Search results for: EMJH Medium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2826

Search results for: EMJH Medium

66 The Influence of English Immersion Program on Academic Performance: Case Study at a Sino-US Cooperative University in China

Authors: Leah Li Echiverri, Haoyu Shang, Yue Li

Abstract:

Wenzhou-Kean University (WKU) is a Sino-US Cooperative University in China. It practices the English Immersion Program (EIP), where all the courses are taught in English. Class discussions and presentations are pervasively interwoven in designing students’ learning experiences. This WKU model has brought positive influences on students and is in some way ahead of traditional college English majors. However, literature to support the perceptions on the positive outcomes of this teaching and learning model remain scarce. The distinctive profile of Chinese-ESL students in an English Medium of Instruction (EMI) environment contributes further to the scarcity of literature compared to existing studies conducted among ESL learners in Western educational settings. Hence, the study investigated the students’ perceptions towards the English Immersion Program and determine how it influences Chinese-ESL students’ academic performance (AP). This research can provide empirical data that would be helpful to educators, teaching practitioners, university administrators, and other researchers in making informed decisions when developing curricular reforms, instructional and pedagogical methods, and university-wide support programs using this educational model. The purpose of the study was to establish the relationship between the English Immersion Program and Academic Performance among Chinese-ESL students enrolled at WKU for the academic year 2020-2021. Course length, immersion location, course type, and instructional design were the constructs of the English immersion program. English language learning, learning efficiency, and class participation were used to measure academic performance. Descriptive-correlational design was used in this cross-sectional research project. A quantitative approach for data analysis was applied to determine the relationship between the English immersion program and Chinese-ESL students’ academic performance. The research was conducted at WKU; a Chinese-American jointly established higher educational institution located in Wenzhou, Zhejiang province. Convenience, random, and snowball sampling of 283 students, a response rate of 10.5%, were applied to represent the WKU student population. The questionnaire was posted through the survey website named Wenjuanxing and shared to QQ or WeChat. Cronbach’s alpha was used to test the reliability of the research instrument. Findings revealed that when professors integrate technology (PowerPoint, videos, and audios) in teaching, students pay more attention. This contributes to the acquisition of more professional knowledge in their major courses. As to course immersion, students perceive WKU as a good place to study, providing them a high degree of confidence to talk with their professors in English. This also contributes to their English fluency and better pronunciation in their communication. In the construct of designing instruction, the use of pictures, video clips, and professors’ non-verbal communication, and demonstration of concern for students encouraged students to be more active in-class participation. Findings on course length and academic performance indicated that students’ perception regarding taking courses during fall and spring terms can moderately contribute to their academic performance. In conclusion, the findings revealed a significantly strong positive relationship between course type, immersion location, instructional design, and academic performance.

Keywords: class participation, English immersion program, English language learning, learning efficiency

Procedia PDF Downloads 174
65 Signature Bridge Design for the Port of Montreal

Authors: Juan Manuel Macia

Abstract:

The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.

Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability

Procedia PDF Downloads 68
64 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 234
63 Production Factor Coefficients Transition through the Lens of State Space Model

Authors: Kanokwan Chancharoenchai

Abstract:

