Search results for: melt flow index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8241

Search results for: melt flow index

5481 Assessing the Plant Diversity's Quality, Threats and Opportunities for the Support of Sustainable City Development of the City Raipur, India

Authors: Katharina Lapin, Debashis Sanyal

Abstract:

Worldwide urban areas are growing. Urbanization has a great impact on social and economic development and ecosystem services. This global trend of urbanization also has significant impact on habitat and biodiversity. The impact of urbanization on the biodiversity of cities in Europe and North America is well studied, while there is a lack of data from cities in currently fast growing urban areas. Indian cities are expanding. The scientific community and the governmental authorities are facing the ongoing urbanization process as an opportunity for the environment. This case study supports the evaluation of urban biodiversity of the city Raipur in the North-West of India. The aim of this study is to assess the overview of the environmental and ecological implications of urbanization. The collected data and analysis was used to discuss the challenges for the sustainable city development. Vascular plants were chosen as an appropriate indicator for the assessment of local biodiversity changes. On the one hand, the vegetation cover is sensible to anthropogenic influence, and in the other hand, the local species composition is comparable to changes at the regional and national scale, using the plant index of India. Further information of abiotic situation can be gathered with the determination of indicator species. In order to calculate the influence of urbanization on the native plant diversity, the Shannon diversity index H´ was chosen. The Pielou`s pooled quadrate method was used for estimating diversity when a random sample is not expected. It was used to calculate the Pilou´s index of evenness. The estimated species coverage was used for calculating the H´ and J. Pearson correlation was performed to test the relationship between urbanization pattern and plant diversity. Further, a SWOT analysis was used in for analyzing internal and external factors impinging on a decision making process. The city of Raipur (21.25°N 81.63°E) has a population of 1,010,087 inhabitants living in an urban area of 226km², in the district of the Indian state of Chhattisgarh. Within the last decade, the urban area of Raipur increased. The results show that various novel ecosystems exist in the urban area of Raipur. The high amount of native flora is mainly to find at the shore of urban lakes and along the river Karun. These areas of high Biodiversity Index are to protect as urban biodiversity hot spots. The governmental authorities are well informed about the environmental challenges for the sustainable development of the city. Together with the scientific community of the Technical University of Raipur many engineering solutions are discussed for implementation of the future. The case study helped to point out the importance environmental measures that support the ecosystem services of green infrastructure. The fast process of urbanization is difficult to control. Uncontrolled creation of urban housing leads to difficulties in unsustainable use of natural resources. This is the major threat for the urban biodiversity.

Keywords: India, novel ecosystems, plant diversity, urban ecology

Procedia PDF Downloads 269
5480 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage

Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán

Abstract:

High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.

Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance

Procedia PDF Downloads 62
5479 Longitudinal Changes in Body Composition in Subjects with Diabetes Who Received Low-Carbohydrate Diet Education: The Effect of Age and Sex

Authors: Hsueh-Ching Wu

Abstract:

Aims: This study investigated the longitudinal changes in BC were evaluated in patients with T2D who received carbohydrate-restricted diet education (CRDE), and the effects of age and sex on BC were analyzed. Design: This retrospective observational study was conducted between 2018 and 2021. A total of 6164 T2D patients were analyzed. Subjects with T2D who received CRDE (daily carbohydrate intake: 26-45%). A hierarchical linear model (HLM) was used to estimate the change amount and rate of change for the following variables in each group: body weight (BW), body mass index (BMI), body fat mass (BFM), percent body fat (PBF), appendicular skeletal muscle mass (ASM), and skeletal muscle index (SMI). Results: The BW, BMI, ASM, SMI and BFM of T2D patients who received CRDE for 3 years decreased with increasing age; PBF showed the opposite trend. The changes in BW, BMI, ASM, and SMI of patients older than 65 years were higher than those of patients younger than 65 years, and the annual rate of decline for males was higher than that for females. The annual change in BFM and PBF for both sexes changed from a downward trend before the age of 65 to a slow increase after the age of 65, and the slow increase rate for women was higher than that for men. Conclusion: Changes in body composition are associated with age and sex. BW and muscle tissue decrease with age, and attention must be paid to the rebound of adipose tissue after middle age. Patient or Public Contribution: The patient agreed to participate in a retrospective chart review during in the study period.

