Search results for: financial enabling environment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12140

Search results for: financial enabling environment

9380 Are the Organizations Prepared for Potential Crises? A Research Intended to Measure the Proactivity Level of Industrial Organizations

Authors: M. Tahir Demirsel, Mustafa Atsan

Abstract:

Many elements of the environment in which businesses operate today leave them faced with unexpected threats and opportunities. One of the major threats is business crisis. The crisis is a state of affairs in a business wherein the executives must take urgent and unprecedented action to try to save the business from failure. In order to survive in the business environment, organizations should be prepared for the potential crises. Technological developments, uncertainty in the market and the intense competition increase the probability of encountering a crisis for organizations. Therefore, by acting proactively to predict crisis, to detect signals of crisis and be prepared for a crisis by taking necessary precautions accordingly, is of great importance for businesses. In this context, the objective of this study is to reveal that how much organizations are proactive and can predict the future crises and investigate whether they are prepared for possible crises or not. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). The findings are analyzed through descriptive statistics and multiple regression analysis. According to the results, it has been observed that organizations cannot predict the crisis signals and are not prepared for potential crises.

Keywords: crisis preparedness, crisis signals, industrial organizations, proactivity

Procedia PDF Downloads 516
9379 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa

Authors: Yegnanew A. Shiferaw

Abstract:

Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.

Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility

Procedia PDF Downloads 202
9378 Eco-Agriculture for Effective Solid Waste Management in Minna, Nigeria

Authors: A. Abdulkadir, Y. M. Bello, A. A. Okhimamhe, H. Ibrahim, M. B. Matazu, L. S. Barau

Abstract:

The increasing volume of solid waste generated, collected and disposed daily complicate adequate management of solid waste by the relevant agency like Niger State Environmental Protection Agency (NISEPA). In addition, the impacts of solid waste on the natural environment and human livelihood require identification of cost-effective ways for sustainable municipal waste management in Nigeria. These signal the need for identifying environment-friendly initiative and local solution to address municipal solid waste. A research field was secured at Pago, Minna, Niger State which is located in the guinea savanna belt of Nigeria, within longitude 60 3614311- 4511 and latitude 90 291 37.6111- .6211 N. Poultry droppings, decomposed household waste manure and NPK treatment were used. The experimental field was divided into three replications and four (4) treatments on each replication making a total of twelve (12) plots. The treatments were allotted using Randomized Complete Block Design (RCBD) and Data collected was analyzed using SPSS software and RCBD. The result depicts variation in plant height and number of leaves at 50% flowering; Poultry dropping records the highest height as a number of leaves for waste manure competes fairly well with NPK treatment. Similarly, the varying treatments significantly increase vegetable yield, as the control (Nontreatment) records the least yield for the three vegetable samples. Adoption of this organic manure for cultivation does not only enhance environment quality and attainment of food security but will contribute to local economic development, poverty alleviation, and social inclusion.

Keywords: environmental issues, food security, NISEPA, solid waste

Procedia PDF Downloads 345
9377 Building Tutor and Tutee Pedagogical Agents to Enhance Learning in Adaptive Educational Games

Authors: Ogar Ofut Tumenayu, Olga Shabalina

Abstract:

This paper describes the application of two types of pedagogical agents’ technology with different functions in an adaptive educational game with the sole aim of improving learning and enhancing interactivities in Digital Educational Games (DEG). This idea could promote the elimination of some problems of DEG, like isolation in game-based learning, by introducing a tutor and tutee pedagogical agents. We present an analysis of a learning companion interacting in a peer tutoring environment as a step toward improving social interactions in the educational game environment. We show that tutor and tutee agents use different interventions and interactive approaches: the tutor agent is engaged in tracking the learner’s activities and inferring the learning state, while the tutee agent initiates interactions with the learner at the appropriate times and in appropriate manners. In order to provide motivation to prevent mistakes and clarity a game task, the tutor agent uses the help dialog tool to provide assistance, while the tutee agent provides collaboration assistance by using the hind tool. We presented our idea on a prototype game called “Pyramid Programming Game,” a 2D game that was developed using Libgdx. The game's Pyramid component symbolizes a programming task that is presented to the player in the form of a puzzle. During gameplay, the Agents can instruct, direct, inspire, and communicate emotions. They can also rapidly alter the instructional pattern in response to the learner's performance and knowledge. The pyramid must be effectively destroyed in order to win the game. The game also teaches and illustrates the advantages of utilizing educational agents such as TrA and TeA to assist and motivate students. Our findings support the idea that the functionality of a pedagogical agent should be dualized into an instructional and learner’s companion agent in order to enhance interactivity in a game-based environment.