Economic growth can be considered as an important element of countries’ development process. For developing countries, like Thailand, to ensure the continuous growth of the economy, the Thai government usually implements various policies to stimulate economic growth. They may take the form of fiscal, monetary, trade, and other policies. Because of these different aspects, understanding factors relating to economic growth could allow the government to introduce the proper plan for the future economic stimulating scheme. Consequently, this issue has caught interest of not only policymakers but also academics. This study, therefore, investigates explanatory variables for economic growth in Thailand from 2005 to 2017 with a total of 52 quarters. The findings would contribute to the field of economic growth and become helpful information to policymakers. The investigation is estimated throughout the production function with non-linear Cobb-Douglas equation. The rate of growth is indicated by the change of GDP in the natural logarithmic form. The relevant factors included in the estimation cover three traditional means of production and implicit effects, such as human capital, international activity and technological transfer from developed countries. Besides, this investigation takes the internal and external instabilities into account as proxied by the unobserved inflation estimation and the real effective exchange rate (REER) of the Thai baht, respectively. The unobserved inflation series are obtained from the AR(1)-ARCH(1) model, while the unobserved REER of Thai baht is gathered from naive OLS-GARCH(1,1) model. According to empirical results, the AR(|2|) equation which includes seven significant variables, namely capital stock, labor, the imports of capital goods, trade openness, the REER of Thai baht uncertainty, one previous GDP, and the world financial crisis in 2009 dummy, presents the most suitable model. The autoregressive model is assumed constant estimator that would somehow cause the unbias. However, this is not the case of the recursive coefficient model from the state space model that allows the transition of coefficients. With the powerful state space model, it provides the productivity or effect of each significant factor more in detail. The state coefficients are estimated based on the AR(|2|) with the exception of the one previous GDP and the 2009 world financial crisis dummy. The findings shed the light that those factors seem to be stable through time since the occurrence of the world financial crisis together with the political situation in Thailand. These two events could lower the confidence in the Thai economy. Moreover, state coefficients highlight the sluggish rate of machinery replacement and quite low technology of capital goods imported from abroad. The Thai government should apply proactive policies via taxation and specific credit policy to improve technological advancement, for instance. Another interesting evidence is the issue of trade openness which shows the negative transition effect along the sample period. This could be explained by the loss of price competitiveness to imported goods, especially under the widespread implementation of free trade agreement. The Thai government should carefully handle with regulations and the investment incentive policy by focusing on strengthening small and medium enterprises.

Keywords: autoregressive model, economic growth, state space model, Thailand

Procedia PDF Downloads 151
62 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation

Authors: A. Zapata, Orlando Arroyo, R. Bonett

Abstract:

Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.

Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm

Procedia PDF Downloads 74
61 Effectiveness of Gamified Simulators in the Health Sector

Authors: Nuno Biga

Abstract:

The integration of serious games with gamification in management education and training has gained significant importance in recent years as innovative strategies are sought to improve target audience engagement and learning outcomes. This research builds on the author's previous work in this field and presents a case study that evaluates the ex-post impact of a sample of applications of the BIGAMES management simulator in the training of top managers from various hospital institutions. The methodology includes evaluating the reaction of participants after each edition of BIGAMES Accident & Emergency (A&E) carried out over the last 3 years, as well as monitoring the career path of a significant sample of participants and their feedback more than a year after their experience with this simulator. Control groups will be set up, according to the type of role their members held when they took part in the BIGAMES A&E simulator: Administrators, Clinical Directors and Nursing Directors. Former participants are invited to answer a questionnaire structured for this purpose, where they are asked, among other questions, about the importance and impact that the BIGAMES A&E simulator has had on their professional activity. The research methodology also includes an exhaustive literature review, focusing on empirical studies in the field of education and training in management and business that investigate the effectiveness of gamification and serious games in improving learning, team collaboration, critical thinking, problem-solving skills and overall performance, with a focus on training contexts in the health sector. The results of the research carried out show that gamification and serious games that simulate real scenarios, such as Business Interactive Games - BIGAMES©, can significantly increase the motivation and commitment of participants, stimulating the development of transversal skills, the mobilization of group synergies and the acquisition and retention of knowledge through interactive user-centred scenarios. Individuals who participate in game-based learning series show a higher level of commitment to learning because they find these teaching methods more enjoyable and interactive. This research study aims to demonstrate that, as executive education and training programs develop to meet the current needs of managers, gamification and serious games stand out as effective means of bridging the gap between traditional teaching methods and modern educational and training requirements. To this end, this research evaluates the medium/long-term effects of gamified learning on the professional performance of participants in the BIGAMES simulator applied to healthcare. Based on the conclusions of the evaluation of the effectiveness of training using gamification and taking into account the results of the opinion poll of former A&E participants, this research study proposes an integrated approach for the transversal application of the A&E Serious Game in various educational contexts, covering top management (traditionally the target audience of BIGAMES A&E), middle and operational management in healthcare institutions (functional area heads and professionals with career development potential), as well as higher education in medicine and nursing courses. The integrated solution called “BIGAMES A&E plus”, developed as part of this research, includes the digitalization of key processes and the incorporation of AI.