Keywords: body weight, body composition, carbohydrate-restricted diet, nursing, type 2 diabetes

Procedia PDF Downloads 54
5478 The Extraction of Sage Essential Oil and the Improvement of Sleeping Quality for Female Menopause by Sage Essential Oil

Authors: Bei Shan Lin, Tzu Yu Huang, Ya Ping Chen, Chun Mel Lu

Abstract:

This research is divided into two parts. The first part is to adopt the method of supercritical carbon dioxide fluid extraction to extract sage essential oil (Salvia officinalis) and to find out the differences when the procedure is under different pressure conditions. Meanwhile, this research is going to probe into the composition of the extracted sage essential oil. The second part will talk about the effect of the aromatherapy with extracted sage essential oil to improve the sleeping quality for women in menopause. The extracted sage substance is tested by inhibiting DPPH radical to identify its antioxidant capacity, and the extracted component was analyzed by gas chromatography-mass spectrometer. Under two different pressure conditions, the extracted experiment gets different results. By 3000 psi, the extracted substance is IC50 180.94mg/L, which is higher than IC50 657.43mg/L by 1800 psi. By 3000 psi, the extracted yield is 1.05%, which is higher than 0.68% by 1800 psi. Through the experimental data, the researcher also can conclude that the extracted substance with 3000psi contains more materials than the one with 1800 psi. The main overlapped materials are the compounds of cyclic ether, flavonoid, and terpenes. Cyclic ether and flavonoids have the function of soothing and calming. They can be applied to relieve cramps and to eliminate menopause disorders. The second part of the research is to apply extracted sage essential oil to aromatherapy for women who are in menopause and to discuss the effect of the improvement for the sleeping quality. This research adopts the approaching of Swedish upper back massage, evaluates the sleeping quality with the Pittsburgh Sleep Quality Index, and detects the changes with heart rate variability apparatus. The experimental group intervenes with extracted sage essential oil to the aromatherapy. The average heart beats detected by the apparatus has a better result in SDNN, low frequency, and high frequency. The performance is better than the control group. According to the statistical analysis of the Pittsburgh Sleep Quality Index, this research has reached the effect of sleep quality improvement. It proves that extracted sage essential oil has a significant effect on increasing the activities of parasympathetic nerves. It is able to improve the sleeping quality for women in menopause

Keywords: supercritical carbon dioxide fluid extraction, Salvia officinalis, aromatherapy, Swedish massage, Pittsburgh sleep quality index, heart rate variability, parasympathetic nerves

Procedia PDF Downloads 110
5477 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Fourier number, Nusselt number, Rayleigh number, steady state, transient

Procedia PDF Downloads 341
5476 Effects of Low Sleep Efficiency and Sleep Deprivation on Driver Physical Fatigue

Authors: Chen-Yu Tsai, Wen-Te Liu, Chen-Chen Lo, Kang Lo, Yin-Tzu Lin

Abstract:

Background: Driving drowsiness related to insufficient or disordered sleep accounts for a major percentage of vehicular accidents. Sleep deprivation is the primary reason related to low sleep efficiency. Nevertheless, the mechanism of sleep deprivation induces driving fatigue to remain unclear. Objective: The objective of this study is to associate the relationship between insufficient sleep efficiency and driving fatigue. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. Sleep efficiency was quantified as the polysomnography (PSG), and the sleep stages were sentenced by the reregistered Technologist during examination in a hospital in New Taipei City (Taiwan). The independent T-test was used to investigate the correlation between sleep efficiency, sleep stages ratio, and driving drowsiness. Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for obstructive sleep apnea syndrome (OSAS) as well as completed the driver condition questionnaire. Four-hundred-eighty-four subjects (55%) were classified as fatigue group, and 396 subjects (45%) were served as the control group. The ratio of stage three sleep (N3) (0.032 ± 0.056) in fatigue group were significantly lower than the control group (p < 0.01). The significantly higher value of snoring index (242.14 ± 205.51 /hours) was observed in the fatigue group (p < 0.01). Conclusion: We observe the considerable correlation between deep sleep reduce and driving drowsiness. To avoid drowsy driving, the sleep deprivation, and the snoring events during the sleeping time should be monitored and alleviated.