Keywords: tutor agent, tutee agent, learner’s companion interaction, agent collaboration

Procedia PDF Downloads 67
9376 Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions

Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma

Abstract:

This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces.

Keywords: vertical urbanism, scientific research methods, spatial cognition, urban design guideline

Procedia PDF Downloads 81
9375 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran

Abstract:

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka

Procedia PDF Downloads 476
9374 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.

Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design

Procedia PDF Downloads 372
9373 The Prevalence of Organized Retail Crime in Riyadh, Saudi Arabia

Authors: Saleh Dabil

Abstract:

This study investigates the level of existence of organized retail crime in supermarkets of Riyadh, Saudi Arabia. The store managers, security managers and general employees were asked about the types of retail crimes occur in the stores. Three independent variables were related to the report of organized retail theft. The independent variables are: (1) the supermarket profile (volume, location, standard and type of the store), (2) the social physical environment of the store (maintenance, cleanness and overall organizational cooperation), (3) the security techniques and loss prevention electronics techniques used. The theoretical framework of this study based on the social disorganization theory. This study concluded that the organized retail theft, in specific, organized theft is moderately apparent in Riyadh stores. The general result showed that the environment of the stores has an effect on the prevalence of organized retail theft with relation to the gender of thieves, age groups, working shift, type of stolen items as well as the number of thieves in one case. Among other reasons, some factors of the organized theft are: economic pressure of customers based on the location of the store. The dealing of theft also was investigated to have a clear picture of stores dealing with organized retail theft. The result showed that mostly, thieves sent without any action and sometimes given written warning. Very few cases dealt with by police. There are other factors in the study can be looked up in the text. This study suggests solving the problem of organized theft; first is ‘the well distributing of the duties and responsibilities between the employees especially for security purposes’. Second is ‘installation of strong security system’ and ‘making well-designed store layout’. Third is ‘giving training for general employees’ and ‘to give periodically security skills training of employees’. There are other suggestions in the study can be looked up in the text.

Keywords: organized crime, retail, theft, loss prevention, store environment

Procedia PDF Downloads 196
9372 Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach

Authors: Sourabh Harihar, Henk Jan Verhagen

Abstract:

The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour.

Keywords: bamboo, environment, mangrove, rehabilitation

Procedia PDF Downloads 282
9371 Market Index Trend Prediction using Deep Learning and Risk Analysis

Authors: Shervin Alaei, Reza Moradi

Abstract:

Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.

Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks

Procedia PDF Downloads 156
9370 A Study on Compromised Periodontal Health Status among the Pregnant Woman of Jamshedpur, Jharkhand, India

Authors: Rana Praween Kumar

Abstract:

Preterm-low birth weight delivery is a major cause of infant morbidity and mortality in developing countries and has been linked to poor periodontal health during pregnancy. Gingivitis and chronic periodontitis are highly prevalent chronic inflammatory oral diseases. The detection and diagnosis of these common diseases is a fundamentally important component of oral health care. This study is intended to investigate predisposing and enabling factors as determinants of oral health indicators in pregnancy as well as the association between periodontal problems during pregnancy with age and socio economic status of the individual. A community –based prospective cohort study will be conducted in Jamshedpur, Jharkhand, India among pregnant women using completed interviews and a full mouth oral clinical examination using the CPITN (Community Periodontal Index of Treatment Need) and OHI-S (Simplified Oral Hygiene) indices with adequate sample size and informed consent to the patient following proper inclusion and exclusion criteria. Multiple logistic regression analyses will be used to identify independent determinants of periodontal problems and use of dental services during pregnancy. Analysis of covariance (ANCOVA) will be used to investigate the relationship between periodontal problems with the age and socioeconomic status. The result will help in proper monitoring of periodontal health during pregnancy encouraging the delivery of healthy child and the maintenance of proper health of the mother.