Keywords: artificial intelligence (AI), executive training, gamification, higher education, management simulators, serious games (SG), training effectiveness

Procedia PDF Downloads 13
60 Top-Down, Middle-Out, Bottom-Up: A Design Approach to Transforming Prison

Authors: Roland F. Karthaus, Rachel S. O'Brien

Abstract:

Over the past decade, the authors have undertaken applied research aimed at enabling transformation within the prison service to improve conditions and outcomes for those living, working and visiting in prisons in the UK and the communities they serve. The research has taken place against a context of reducing resources and public discontent at increasing levels of violence, deteriorating conditions and persistently high levels of re-offending. Top-down governmental policies have mainly been ineffectual and in some cases counter-productive. The prison service is characterised by hierarchical organisation, and the research has applied design thinking at multiple levels to challenge and precipitate change: top-down, middle-out and bottom-up. The research employs three distinct but related approaches, system design (top-down): working at the national policy level to analyse the changing policy context, identifying opportunities and challenges; engaging with the Ministry of Justice commissioners and sector organisations to facilitate debate, introducing new evidence and provoking creative thinking, place-based design (middle-out): working with individual prison establishments as pilots to illustrate and test the potential for local empowerment, creative change, and improved architecture within place-specific contexts and organisational hierarchies, everyday design (bottom-up): working with individuals in the system to explore the potential for localised, significant, demonstrator changes; including collaborative design, capacity building and empowerment in skills, employment, communication, training, and other activities. The research spans a series of projects, through which the methodological approach has developed responsively. The projects include a place-based model for the re-purposing of Ministry of Justice land assets for the purposes of rehabilitation; an evidence-based guide to improve prison design for health and well-being; capacity-based employment, skills and self-build project as a template for future open prisons. The overarching research has enabled knowledge to be developed and disseminated through policy and academic networks. Whilst the research remains live and continuing; key findings are emerging as a basis for a new methodological approach to effecting change in the UK prison service. An interdisciplinary approach is necessary to overcome the barriers between distinct areas of the prison service. Sometimes referred to as total environments, prisons encompass entire social and physical environments which themselves are orchestrated by institutional arms of government, resulting in complex systems that cannot be meaningfully engaged through narrow disciplinary lenses. A scalar approach is necessary to connect strategic policies with individual experiences and potential, through the medium of individual prison establishments, operating as discrete entities within the system. A reflexive process is necessary to connect research with action in a responsive mode, learning to adapt as the system itself is changing. The role of individuals in the system, their latent knowledge and experience and their ability to engage and become agents of change are essential. Whilst the specific characteristics of the UK prison system are unique, the approach is internationally applicable.

Keywords: architecture, design, policy, prison, system, transformation

Procedia PDF Downloads 133
59 Overview of Research Contexts about XR Technologies in Architectural Practice

Authors: Adeline Stals

Abstract:

The transformation of architectural design practices has been underway for almost forty years due to the development and democratization of computer technology. New and more efficient tools are constantly being proposed to architects, amplifying a technological wave that sometimes stimulates them, sometimes overwhelms them, depending essentially on their digital culture and the context (socio-economic, structural, organizational) in which they work on a daily basis. Our focus is on VR, AR, and MR technologies dedicated to architecture. The commercialization of affordable headsets like the Oculus Rift, the HTC Vive or more low-tech like the Google CardBoard, makes it more accessible to benefit from these technologies. In that regard, researchers report the growing interest of these tools for architects, given the new perspectives they open up in terms of workflow, representation, collaboration, and client’s involvement. However, studies rarely mention the consequences of the sample studied on results. Our research provides an overview of VR, AR, and MR researches among a corpus of papers selected from conferences and journals. A closer look at the sample of these research projects highlights the necessity to take into consideration the context of studies in order to develop tools truly dedicated to the real practices of specific architect profiles. This literature review formalizes milestones for future challenges to address. The methodology applied is based on a systematic review of two sources of publications. The first one is the Cumincad database, which regroups publications from conferences exclusively about digital in architecture. Additionally, the second part of the corpus is based on journal publications. Journals have been selected considering their ranking on Scimago. Among the journals in the predefined category ‘architecture’ and in Quartile 1 for 2018 (last update when consulted), we have retained the ones related to the architectural design process: Design Studies, CoDesign, Architectural Science Review, Frontiers of Architectural Research and Archnet-IJAR. Beside those journals, IJAC, not classified in the ‘architecture’ category, is selected by the author for its adequacy with architecture and computing. For all requests, the search terms were ‘virtual reality’, ‘augmented reality’, and ‘mixed reality’ in title and/or keywords for papers published between 2015 and 2019 (included). This frame time is defined considering the fast evolution of these technologies in the past few years. Accordingly, the systematic review covers 202 publications. The literature review on studies about XR technologies establishes the state of the art of the current situation. It highlights that studies are mostly based on experimental contexts with controlled conditions (pedagogical, e.g.) or on practices established in large architectural offices of international renown. However, few studies focus on the strategies and practices developed by offices of smaller size, which represent the largest part of the market. Indeed, a European survey studying the architectural profession in Europe in 2018 reveals that 99% of offices are composed of less than ten people, and 71% of only one person. The study also showed that the number of medium-sized offices is continuously decreasing in favour of smaller structures. In doing so, a frontier seems to remain between the worlds of research and practice, especially for the majority of small architectural practices having a modest use of technology. This paper constitutes a reference for the next step of the research and for further worldwide researches by facilitating their contextualization.

Keywords: architectural design, literature review, SME, XR technologies

Procedia PDF Downloads 109
58 Complex Dynamics in a Morphologically Heterogeneous Biological Medium

Authors: Turky Al-Qahtani, Roustem Miftahof

Abstract:

Introduction: Under common assumptions of excitabi-lity, morphological (cellular) homogeneity, and spatial structural anomalies added as required, it has been shown that biological systems are able to display travelling wave dynamics. Being not self-sustainable, existence depends on the electrophysiological state of transmembrane ion channels and it requires an extrinsic/intrinsic periodic source. However, organs in the body are highly multicellular, heterogeneous, and their functionality is the outcome of electro-mechanical conjugation, rather than excitability only. Thus, peristalsis in the gut relies on spatiotemporal myoelectrical pattern formations between the mechanical, represented by smooth muscle cells (SM), and the control, comprised of a chain of primary sensory and motor neurones, components. Synaptically linked through the afferent and efferent pathways, they form a functional unit (FU) of the gut. Aims: These are: i) to study numerically the complex dynamics, and ii) to investigate the possibility of self-sustained myoelectrical activity in the FU. Methods: The FU recreates the following sequence of physiological events: deformation of mechanoreceptors of located in SM; generation and propagation of electrical waves of depolarisation - spikes - along the axon to the soma of the primary neurone; discharge of the primary neurone and spike propagation towards the motor neurone; burst of the motor neurone and transduction of spikes to SM, subsequently producing forces of contraction. These are governed by a system of nonlinear partial and ordinary differential equations being a modified version of the Hodgkin-Huxley model and SM fibre mechanics. In numerical experiments; the source of excitation is mechanical stretches of SM at a fixed amplitude and variable frequencies. Results: Low frequency (0.5 < v < 2 Hz) stimuli cause the propagation of spikes in the neuronal chain and, finally, the generation of active forces by SM. However, induced contractions are not sufficient to initiate travelling wave dynamics in the control system. At frequencies, 2 < v < 4 Hz, multiple low amplitude and short-lasting contractions are observed in SM after the termination of stretching. For frequencies (0.5 < v < 4 Hz), primary and sensory neurones demonstrate strong connectivity and coherent electrical activity. Significant qualitative and quantitative changes in dynamics of myoelectical patterns with a transition to a self-organised mode are recorded with the high degree of stretches at v = 4.5 Hz. Increased rates of deformation lead to the production of high amplitude signals at the mechanoreceptors with subsequent self-sustained excitation within the neuronal chain. Remarkably, the connection between neurones weakens resulting in incoherent firing. Further increase in a frequency of stimulation (v > 4.5 Hz) has a detrimental effect on the system. The mechanical and control systems become disconnected and exhibit uncoordinated electromechanical activity. Conclusion: To our knowledge, the existence of periodic activity in a multicellular, functionally heterogeneous biological system with mechano-electrical dynamics, such as the FU, has been demonstrated for the first time. These findings support the notion of possible peristalsis in the gut even in the absence of intrinsic sources - pacemaker cells. Results could be implicated in the pathogenesis of intestinal dysrythmia, a medical condition associated with motor dysfunction.

