperature responsive polymers, h-bonded multilayer films, drug release, polyoxazoline

Procedia PDF Downloads 295
12322 Study of the Quality of Surface Water in the Upper Cheliff Basin

Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed

Abstract:

This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.

Keywords: surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.

Procedia PDF Downloads 218
12321 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland

Authors: Maryam Salehi, Gholamreza Bonyadinejad

Abstract:

The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.

Keywords: soil health, plastic pollution, sustainability, photodegradation

Procedia PDF Downloads 206
12320 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip

Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi

Abstract:

This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.

Keywords: MHD nanofluid, porous medium, rotating disk, slip effect

Procedia PDF Downloads 244
12319 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement

Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu

Abstract:

Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.

Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers

Procedia PDF Downloads 108
12318 Selective Laser Melting (SLM) Process and Its Influence on the Machinability of TA6V Alloy

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Titanium alloys are among the most important material in the aircraft industry, due to its low density, high strength, and corrosion resistance. However, these alloys are considered as difficult to machine because they have poor thermal properties and high reactivity with cutting tools. The Selective Laser Melting (SLM) process becomes even more popular through industry since it enables the design of new complex components, that cannot be manufactured by standard processes. However, the high temperature reached during the melting phase as well as the several rapid heating and cooling phases, due to the movement of the laser, induce complex microstructures. These microstructures differ from conventional equiaxed ones obtained by casting+forging. Parts obtained by SLM have to be machined in order calibrate the dimensions and the surface roughness of functional surfaces. The ball milling technique is widely applied to finish complex shapes. However, the machinability of titanium is strongly influenced by the microstructure. So the objective of this work is to investigate the influence of the SLM process, i.e. microstructure, on the machinability of titanium, compared to conventional forming processes. The machinability is analyzed by measuring surface roughness, cutting forces, cutting tool wear for a range of cutting conditions (depth of cut ap, feed per tooth fz, spindle speed N) in accordance with industrial practices.

Keywords: ball milling, microstructure, surface roughness, titanium

Procedia PDF Downloads 280
12317 The Effect of Early Skin-To-Skin Contact with Fathers on Their Supporting Breastfeeding

Authors: Shu-Ling Wang

Abstract:

Background: Multiple studies showed early skin-to-skin contact (SSC) with mothers was beneficial to newborns such as breastfeeding and maternal childcare. In cases of newborns unable to have early SSC with mothers, fathers’ involvement could let early SSC continue without interruption. However, few studies had explored the effects of early SSC by fathers in comparison to early SSC with mothers. Paternal involvement of early SSC should be equally important in term of childcare and breastfeeding. The purpose of this study was to evaluate the efficacy of early SSC by fathers in particular in their support of breastfeeding. Methods: A quasi-experimental design was employed by the study. One hundred and forty-four father-infant pairs had participated the study, in which infants were assigned either to SSC with their fathers (n = 72) or to routine care (n = 72) as the control group. The study was conducted at a regional hospital in northern Taiwan. Participants included parents of both vaginal delivery (VD) and caesarean section birth (CS) infants. To be eligible for inclusion, infants must be over 37-week gestational ages. Data were collected twice: as pretest upon admission and as posttest with online questionnaire during first, second, and third postpartum months. The questionnaire included items for Breastfeeding Social Support, methods of feeding, and the mother-infant 24-hour rooming-in rate. The efficacy of early SSC with fathers was evaluated using the generalized estimating equation (GEE) modeling. Research Result: The primary finding was that SSC with fathers had positive impact on fathers’ support of breastfeeding. Analysis of the online questionnaire indicated that early SSC with fathers improved the support of breastfeeding than the control group (VD: t = -4.98, p < .001; CS: t = -2.37, p = .02). Analysis of mother-infant 24-hour rooming-in rate showed that SSC with fathers after CS had a positive impact on the rooming-in rate (χ² = 5.79, p = .02); however, with VD the difference between early SSC with fathers and the control group was insignificant (χ² = .23, p = .63). Analysis of the rate of exclusive breastfeeding indicated that early SSC with fathers had a higher rate than the control group during first three postpartum months for both delivery methods (VD: χ² = 12.51, p < .001 on 1st postpartum month, χ² = 8.13, p < .05 on 2nd postpartum month, χ² = 4.43, p < .05 on 3rd postpartum month; CS: χ² = 6.92, p < .05 on 1st postpartum month, χ² = 7.41, p < .05 on 2nd postpartum month, χ² = 6.24, p < .05 on 3rd postpartum month). No significant difference was found on the rate of exclusive breastfeeding with both methods of delivery between two groups during hospitalization. (VD: χ² =2 .00, p = .16; CS: χ² = .73, p = .39). Conclusion: Implementing early SSC with fathers has many benefits to both parents. The result of this study showed increasing fathers’ support of breastfeeding. This encourages our nursing personnel to focus the needs of father during breastfeeding, therefore further enhancing the quality of parental care, the rate and duration of breastfeeding.