Keywords: driving drowsiness, sleep deprivation, stage three sleep, snoring index

Procedia PDF Downloads 135
5475 Removal of Heavy Metals by KOH Activated Diplotaxis harra Biomass: Experimental Design Optimization

Authors: H. Tounsadi, A. Khalidi, M. Abdennouri, N. Barka

Abstract:

The objective of this study was to produce high quality activated carbons from Diplotaxis harra biomass by potassium hydroxide activation and their application for heavy metals removal. To reduce the number of experiments, full factorial experimental design at two levels were carried out to occur optimal preparation conditions and better conditions for the removal of cadmium and cobalt ions from aqueous solutions. The influence of different variables during the activation process, such as carbonization temperature, activation temperature, activation time and impregnation ratio (g KOH/g carbon) have been investigated, and the best production conditions were determined. The experimental results showed that removal of cadmium and cobalt ions onto activated carbons was more sensitive to methylene blue index instead of iodine number. Although, the removal of cadmium and cobalt ions is more influenced by activation temperature with a negative effect followed by the impregnation ratio with a positive impact. Based on the statistical data, the best conditions for the removal of cadmium and cobalt by prepared activated carbons have been established. The maximum iodine number and methylene blue index obtained under these conditions and the greater sorption capacities for cadmium and cobalt were investigated. These sorption capacities were greater than those of a commercial activated carbon used in water treatment.

Keywords: activated carbon, cadmium, cobalt, Diplotaxis harra, experimental design, potassium hydroxide

Procedia PDF Downloads 191
5474 The History of Sambipitu Formation Temperature during the Early Miocene Epooch at Kali Ngalang, Nglipar, Gunung Kidul Regency

Authors: R. Harman Dwi, Ryan Avirsa, P. Abraham Ivan

Abstract:

Understanding of temperatures in the past, present, and future temperatures can be possible to do by analysis abundance of fossil foraminifera. This research was conducted in Sambipitu Formation, Ngalang River, Nglipar, Gunung Kidul Regency. The research method is divided into 3 stages: 1) study of literature, research based on previous researchers, 2) spatial, observation and sampling every 5-10 meters, 3) descriptive, analyzing samples consisting of a 10-gram sample weight, washing sample using 30% peroxide, biostratigraphy analysis, paleotemperature analysis using abundance of fossil, diversity analysis using Simpson diversity index method, and comparing current temperature data. There are two phases based on the appearance of Globorotalia menardii and Pulleniatina obliqueculata pointed to Phase Tropical Area, and the appearance of fossil Globigerinoides ruber and Orbulina universa fossil shows the phase of Subtropical Area. Paleotemperatur based on the appearance of Globorotalia menardii, Globigerinoides trilobus, Globigerinoides ruber, Orbulina universa, and Pulleniatina obliqueculata pointed to Warm Water Area and Warm Water Area (average surface water approximate 25°C).

Keywords: abundance, biostratigraphy, Simpson diversity index method, paleotemperature

Procedia PDF Downloads 165
5473 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance

Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.

Abstract:

The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, Philippines

Keywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure

Procedia PDF Downloads 87
5472 Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals

Authors: Carlos Teodoro, Oscar Bautista

Abstract:

In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-Hückel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the Péclet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined.

Keywords: electroosmotic flow, mass transport, oscillatory flow, species separation

Procedia PDF Downloads 208
5471 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey

Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu

Abstract:

In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12, Mauremys rivulata = 14, Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. In this study, a total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The Multiple Antibiotic Resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.

Keywords: bacteriological quality, amphibian, reptile, antibiotic, heavy metal resistance

Procedia PDF Downloads 372
5470 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition

Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi

Abstract:

Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.

Keywords: porous medium, power law fluids, surface heat flux, vertical wedge

Procedia PDF Downloads 304
5469 Results of Longitudinal Assessments of Very Low Birth Weight and Extremely Low Birth Weight Infants

Authors: Anett Nagy, Anna Maria Beke, Rozsa Graf, Magda Kalmar

Abstract:

Premature birth involves developmental risks – the earlier the baby is born and the lower its birth weight, the higher the risks. The developmental outcomes for immature, low birth weight infants are hard to predict. Our aim is to identify the factors influencing infant and preschool-age development in very low birth weight (VLBW) and extremely low birth weight (ELBW) preterms. Sixty-one subjects participated in our longitudinal study, which consisted of thirty VLBW and thirty-one ELBW children. The psychomotor development of the infants was assessed using the Brunet-Lezine Developmental Scale at the corrected ages of one and two years; then at three years of age, they were tested with the WPPSI-IV IQ test. Birth weight, gestational age, perinatal complications, gender, and maternal education, were added to the data analysis as independent variables. According to our assessments, our subjects as a group scored in the average range in each subscale of the Brunet-Lezine Developmental Scale. The scores were the lowest in language at both measurement points. The children’s performances improved between one and two years of age, particularly in the domain of coordination. At three years of age the mean IQ test results, although still in the average range, were near the low end of it in each index. The ELBW preterms performed significantly poorer in Perceptual Reasoning Index. The developmental level at two years better predicted the IQ than that at one year. None of the measures distinguished the genders.

Keywords: preterm, extremely low birth-weight, perinatal complication, psychomotor development, intelligence, follow-up

Procedia PDF Downloads 236
5468 Impact of Climate Change on Flow Regime in Himalayan Basins, Nepal

Authors: Tirtha Raj Adhikari, Lochan Prasad Devkota

Abstract:

This research studied the hydrological regime of three glacierized river basins in Khumbu, Langtang and Annapurna regions of Nepal using the Hydraologiska Byrans Vattenbalansavde (HBV), HVB-light 3.0 model. Future scenario of discharge is also studied using downscaled climate data derived from statistical downscaling method. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data from Coupled Global Circulation Model 3 (CGCM3) was used for the climate projection, under A2 and A1B SRES scenarios. In addition, the observed historical temperature, precipitation and discharge data were collected from 14 different hydro-metrological locations for the implementation of this study, which include watershed and hydro-meteorological characteristics, trends analysis and water balance computation. The simulated precipitation and temperature were corrected for bias before implementing in the HVB-light 3.0 conceptual rainfall-runoff model to predict the flow regime, in which Groups Algorithms Programming (GAP) optimization approach and then calibration were used to obtain several parameter sets which were finally reproduced as observed stream flow. Except in summer, the analysis showed that the increasing trends in annual as well as seasonal precipitations during the period 2001 - 2060 for both A2 and A1B scenarios over three basins under investigation. In these river basins, the model projected warmer days in every seasons of entire period from 2001 to 2060 for both A1B and A2 scenarios. These warming trends are higher in maximum than in minimum temperatures throughout the year, indicating increasing trend of daily temperature range due to recent global warming phenomenon. Furthermore, there are decreasing trends in summer discharge in Langtang Khola (Langtang region) which is increasing in Modi Khola (Annapurna region) as well as Dudh Koshi (Khumbu region) river basin. The flow regime is more pronounced during later parts of the future decades than during earlier parts in all basins. The annual water surplus of 1419 mm, 177 mm and 49 mm are observed in Annapurna, Langtang and Khumbu region, respectively.

Keywords: temperature, precipitation, water discharge, water balance, global warming

Procedia PDF Downloads 332
5467 Xerostomia and Caries Incidence in Relation to Metabolic Control in Children and Adolescents with Type 1 Diabetes

Authors: Eftychia Pappa, Heleni Vastardis, Christos Rahiotis, Andriani Vazaiou

Abstract:

The aim of this study was to evaluate the prevalence of dry-mouth symptoms (xerostomia) and compare it with alterations in salivary characteristics of children and adolescents with type 1 diabetes (DM1), as measured with the use of chair-side saliva tests. This study also investigated the possible association between salivary dysfunction and incidence of caries, in relation to the level of metabolic control. A cross-sectional study was performed on young patients (6-18 years old) allocated among 3 groups: 40 patients poorly-controlled (DM1-A, HbA1c>8%), 40 well-controlled (DM1-B, HbA1c≤8%) and 40 age- and sex-matched healthy controls. The study was approved by the Research Ethics Committee of University of Athens and the parents signed written informed consent. All subjects were examined for dental caries, oral hygiene and salivary factors. Assessments of salivary function included self-reported xerostomia, quantification of resting and stimulated whole saliva flow rates, pH values, buffering capacity and saliva’s viscosity. Salivary characteristics were evaluated with the use of GC Saliva Check Buffer (3Μ ESPE). Data were analysed by chi-square and Kruskal-Wallis tests. Subjects with diabetes reported xerostomia more frequently than healthy controls (p<0.05). Unstimulated salivary flow rate and pH values remained significantly lower in DM1-A compared to DM1-B and controls. Low values of resting salivary flow rate were associated with a higher prevalence of dental caries in children and adolescents with poorly-controlled DM1 (p<0.05). The results suggested that diabetes-induced alterations in salivary characteristics are indicative of higher caries susceptibility of diabetics and chair-side saliva tests are a useful tool for the evaluation of caries risk assessment.