Keywords: complex dynamics, functional unit, the gut, dysrythmia

Procedia PDF Downloads 204
57 Application of Flow Cytometry for Detection of Influence of Abiotic Stress on Plants

Authors: Dace Grauda, Inta Belogrudova, Alexei Katashev, Linda Lancere, Isaak Rashal

Abstract:

The goal of study was the elaboration of easy applicable flow cytometry method for detection of influence of abiotic stress factors on plants, which could be useful for detection of environmental stresses in urban areas. The lime tree Tillia vulgaris H. is a popular tree species used for urban landscaping in Europe and is one of the main species of street greenery in Riga, Latvia. Tree decline and low vitality has observed in the central part of Riga. For this reason lime trees were select as a model object for the investigation. During the period of end of June and beginning of July 12 samples from different urban environment locations as well as plant material from a greenhouse were collected. BD FACSJazz® cell sorter (BD Biosciences, USA) with flow cytometer function was used to test viability of plant cells. The method was based on changes of relative fluorescence intensity of cells in blue laser (488 nm) after influence of stress factors. SpheroTM rainbow calibration particles (3.0–3.4 μm, BD Biosciences, USA) in phosphate buffered saline (PBS) were used for calibration of flow cytometer. BD PharmingenTM PBS (BD Biosciences, USA) was used for flow cytometry assays. The mean fluorescence intensity information from the purified cell suspension samples was recorded. Preliminary, multiple gate sizes and shapes were tested to find one with the lowest CV. It was found that low CV can be obtained if only the densest part of plant cells forward scatter/side scatter profile is analysed because in this case plant cells are most similar in size and shape. The young pollen cells in one nucleus stage were found as the best for detection of influence of abiotic stress. For experiments only fresh plant material was used– the buds of Tillia vulgaris with diameter 2 mm. For the cell suspension (in vitro culture) establishment modified protocol of microspore culture was applied. The cells were suspended in the MS (Murashige and Skoog) medium. For imitation of dust of urban area SiO2 nanoparticles with concentration 0.001 g/ml were dissolved in distilled water. Into 10 ml of cell suspension 1 ml of SiO2 nanoparticles suspension was added, then cells were incubated in speed shaking regime for 1 and 3 hours. As a stress factor the irradiation of cells for 20 min by UV was used (Hamamatsu light source L9566-02A, L10852 lamp, A10014-50-0110), maximum relative intensity (100%) at 365 nm and at ~310 nm (75%). Before UV irradiation the suspension of cells were placed onto a thin layer on a filter paper disk (diameter 45 mm) in a Petri dish with solid MS media. Cells without treatment were used as a control. Experiments were performed at room temperature (23-25 °C). Using flow cytometer BS FACS Software cells plot was created to determine the densest part, which was later gated using oval-shaped gate. Gate included from 95 to 99% of all cells. To determine relative fluorescence of cells logarithmic fluorescence scale in arbitrary fluorescence units were used. 3x103 gated cells were analysed from the each sample. The significant differences were found among relative fluorescence of cells from different trees after treatment with SiO2 nanoparticles and UV irradiation in comparison with the control.