Keywords: infant, periodontal problems, pregnancy, pre-term-low birth weight delivery

Procedia PDF Downloads 162
9369 Mechanisms for the Art of Food: Tourism with Thainess and a Multi-Stakeholder Participation Approach

Authors: Jutamas Wisansing, Thanakarn Vongvisitsin, Udom Hongchatikul

Abstract:

Food could be used to open up a dialogue about local heritage. Contributing to the world sustainable consumption mission, this research aims to explore the linkages between agriculture, senses of place and performing arts. Thailand and its destination marketing ‘Discover Thainess’ was selected as a working principle, enabling a case example of how the three elements could be conceptualized. The model offered an integrated institutional arrangement where diverse entities could be formed to design how Thainess (local heritage) could be interpreted and embedded into an art of food. Using case study research approach, three areas (Chiangmai, Samutsongkram and Ban Rai Gong King) representing 3 different scales of tourism development were selected. Based on a theoretical analysis, a working model was formulated. An action research was then designed to experiment how the model could be materialized. Brainstorming elicitation and in-depth interview were employed to reflect on how each element could be integrated. The result of this study offered an innovation on how food tourism could be profoundly interpreted and how tourism development could enhance value creation for agricultural based community. The outcomes of the research present co-creative multi-stakeholder model and the value creation method through the whole supply chain of Thai gastronomy. The findings have been eventually incorporated into ‘gastro-diplomacy’ strategy for Thai tourism.

Keywords: community-based tourism, gastro-diplomacy, gastronomy tourism, sustainable tourism development

Procedia PDF Downloads 306
9368 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment

Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis

Abstract:

Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.

Keywords: corrosion, surfactants, steel surface, quantum

Procedia PDF Downloads 377
9367 The Positive Impact of COVID-19 on the Level of Investments of U.S. Retail Investors: Evidence from a Quantitative Online Survey and Ordered Probit Analysis

Authors: Corina E. Niculaescu, Ivan Sangiorgi, Adrian R. Bell

Abstract:

The COVID-19 pandemic has been life-changing in many aspects of people’s daily and social lives, but has it also changed attitudes towards investments? This paper explores the effect of the COVID-19 pandemic on retail investors’ levels of investments in the U.S. during the first COVID-19 wave in summer 2020. This is an unprecedented health crisis, which could lead to changes in investment behavior, including irrational behavior in retail investors. As such, this study aims to inform policymakers of what happened to investment decisions during the COVID-19 pandemic so that they can protect retail investors during extreme events like a global health crisis. The study aims to answer two research questions. First, was the level of investments affected by the COVID-19 pandemic, and if so, why? Second, how were investments affected by retail investors’ personal experience with COVID-19? The research analysis is based on primary survey data collected on the Amazon Mechanical Turk platform from a representative sample of U.S. respondents. Responses were collected between the 15th of July and 28th of August 2020 from 1,148 U.S. retail investors who hold mutual fund investments and a savings account. The research explores whether being affected by COVID-19, change in the level of savings, and risk capacity can explain the change in the level of investments by using regression analysis. The dependent variable is changed in investments measured as decrease, no change, and increase. For this reason, the methodology used is ordered probit regression models. The results show that retail investors in the U.S. increased their investments during the first wave of COVID-19, which is unexpected as investors are usually more cautious in crisis times. Moreover, the study finds that those who were affected personally by COVID-19 (e.g., tested positive) were more likely to increase their investments, which is irrational behavior and contradicts expectations. An increase in the level of savings and risk capacity was also associated with increased investments. Overall, the findings show that having personal experience with a health crisis can have an impact on one’s investment decisions as well. Those findings are important for both retail investors and policymakers, especially now that online trading platforms have made trading easily accessible to everyone. There are risks and potential irrational behaviors associated with investment decisions during times of crisis, and it is important that retail investors are aware of them before making financial decisions.

Keywords: COVID-19, financial decision-making, health crisis retail investors, survey

Procedia PDF Downloads 192
9366 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators

Authors: Fathi Abid, Bilel Kaffel

Abstract:

The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.

Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode

Procedia PDF Downloads 339
9365 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems

Authors: Ahmed Fradi

Abstract:

Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.

Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation

Procedia PDF Downloads 262
9364 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm

Authors: Haozhe Xiang

Abstract:

With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.

Keywords: deep learning, graph convolutional network, attention mechanism, LSTM

Procedia PDF Downloads 70
9363 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA

Authors: Beata Wentura-Dudek

Abstract:

In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.

Keywords: lotteries, loyalty programs, competitions, bonus sales, rebate campaigns

Procedia PDF Downloads 143
9362 Exploring the Potential of Mobile Learning in Distance Higher Education: A Case Study of the University of Jammu, Jammu, and Kashmir

Authors: Darshana Sharma

Abstract:

Distance Education has emerged as a viable alternative to serve the higher educational needs of the socially and economically disadvantaged people of the remote, rural areas of Jammu region. The University of Jammu is a National Accreditation, and Assessment Council accredited, A+ university and has been accorded graded autonomy by the University Grants Commission. It is a dual mode university offering academic programmes through the regular departments and through the Directorate of Distance Education. The Directorate of Distance Education, University of Jammu still uses printed study material as a mode of instructional delivery. The development of technologies has assured increased interaction and communication for distance learners throughout the distance open learning institutions. Though it is tempting and convenient to adopt technology already being used by others, it may not prove effective for the simple reason that two institutions may be unlike in some respect. The use of technology must be conceived in view of the needs of the learners; geographical socio-economic-cultural and technological contexts and financial, administrative and academic resources of the institution. Mobile learning (m-learning) is a novel approach to knowledge acquisition and dissemination and is gaining global attention. It has evolved as one of the useful channels of distance learning promoting interaction between learners and teachers. It is felt that the Directorate of Distance Education, University of Jammu also needs to adopt new technologies to provide more effective academic and information support to distance learners in order to keep them motivated and also to develop self-learning skills. The chief objective of the research on which this paper is based was to measure the opinion of the distance learners of the DDE, the University of Jammu about the merits of mobile learning. It also explores their preferences for implementing mobile learning. The survey research design of descriptive research has been used. The data was collected from 400 distance learners enrolled with undergraduate and post-graduate programmes using self-constructed questionnaire containing five-point Likert scale items arranging from strongly agree, agree, indifferent, disagree and strongly disagree. Percentages were used to analyze the data. The findings lead to conclude that mobile learning has a great potential for the DDE for reaching out to the rural, remotely located distance learners of the Jammu region and also to improve the teaching-learning environment. The paper also finds out the challenges in the implementation of mobile learning in the region and further makes suggestions for effective implementation of mobile learning in DDE, University of Jammu.

Keywords: directorate of distance education, mobile learning, national accreditation and assessment council, university of Jammu

Procedia PDF Downloads 123
9361 Causal Relationship between Corporate Governance and Financial Information Transparency: A Simultaneous Equations Approach

Authors: Maali Kachouri, Anis Jarboui

Abstract:

We focus on the causal relationship between governance and information transparency as well as interrelation among the various governance mechanisms. This paper employs a simultaneous equations approach to show this relationship in the Tunisian context. Based on an 8-year dataset, our sample covers 28 listed companies over 2006-2013. Our findings suggest that internal and external governance mechanisms are interdependent. Moreover, in order to analyze the causal effect between information transparency and governance mechanisms, we found evidence that information transparency tends to increase good corporate governance practices.

Keywords: simultaneous equations approach, transparency, causal relationship, corporate governance

Procedia PDF Downloads 354
9360 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 88
9359 Development of Self Emulsifying Drug Delivery Systems (SEDDS) of Anticancer Agents Used in AYUSH System of Medicine for Improved Oral Bioavailability Followed by Their Pharmacological Evaluation Using Biotechnological Techniques

Authors: Meenu Mehta, Munish Garg

Abstract:

The use of oral anticancer drugs from AYUSH system of medicine is widely increased among the society due to their low cost, enhanced efficacy, increased patient preference, lack of inconveniences related to infusion and they provide an opportunity to develop chronic treatment regimens. However, oral delivery of these drugs usually laid down by the limited bioavailability of the drug, which is associated with a wide variation. As most of the cytotoxic agents have a narrow therapeutic window and are dosed at or near the maximum tolerated dose, a wide variability in the bioavailability can negatively affect treatment result. It is estimated that 40% of active substances are poorly soluble in water. The improvement of bio-availability of drugs with such properties presents one of the greatest challenges in drug formulations. There are several techniques reported in literature. Among all these Self Emulsifying Drug Delivery System (SEDDS) has gained more attention due to enhanced oral bio-availability enabling a reduction in dose. Thus, SEDDS anticancer drugs will have the increased bioavailability and efficacy. These dosage form will provide societal benefit in a cost-effective manner as compared to other oral dosage forms. Present study reflects on the formulation strategies as SEDDS for oral anticancer agents of AYUSH system for enhanced bioavailability with proven efficacy by cancer cell lines.

Keywords: anticancer agents, AYUSH system, bioavailability, SEDDS

Procedia PDF Downloads 306
9358 The Effects of Future Priming on Resource Concern

Authors: Calvin Rong, Regina Agassian, Mindy Engle-Friedman

Abstract:

Climate changes, including rising sea levels and increases in global temperature, can have major effects on resource availability, leading to increased competition for resources and rising food prices. The abstract nature and often delayed consequences of many ecological problems cause people focus on immediate, specific, and personal events and circumstances that compel immediate and emotional involvement. This finding may be explained by the challenges humans have in imagining themselves in the future, a shortcoming that interferes with decision-making involving far-off rewards, and leads people to indicate a lower concern toward the future than to present circumstances. The present study sought to assess whether priming people to think of themselves in the future might strengthen the connection to their future selves and stimulate environmentally-protective behavior. We hypothesize that priming participants to think about themselves in the future would increase concern for the future environment. 45 control participants were primed to think about themselves in the present, and 42 participants were primed to think about themselves in the futures. After priming, the participants rated their concern over access to clean water, food, and energy on a scale of 1 to 10. They also rated their predicted care levels for the environment at age points 40, 50, 60, 70, 80, and 90 on a scale of 1(not at all) to 10 (very much). Predicted care levels at age 90 for the experimental group was significantly higher than for the control group. Overall the experimental group rated their concern for resources higher than the control. In comparison to the control group (M=7.60, SD=2.104) participants in the experimental group had greater concern for clean water (M=8.56, SD=1.534). In comparison to the control group (M=7.49, SD=2.041) participants in the experimental group were more concerned about food resources (M=8.41, SD=1.830). In comparison to the control group (M=7.22, SD=1.999) participants in the experimental group were more concerned about energy resources (M=8.07, SD=1.967). This study assessed whether a priming strategy could be used to encourage pro-environmental practices that protect limited resources. Future-self priming helped participants see past short term issues and focus on concern for the future environment.

Keywords: climate change, future, priming, global warming

Procedia PDF Downloads 257
9357 Environmental Issues in Construction Projects in India

Authors: Gurbir Singh Khaira, Anmoldeep Singh Kang

Abstract:

Exposures to environmental pollution remain a major source of health risk throughout the world, though risks are generally higher in developing countries, where poverty, lack of investment in modern technology and weak environmental legislation combine to cause high pollution levels. This paper will tell us about the environment is threatened severely by so many problems, some of which are caused by the activities of Construction Projects. The research reveals major environmental impacts of building construction projects to include environmental pollution, resource depletion and habitat destruction causing Destruction of ecosystem, Desertification, Soil Erosion and increasing Material Wastage. Construction is considered as one of the main sources of environmental pollution in the world, the level of knowledge and awareness of project participants, especially project managers, with regards to environmental impacts of construction processes needs to be enhanced. It was found that ‘Transportation Resource’, ‘Noise Pollution’, and ‘Dust Generation with Construction Machinery’ are the greatest environmental impacts in INDIA respectively. The results of this study are useful for construction managers and other participants in construction sites to become aware of construction processes impacts on the environment.