Keywords: caries risk assessment, saliva diagnostic tests, type 1 diabetes, xerostomia

Procedia PDF Downloads 276
5466 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach

Authors: Md. Asif Ullah, M. A. R. Sarkar

Abstract:

This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.

Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer

Procedia PDF Downloads 354
5465 Numerical Investigations on the Coanda Effect

Authors: Florin Frunzulica, Alexandru Dumitrache, Octavian Preotu

Abstract:

The Coanda effect consists of the tendency of a jet to remain attached to a sufficiently long/large convex surface. Flows deflected by a curved surface have caused great interest during last fifty years a major interest in the study of this phenomenon is caused by the possibility of using this effect to aircraft with short take-off and landing, for thrust vectoring. It is also used in applications involving mixing two of more fluids, noise attenuation, ventilation, etc. The paper proposes the numerical study of an aerodynamic configuration that can passively amplify the Coanda effect. On a wing flaps with predetermined configuration, a channel is applied between two particular zones, a low-pressure one and a high-pressure another one, respectively. The secondary flow through this channel yields a gap between the jet and the convex surface, maintaining the jet attached on a longer distance. The section altering-based active control of the secondary flow through the channel controls the attachment of the jet to the surface and automatically controls the deviation angle of the jet. The numerical simulations have been performed in Ansys Fluent for a series of wing flaps-channel configurations with varying jet velocity. The numerical results are in good agreement with experimental results.

Keywords: blowing jet, CFD, Coanda effect, circulation control

Procedia PDF Downloads 338
5464 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 240
5463 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 138
5462 Exploring the Compatibility of The Rhizome and Complex Adaptive System (CAS) Theory as a Hybrid Urban Strategy Via Aggregation, Nonlinearity, and Flow

Authors: Sudaff Mohammed, Wahda Shuker Al-Hinkawi, Nada Abdulmueen Hasan

Abstract:

The compatibility of the Rhizome and Complex Adaptive system theory as a strategy within the urban context is the essential interest of this paper since there are only a few attempts to establish a hybrid, multi-scalar, and developable strategy based on the concept of the Rhizome and the CAS theory. This paper aims to establish a Rhizomic CAS strategy for different urban contexts by investigating the principles, characteristics, properties, and mechanisms of Rhizome and Complex Adaptive Systems. The research focused mainly on analyzing three properties: aggregation, non-linearity, and flow through the lens of Rhizome, Rhizomatization of CAS properties. The most intriguing result is that the principal and well-investigated characteristics of Complex Adaptive systems can be ‘Rhizomatized’ in two ways; highlighting commonalities between Rhizome and Complex Adaptive systems in addition to using Rhizome-related concepts. This paper attempts to emphasize the potency of the Rhizome as an apparently stochastic and barely anticipatable structure that can be developed to analyze cities of distinctive contexts for formulating better customized urban strategies.

Keywords: rhizome, complex adaptive system (CAS), system Theory, urban system, rhizomatic CAS, assemblage, human occupation impulses (HOI)

Procedia PDF Downloads 26
5461 Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: injection moulding, tensile strength, poly-propylene, Taguchi

Procedia PDF Downloads 267
5460 Anti-Cancerous Activity of Sargassum siliquastrum in Cervical Cancer: Choreographing the Fly's Danse Macabre

Authors: Sana Abbasa, Shahzad Bhattiab, Nadir Khan

Abstract:

Sargassum siliquastrum is brown seaweed with traditional claims for some medicinal properties. This research was done to investigate the methanol extract of S. siliquastrum for antiproliferative activity against human cervical cancer cell line, HeLa and its mode of cell death. From methylene blue assay, S. siliquastrum exhibited antiproliferative activity on HeLa cells with IC50 of 3.87 µg/ml without affecting non-malignant cells. Phase contrast microscopy indicated the confluency reduction in HeLa cells and changes on the cell shape. Nuclear staining with Hoechst 33258 displayed the formation of apoptotic bodies and fragmented nuclei. S. siliquastrum also induced early apoptosis event in HeLa cells as confirmed by FITC-Annexin V/propidium iodide staining by flow cytometry analysis. Cell cycle analysis indicated growth arrest of HeLa cells at G1/S phase. Protein study by flow cytometry indicated the increment of p53, slight increase of Bax and unchanged level of Bcl-2. In conclusion, S. siliquastrum demonstrated an antiproliferative activity in HeLa cell by inducing G1/S cell cycle arrest via p53-mediated pathway.