Keywords: flow cytometry, fluorescence, SiO2 nanoparticles, UV irradiation

Procedia PDF Downloads 412
56 Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre of Visual Arts in the Context of Agile, Lean and Hybrid Project Management Approaches

Authors: Maria Ledinskaya

Abstract:

This paper examines the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts in the context of Agile, Lean, and Hybrid project management. It is part case study and part literature review. To date, relatively little has been written about non-traditional project management approaches in heritage conservation. This paper seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation, by referencing their practical application on a recent museum-based conservation project. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre for Visual Arts by private collectors Michael and Joyce Morris. The first part introduces the chronological timeline and key elements of the project. It describes a medium-size conservation project of moderate complexity, which was planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown condition and materials, unconfirmed budget. The project was also impacted by the unknown unknowns of the COVID-19 pandemic, such as indeterminate lockdowns, and the need to accommodate social distancing and remote communications. The author, a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Collection Conservation Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. Subsequent sections examine the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment, due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Collection Conservation Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, as well as the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics, particularly with respect to change management, bespoke ethics, shared decision-making, and value-based cost-benefit conservation strategy. The author concludes that the Morris Collection Conservation Project had multiple Agile and Lean features which were instrumental to the successful delivery of the project. These key features are identified as distributed decision making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point largely in favour of a Hybrid model which combines traditional and alternative project processes and tools to suit the specific needs of the project.

Keywords: project management, conservation, waterfall, agile, lean, hybrid

Procedia PDF Downloads 99
55 Differential Expression Profile Analysis of DNA Repair Genes in Mycobacterium Leprae by qPCR

Authors: Mukul Sharma, Madhusmita Das, Sundeep Chaitanya Vedithi

Abstract:

Leprosy is a chronic human disease caused by Mycobacterium leprae, that cannot be cultured in vitro. Though treatable with multidrug therapy (MDT), recently, bacteria reported resistance to multiple antibiotics. Targeting DNA replication and repair pathways can serve as the foundation of developing new anti-leprosy drugs. Due to the absence of an axenic culture medium for the propagation of M. leprae, studying cellular processes, especially those belonging to DNA repair pathways, is challenging. Genomic understanding of M. Leprae harbors several protein-coding genes with no previously assigned function known as 'hypothetical proteins'. Here, we report identification and expression of known and hypothetical DNA repair genes from a human skin biopsy and mouse footpads that are involved in base excision repair, direct reversal repair, and SOS response. Initially, a bioinformatics approach was employed based on sequence similarity, identification of known protein domains to screen the hypothetical proteins in the genome of M. leprae, that are potentially related to DNA repair mechanisms. Before testing on clinical samples, pure stocks of bacterial reference DNA of M. leprae (NHDP63 strain) was used to construct standard graphs to validate and identify lower detection limit in the qPCR experiments. Primers were designed to amplify the respective transcripts, and PCR products of the predicted size were obtained. Later, excisional skin biopsies of newly diagnosed untreated, treated, and drug resistance leprosy cases from SIHR & LC hospital, Vellore, India were taken for the extraction of RNA. To determine the presence of the predicted transcripts, cDNA was generated from M. leprae mRNA isolated from clinically confirmed leprosy skin biopsy specimen across all the study groups. Melting curve analysis was performed to determine the integrity of the amplification and to rule out primer‑dimer formation. The Ct values obtained from qPCR were fitted to standard curve to determine transcript copy number. Same procedure was applied for M. leprae extracted after processing a footpad of nude mice of drug sensitive and drug resistant strains. 16S rRNA was used as positive control. Of all the 16 genes involved in BER, DR, and SOS, differential expression pattern of the genes was observed in terms of Ct values when compared to human samples; this was because of the different host and its immune response. However, no drastic variation in gene expression levels was observed in human samples except the nth gene. The higher expression of nth gene could be because of the mutations that may be associated with sequence diversity and drug resistance which suggests an important role in the repair mechanism and remains to be explored. In both human and mouse samples, SOS system – lexA and RecA, and BER genes AlkB and Ogt were expressing efficiently to deal with possible DNA damage. Together, the results of the present study suggest that DNA repair genes are constitutively expressed and may provide a reference for molecular diagnosis, therapeutic target selection, determination of treatment and prognostic judgment in M. leprae pathogenesis.