Keywords: breastfeeding, skin-to-skin contact, support of breastfeeding, rooming-in

Procedia PDF Downloads 200
12316 Molecular Comparison of HEV Isolates from Sewage & Humans at Western India

Authors: Nidhi S. Chandra, Veena Agrawal, Debprasad Chattopadhyay

Abstract:

Background: Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in developing countries. It spreads feco orally mainly due to contamination of drinking water by sewage. There is limited data on the genotypic comparison of HEV isolates from sewage water and humans. The aim of this study was to identify genotype and conduct phylogenetic analysis of HEV isolates from sewage water and humans. Materials and Methods: 14 sewage water and 60 serum samples from acute sporadic hepatitis E cases (negative for hepatitis A, B, C) were tested for HEV-RNA by nested polymerase chain reaction (RTnPCR) using primers designed with in RdRp (RNA dependent RNA polymerase) region of open reading frame-1 (ORF-1). Sequencing was done by ABI prism 310. The sequences (343 nucleotides) were compared with each other and were aligned with previously reported HEV sequences obtained from GeneBank, using Clustal W software. A Phylogenetic tree was constructed by using PHYLIP version 3.67 software. Results: HEV-RNA was detected in 49/ 60 (81.67%) serum and 5/14 (35.71%) sewage samples. The sequences obtained from 17 serums and 2 sewage specimens belonged to genotype I with 85% similarity and clustering with previously reported human HEV sequences from India. HEV isolates from human and sewage in North West India are genetically closely related to each other. Conclusion: These finding suggest that sewage acts as reservoir of HEV. Therefore it is important that measures are taken for proper waste disposal and treatment of drinking water to prevent outbreaks and epidemics due to HEV.

Keywords: hepatitis E virus, nested polymerase chain reaction, open reading frame-1, nucleotidies

Procedia PDF Downloads 364
12315 Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents

Authors: Fatemeh Saadat Ghareh Bagh, Srimanta Ray, Jerald Lalman

Abstract:

Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively.

Keywords: black liquor, deep eutectic solvents, kinetics, lignin

Procedia PDF Downloads 129
12314 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 190
12313 Case Study of High-Resolution Marine Seismic Survey in Shallow Water, Arabian Gulf, Saudi Arabia

Authors: Almalki M., Alajmi M., Qadrouh Y., Alzahrani E., Sulaiman A., Aleid M., Albaiji A., Alfaifi H., Alhadadi A., Almotairy H., Alrasheed R., Alhafedh Y.

Abstract:

High-resolution marine seismic survey is a well-established technique that commonly used to characterize near-surface sediments and geological structures at shallow water. We conduct single channel seismic survey to provide high quality seismic images for near-surface sediments upto 100m depth at Jubal costal area, Arabian Gulf. Eight hydrophones streamer has been used to collect stacked seismic traces alone 5km seismic line. To reach the required depth, we have used spark system that discharges energies above 5000 J with expected frequency output span the range from 200 to 2000 Hz. A suitable processing flow implemented to enhance the signal-to-noise ratio of the seismic profile. We have found that shallow sedimentary layers at the study site have complex pattern of reflectivity, which decay significantly due to amount of source energy used as well as the multiples associated to seafloor. In fact, the results reveal that single channel marine seismic at shallow water is a cost-effective technique that can be easily repeated to observe any possibly changes in the wave physical properties at the near surface layers

Keywords: shallow marine single-channel data, high resolution, frequency filtering, shallow water

Procedia PDF Downloads 58
12312 Comparative Study of Globalization and Homogenous Society: South Korea and Greek Society Reaction to Foreign Culture

Authors: Putri Mentari Racharjo

Abstract:

The development of current technology is simplifying globalization process. An easier globalization process and mobilization are increasing interactions among individuals and societies in different countries. It is also easier for foreign culture to enter a country and create changes to the society. Differences brought by foreign culture will most likely affect any society. It will be easier for heterogeneous society to accept new culture, considering that they have various cultures, and they are used to differences. So it will be easier for a heterogeneous society to accept new culture as long as the culture is not contrary to their essential values. However for a homogenous society, where they have only one language and culture, it will take a longer adjustment time to fully accept the new culture. There will be a tendency for homogenous societies to react in a more negative way to new culture. Greece and South Korea are the examples for homogeneous societies. Greece, a destination country for immigrants, is having a hard time adjusting themselves to accept many immigrants with many cultures. There are various discrimination cases of immigrants in Greece, when the Greek society cannot fully accept the new culture brought by immigrants. South Korea, a newly popular country with K-pop and K-dramas, is attracting people from all over the world to come to South Korea. However a homogenous South Korean society is also having a hard time to fully accept foreign cultures, resulting in many discrimination cases based on race and culture in South Korea. With a qualitative method through a case study and literature review, this article will discuss about Greek and South Korean societies reaction to new cultures as an effect of globalization.

Keywords: foreign culture, globalization, greece, homogenous society, South Korea

Procedia PDF Downloads 318
12311 The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages

Authors: Z. W. Zhong, C. Xu, W. K. Choi

Abstract:

To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated.

Keywords: FOWLP strength, surface roughness, three-point bending, grinding

Procedia PDF Downloads 266
12310 The Contact Behaviors of Seals Under Combined Normal and Tangential Loading: A Multiscale Finite Element Contact Analysis

Authors: Runliang Wang, Jianhua Liu, Duo Jia, Xiaoyu Ding

Abstract:

The contact between sealing surfaces plays a vital role in guaranteeing the sealing performance of various seals. To date, analyses of sealing structures have rarely considered both structural parameters (macroscale) and surface roughness information (microscale) of sealing surfaces due to the complex modeling process. Meanwhile, most of the contact analyses applied to seals were conducted only under normal loading, which still existssome distance from real loading conditions in engineering. In this paper, a multiscale rough contact model, which took both macrostructural parameters of seals and surface roughness information of sealing surfaces into consideration for the cone-cone seal, was established. By using the finite element method (FEM), the combined normal and tangential loading was applied to the model to simulate the assembly process of the cone-cone seal. The evolution of the contact behaviors during the assembly process, such as the real contact area (RCA), the distribution of contact pressure, and contact status, are studied in detail. The results showed the non-linear relationship between the RCA and the load, which was different from the normal loading cases. In addition, the evolution of the real contact area of cone-cone seals with isotropic and anisotropic rough surfaces are also compared quantitatively.

Keywords: contact mechanics, FEM, randomly rough surface, real contact area, sealing

Procedia PDF Downloads 167
12309 Knowledge and Perceptions of Final-year Students towards Pharmacovigilance and Adverse Drug Reaction Reporting at the Faculty of Medical Sciences, Al-Razi University - Sana`a - Yemen

Authors: Nabil A. Albaser

Abstract:

Background: There is a serious problem with adverse drug reactions (ADRs) everywhere, including Yemen. Since it helps with the detection, assessment, reporting and prevention of ADRs, pharmacovigilance (PV) is an essential part of the healthcare system. The unbiased reporting of ADRs remains the foundation of PV. Students majoring in healthcare should acquire the knowledge and skills necessary to conduct PV in a range of clinical settings. The primary objective of this study was to evaluate the understanding and attitudes of final-year Pharmacy, Nursing, and Midwifery students at Al-Razi University in Sana'a, Yemen, regarding PV and ADRs reporting. Methods: The study followed descriptive cross-sectional approach. A validated, self-administered questionnaire with three parts—demographic information, knowledge, and perceptions of Pharmacovigilance was online distributed to final-year Pharmacy, Nursing, and Midwifery students. The questionnaire was given to 175 students; 122 of them responded with a percentage (69.7%). Results: The majority of respondents were male (79.5%). More than the tow-third of the students, 68.9%, were beyond the age of 23. Although the majority of students, 80%, heard about the terms of ADRs and PV, but only 50% and 57.4% of the respondents, respectively, could define the both terms correctly. However, only 11.48 % of them, nevertheless, took a PV course. More than a half of them (56.6%) had a positive perceptions towards pharmacovigilance and ADR reporting and had a moderate degree of knowledge (68.9%). Conclusion: The study demonstrated that the participants lacked sufficient knowledge of pharmacovigilance and ADR reporting. They showed a moderate level of understanding of reporting ADRs as well as a favorable opinion of dealing with and reporting ADRs. Yemen's health care curriculum should include lessons on pharmacovigilance.