Keywords: sargassum siliquastrum, cervical cancer, P53, antiproleferation

Procedia PDF Downloads 620
5459 Robust ResNets for Chemically Reacting Flows

Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi

Abstract:

Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.

Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets

Procedia PDF Downloads 108
5458 Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications

Authors: M. Venkateswarlu, Srinivasa Rao Allam, S. K. Mahamuda, K. Swapna, G. Vijaya Prakash

Abstract:

Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively.

Keywords: glasses, JO parameters, optical materials, thullium

Procedia PDF Downloads 238
5457 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience

Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi

Abstract:

Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.

Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit

Procedia PDF Downloads 119
5456 The Association between Health-Related Quality of Life and Physical Activity in Different Domains with Other Factors in Croatian Male Police Officers

Authors: Goran Sporiš, Dinko Vuleta, Stefan Lovro

Abstract:

The purpose of the present study was to determine the associations between health-related quality of life (HRQOL) and physical activity (PA) in different domains. In this cross-sectional study, participants were 169 Croatian police officers (mean age 35.14±8.95 yrs, mean height 180.93±7.53 cm, mean weight 88.39±14.05 kg, mean body-mass index 26.90±3.39 kg/m2). The dependent variables were two general domains extracted from the HRQOL questionnaire: (1) physical component scale (PCS) and (2) mental component scale (MCS). The independent variables were job-related, transport, domestic and leisure-time PA, along with other factors: age, body-mass index, smoking status, psychological distress, socioeconomic status and time spent in sedentary behaviour. The associations between dependent and independent variables were analyzed by using multiple regression analysis. Significance was set up at p < 0.05. PCS was positively associated with leisure-time PA (β 0.28, p < 0.001) and socioeconomic status (SES) (β 0.16, p=0.005), but inversely associated with job-related PA (β -0.15, p=0.012), domestic-time PA (β -0.14, p=0.014), age (β -0.12, p=0.050), psychological distress (β -0.43, p<0.001) and sedentary behaviour (β -0.15, p=0.009). MCS was positively associated with leisure-time PA (β 0.19, p=0.013) and SES (β 0.20, p=0.002), while inversely associated with age (β -0.23, p=0.001), psychological distress (β -0.27, p<0.001) and sedentary behaviour (β -0.22, p=0.001). Our results added new information about the associations between domain-specific PA and both physical and mental component scale in police officers. Future studies should deal with the same associations in other stressful occupations.

Keywords: health, fitness, police force, relations

Procedia PDF Downloads 288
5455 The Efficacy of Government Strategies to Control COVID 19: Evidence from 22 High Covid Fatality Rated Countries

Authors: Imalka Wasana Rathnayaka, Rasheda Khanam, Mohammad Mafizur Rahman

Abstract:

TheCOVID-19 pandemic has created unprecedented challenges to both the health and economic states in countries around the world. This study aims to evaluate the effectiveness of governments' decisions to mitigate the risks of COVID-19 through proposing policy directions to reduce its magnitude. The study is motivated by the ongoing coronavirus outbreaks and comprehensive policy responses taken by countries to mitigate the spread of COVID-19 and reduce death rates. This study contributes to filling the knowledge by exploiting the long-term efficacy of extensive plans of governments. This study employs a Panel autoregressive distributed lag (ARDL) framework. The panels incorporate both a significant number of variables and fortnightly observations from22 countries. The dependent variables adopted in this study are the fortnightly death rates and the rates of the spread of COVID-19. Mortality rate and the rate of infection data were computed based on the number of deaths and the number of new cases per 10000 people.The explanatory variables are fortnightly values of indexes taken to investigate the efficacy of government interventions to control COVID-19. Overall government response index, Stringency index, Containment and health index, and Economic support index were selected as explanatory variables. The study relies on the Oxford COVID-19 Government Measure Tracker (OxCGRT). According to the procedures of ARDL, the study employs (i) the unit root test to check stationarity, (ii) panel cointegration, and (iii) PMG and ARDL estimation techniques. The study shows that the COVID-19 pandemic forced immediate responses from policymakers across the world to mitigate the risks of COVID-19. Of the four types of government policy interventions: (i) Stringency and (ii) Economic Support have been most effective and reveal that facilitating Stringency and financial measures has resulted in a reduction in infection and fatality rates, while (iii) Government responses are positively associated with deaths but negatively with infected cases. Even though this positive relationship is unexpected to some extent in the long run, social distancing norms of the governments have been broken by the public in some countries, and population age demographics would be a possible reason for that result. (iv) Containment and healthcare improvements reduce death rates but increase the infection rates, although the effect has been lower (in absolute value). The model implies that implementation of containment health practices without association with tracing and individual-level quarantine does not work well. The policy implication based on containment health measures must be applied together with targeted, aggressive, and rapid containment to extensively reduce the number of people infected with COVID 19. Furthermore, the results demonstrate that economic support for income and debt relief has been the key to suppressing the rate of COVID-19 infections and fatality rates.

Keywords: COVID-19, infection rate, deaths rate, government response, panel data

Procedia PDF Downloads 63
5454 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: queueing network, discrete-event simulation, health applications, SPT

Procedia PDF Downloads 177
5453 A New Approach to Achieve the Regime Equations in Sand-Bed Rivers

Authors: Farhad Imanshoar

Abstract:

The regime or equilibrium geometry of alluvial rivers remains a topic of fundamental scientific and engineering interest. There are several approaches to analyze the problem, namely: empirical formulas, semi-theoretical methods and rational (extreme) procedures. However, none of them is widely accepted at present, due to lack of knowledge of some physical processes associated with channel formation and the simplification hypotheses imposed in order to reduce the high quantity of involved variables. The study presented in this paper shows a new approach to estimate stable width and depth of sand-bed rivers by using developed stream power equation (DSPE). At first, a new procedure based on theoretical analysis and by considering DSPE and ultimate sediment concentration were developed. Then, experimental data for regime condition in sand-bed rivers (flow depth, flow width, sediment feed rate for several cases) were gathered. Finally, the results of this research (regime equations) are compared with the field data and other regime equations. A good agreement was observed between the field data and the values resulted from developed regime equation.

Keywords: regime equations, developed stream power equation, sand-bed rivers, semi-theoretical methods

Procedia PDF Downloads 260
5452 Efficacy of Remote Sensing Application in Monitoring the Effectiveness of Afforestation Project in Northern Nigeria

Authors: T. Garba, Y. Y. Babanyara, K. G. Ilellah, M. A. Modibbo, T. O. Quddus, M. J. Sani

Abstract:

After the United Nation Convention on Desertification (UNCD) in 1977 which was preceded by extensive, regional, and local studies, and consultations with numerous scientists, decision-makers, and relevant institutions. Global Plan of Action to Combat Desertification (PACD) was formulated, endorsed by member Countries. The role of implementing PACD was vested with Governments of countries affected by desertification. The Federal Government of Nigeria as a signatory and World Bank funded and implement afforestation project aimed at combating desertification between 1988 and 1999. This research, therefore, applied remote sensing techniques to assess the effectiveness of the project. To achieve that a small portion of about 143,609 hectares was curved out from the project area. Normalized Difference of the Vegetative Index (NDVI) and Land Use Land Cover were derived from Landsat TM 1986, Landsat ETM 1999 and Nigeria Sat 1, 2007 of the project area. The findings show that there was an increase in cultivated area due to the project from 1986 through 1999 and 2007. This is further buttressed by the three NDVI imageries due to their high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007 These signifies the gradual physical development of Afforestation project in the area. In addition, it was also verified by histograms of changes in vegetation which indicated an increased vegetative cover from 60,192 in 1986, to 102,476 in 1999 and then to 88,343 in 2007. The study concluded that Remote Sensing approach has actually confirmed that the project was indeed successful and effective.

Keywords: afforestation, desertification, landsat, vegetative index, remote sensing

Procedia PDF Downloads 307