Keywords: DNA repair, human biopsy, hypothetical proteins, mouse footpads, Mycobacterium leprae, qPCR

Procedia PDF Downloads 103
54 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach

Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino

Abstract:

The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3  0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.

Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.

Procedia PDF Downloads 41
53 Wind Turbine Scaling for the Investigation of Vortex Shedding and Wake Interactions

Authors: Sarah Fitzpatrick, Hossein Zare-Behtash, Konstantinos Kontis

Abstract:

Traditionally, the focus of horizontal axis wind turbine (HAWT) blade aerodynamic optimisation studies has been the outer working region of the blade. However, recent works seek to better understand, and thus improve upon, the performance of the inboard blade region to enhance power production, maximise load reduction and better control the wake behaviour. This paper presents the design considerations and characterisation of a wind turbine wind tunnel model devised to further the understanding and fundamental definition of horizontal axis wind turbine root vortex shedding and interactions. Additionally, the application of passive and active flow control mechanisms – vortex generators and plasma actuators – to allow for the manipulation and mitigation of unsteady aerodynamic behaviour at the blade inboard section is investigated. A static, modular blade wind turbine model has been developed for use in the University of Glasgow’s de Havilland closed return, low-speed wind tunnel. The model components - which comprise of a half span blade, hub, nacelle and tower - are scaled using the equivalent full span radius, R, for appropriate Mach and Strouhal numbers, and to achieve a Reynolds number in the range of 1.7x105 to 5.1x105 for operational speeds up to 55m/s. The half blade is constructed to be modular and fully dielectric, allowing for the integration of flow control mechanisms with a focus on plasma actuators. Investigations of root vortex shedding and the subsequent wake characteristics using qualitative – smoke visualisation, tufts and china clay flow – and quantitative methods – including particle image velocimetry (PIV), hot wire anemometry (HWA), and laser Doppler anemometry (LDA) – were conducted over a range of blade pitch angles 0 to 15 degrees, and Reynolds numbers. This allowed for the identification of shed vortical structures from the maximum chord position, the transitional region where the blade aerofoil blends into a cylindrical joint, and the blade nacelle connection. Analysis of the trailing vorticity interactions between the wake core and freestream shows the vortex meander and diffusion is notably affected by the Reynold’s number. It is hypothesized that the shed vorticity from the blade root region directly influences and exacerbates the nacelle wake expansion in the downstream direction. As the design of inboard blade region form is, by necessity, driven by function rather than aerodynamic optimisation, a study is undertaken for the application of flow control mechanisms to manipulate the observed vortex phenomenon. The designed model allows for the effective investigation of shed vorticity and wake interactions with a focus on the accurate geometry of a root region which is representative of small to medium power commercial HAWTs. The studies undertaken allow for an enhanced understanding of the interplay of shed vortices and their subsequent effect in the near and far wake. This highlights areas of interest within the inboard blade area for the potential use of passive and active flow control devices which contrive to produce a more desirable wake quality in this region.