Keywords: adverse drug reaction reporting, pharmacovigilance, yemen, knowlegde

Procedia PDF Downloads 94
12308 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria

Authors: Lujain Khraiba

Abstract:

Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.

Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces

Procedia PDF Downloads 467
12307 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 123
12306 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.

Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength

Procedia PDF Downloads 233
12305 The Effect of the Rain Intensity on the Hydrodynamic Behavior of the Low-Floor ChéLiffe

Authors: Ahmed Abbas

Abstract:

Land degradation in the Lower Cheliff region leads to loss of their fertility, physical and chemical properties by secondary salinization and film forming surface or surface crust. The main factor related to runoff and soil erosion is their susceptibility to crusting caused by the impact of raindrops, which causes the reduction of the filterability of the soil. The present study aims to investigate the hydrodynamic behavior of five types of soil taken from the plain of low Cheliff under simulated rainfall by using two intensities, one moderate, and others correspond to heavy rains at low kinetic energies. Experimental results demonstrate the influence of chemical and mechanical physical properties of soils on their hydrodynamic behavior and the influence of heavy rain on the modality of the reduction in the filterability and the amount of transported sediment.

Keywords: erosion, hydrodynamic behavior, rain simulation, soil

Procedia PDF Downloads 264
12304 Exploring Weld Rejection Rate Limits and Tracers Effects in Construction Projects

Authors: Abdalaziz M. Alsalhabi, Loai M. Alowa

Abstract:

This paper investigates Weld Rejection Rate (WRR) limits and tracer effects in construction projects, with a specific focus on a Gas Plant Project, a mega-project held by Saudi Aramco (SA) in Saudi Arabia. The study included a comprehensive examination of various factors impacting WRR limits. It commenced by comparing the Company practices with ASME standards, followed by an in-depth analysis of both weekly and cumulative projects' historical WRR data, evaluation of Radiographic Testing (RT) reports for rejected welds, and proposal of mitigation methods to eliminate future rejections. Additionally, the study revealed the causes of fluctuation in WRR data and benchmarked with the industry practices. Furthermore, a case study was conducted to explore the impact of tracers on WRR, providing insights into their influence on the welding process. This paper aims to achieve three primary objectives. Firstly, it seeks to validate the existing practices of WRR limits and advocate for their inclusion within relevant International Industry Standards. Secondly, it aims to validate the effectiveness of the WRR formula that incorporates tracer effects, ensuring its reliability in assessing weld quality. Lastly, this study aims to identify opportunities for process improvement in WRR control, with the ultimate goal of enhancing project processes and ensuring the integrity, safety, and efficiency of constructed assets.

Keywords: weld rejection rate, weld repair rate in joint and linear basis, tracers effects, construction projects

Procedia PDF Downloads 4
12303 Dependence of Ionomer Loading on the Hydrogen Generation Rate of a Proton Exchange Membrane Electrolyzer

Authors: Yingjeng James Li, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

Membrane electrode assemblies MEAs for proton exchange membrane PEM water electrolyzers were prepared by employing 175um perfluorosulfonic acid PFSA membranes as the PEM, onto which iridium oxide catalyst was coated on one side as the anode and platinum catalyst was coated on the other side as the cathode. The cathode catalyst ink was prepared so that the weight ratio of the catalyst powder to ionomer was 75:25, 70:30, 65:35, 60:40, and 55:45, respectively. Whereas, the ratio of catalyst powder to ionomer of the anode catalyst ink keeps constant at 50:50. All the MEAs have a catalyst coated area of 5cm*5cm. The test cell employs a platinum plated titanium grid as anode gas diffusion media; whereas, carbon paper was employed as the cathode gas diffusion media. The measurements of the MEA gases production rate were carried out by holding the cell voltage ranging from 1.6 to 2.8 volts at room temperature. It was found that the MEA with cathode catalyst to ionomer ratio of 65:35 gives the largest hydrogen production rate which is 2.8mL/cm2*min.

Keywords: electrolyzer, membrane electrode assembly, proton exchange membrane, ionomer, hydrogen

Procedia PDF Downloads 240