Keywords: construction projects, environmental impacts, material waste age, awareness

Procedia PDF Downloads 382
9356 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 70
9355 Multidisciplinary Approach to the Effects of Generator Exhaust Fumes on Air: Case Study of Onitsha

Authors: U. V. Okpala, C. C. Okpala

Abstract:

The effect of generator exhaust fumes on air, a case study of Onitsha was considered in this work. A sample of 400 respondents was randomly chosen in the study area based on the population. Questionnaire was designed and administered to inhabitants of the study area to enable the researchers ascertain information on the effect of generator exhaust fumes on air and possible remedies. The issue of the types of generators owned by residents, quantity of fuel products purchased per day and the number of years of generator ownership were discussed. The Pearson’s product moment analysis correlation and Chi-square test were applied in the hypothesis testing. The result shows that huge amount of effluents are discharged on the environment thereby polluting the air. This leads to radiative forcing, depletion of ozone layer and precipitation of acid rain. This has untold effect on the climate system. To ensure proper recovery, the study recommends that government makes available alternative energy sources in addition to the conventional power to save the environment; with this, waste becomes wealth towards a sustainable economy in Nigeria.

Keywords: Onitsha, generator, fuel products, exhaust fumes and remedies, energy systems

Procedia PDF Downloads 215
9354 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking

Authors: Jonas Colin

Abstract:

Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.

Keywords: chatbot, GPT 3.5, metacognition, symbiose

Procedia PDF Downloads 70
9353 Exploration of Critical Success Factors in Business and Management in Artificial Intelligence Era

Authors: Najah Kalifah Almazmomi

Abstract:

In the time of artificial intelligence (AI), there is a need to know the determinants of success in business management, which are taking on a new dimension. This research purports to scrutinize the Critical Success Factors (CSFs) that drive and ignite the fire of success to help uncover the subtle and profound dynamics that might be operative in organizations. By means of a systematic literature review and a number of empirical methods, the paper is aimed at determining and assessing the key aspects of CSFs, putting emphasis on their role and meaning in the context of AI technology adoption. Some central features such as leadership ways, innovation models, strategic thinking methodologies, organizational culture transformations, and human resource management approaches are compared and contrasted with the AI-driven revolution. Additionally, this research will explore the interactive effects of these factors and their joint impact on the success, survival, and flexibility of a business in the current environment, which is changing due to AI development. Through the use of different qualitative and quantitative methodologies, the research concludes that the findings are significant in understanding the relative roles of individual CSFs and in studying the interactions between them in such an AI-enabled business environment.

Keywords: critical success factors, business and management, artificial intelligence, leadership strategies

Procedia PDF Downloads 37
9352 Examining First-time Remote Workers’ Perceptions on Work From Home Amidst the COVID-19 Pandemic: The Future Potential of Hybrid Work Mode

Authors: Lina Vyas, Stuti Rawat

Abstract:

The COVID-19 outbreak has forced many employees to extensively adopt remote work or, widely known as work from home (WFH) arrangements. During the last two years, both employers and employees have had the opportunity to be increasingly aware of the benefits and drawbacks of WFH. Likewise, it gained the attention of academics from various schools of thought who have been interested in the future of work practices and work-life balance. Additionally, employees might also have various demands regarding their work practices after the pandemic. This study explores the potential of hybrid ways of working in the post-pandemic period by comparing first-timers who (sometimes or always) worked from home during the pandemic with those who did not, in terms of the aspects of work-life balance, work-life interference, job performance and willingness to work from home after the pandemic. The quantitative research approach was adopted. Data were collected via an online questionnaire from employees working from home in Hong Kong during the pandemic. There were one thousand three hundred and twenty-eight responses, but only 1,235 respondents experienced working from home during the pandemic. The findings reveal that 72.2% never had or hardly experienced work from home prior to the pandemic. There were statistically significant differences between first-timers and non-first-timers in work-life balance and work-life interference. The study also found that first-timers who were always working from home during the pandemic would prefer having longer WFH after the pandemic than those who were sometimes working from home. These results would serve as a basis for policy development, enabling policymakers to design appropriate HR policies and amend them to meet the current context of actual employee needs.

Keywords: hybrid working mode, remote working, work from home, work-life balance, workplace

Procedia PDF Downloads 107
9351 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 479