Keywords: vortex shedding, wake interactions, wind tunnel model, wind turbine

Procedia PDF Downloads 235
52 Correlation Studies and Heritability Estimates among Onion (Allium Cepa L.) Cultivars of North Western Nigeria

Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche

Abstract:

Onion (Allium cepa var. cepa L.), is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. Heritability defined as the proportion of the observed total variability that is genetic, and its estimates from variance components give more useful information of genotypic variation from the total phenotypic differences and environmental effects on the individuals or families. It therefore guide the breeder with respect to the ease with which selection of traits can be carried out. Heritability estimates guide the breeder with respect to ease of selection of traits while correlations suggest how selection among characters can be practiced. Correlations explain relationship between characters and suggest how selection among characters can be practiced in breeding programmes. Highly significant correlations have been reported, between yield, maturity, rings/bulb and storage loss in onions. Similarly significant positive correlation exists between total bulb yield and plant height, leaf number/plant, bulb diameter and bulb yield/plant. Moderate positive correlations have been observed between maturity date and yield, dry matter content was highly correlated with soluble solids, and higher correlations were also observed between storage loss and soluble solids. The objective of the study is to determine heritability estimates and correlations for characters among onion cultivars of North Western Nigeria. This is envisaged will assist in the breeding of superior onion cultivars within the zone. Thirteen onion cultivars were collected during an expedition covering north western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. Combined analysis of the results revealed fresh bulb yield is highly significantly positively correlated with bulb height and cured bulb yield, and significant positive correlation with plant height and bulb diameter. It also recorded significant negative correlation with mean No. of leaves/plant and non significant negative correlation with bolting %. Cured bulb yield (marketable yield) had highly significant positive correlation with mean bulb weight and fresh bulb yield/ha, with significant positive correlation with bulb height. It also recorded highly significant negative correlation with No. of leaves/plant and significant negative correlation with bolting % and non significant positive correlation with plant height and non significant negative correlation with bulb diameter. High broad sense heritability estimates were recorded for plant height, fresh bulb yield, number of leaves/plant, bolting % and cured bulb yield. Medium to low broad sense heritabilities were also observed for mean bulb weight, plant height and bulb diameter.

Keywords: correlation, heritability, onions, North Western Nigeria

Procedia PDF Downloads 402
51 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 139
50 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories

Authors: Berna Çalışkan

Abstract:

The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.

Keywords: water resources management, hydro tool, water protection, transportation

Procedia PDF Downloads 56
49 Transformation of Bangladesh Society: The Role of Religion

Authors: Abdul Wohab

Abstract:

Context: The role of religion in the transformation of Bangladesh society has been significant since 1975. There has been a rise in religious presence, particularly Islam, in both private and public spheres supported by the state apparatuses. In 2009, a 'secular' political party came into power for the second time since independence and initiated the modernization of religious education systems. This research focuses on the transformation observed among the educated middle class who now prefer their children to attend modern, English medium madrasas that offer both religion-based and secular education. Research Aim: This research aims to investigate two main questions: a) what motivates the educated middle class to send their children to madrasa education? b) To what extent can it be argued that Bangladeshi society is transforming from its secular nature to being more religious?Methodology: The research applies a combination of primary and secondary methods. Case studies serve as the primary method, allowing for an in-depth exploration of the motivations of the educated middle class. The secondary method involves analyzing published news articles, op-eds, and websites related to madrasa education, as well as studying the reading syllabus of Aliya and Qwami madrasas in Bangladesh. Findings: Preliminary findings indicate that the educated middle class chooses madrasa education for reasons such as remembering and praying for their departed relatives, keeping their children away from substance abuse, fostering moral and ethical values, and instilling respect for seniors and relatives. The research also reveals that religious education is believed to help children remain morally correct according to the Quran and Hadith. Additionally, the establishment of madrasas in Bangladesh is attributed to economic factors, with demand and supply mechanisms playing a significant role. Furthermore, the findings suggest that government-run primary education institutions in rural areas face more challenges in enrollment compared to religious educational institutions like madrasas. Theoretical Importance: This research contributes to the understanding of societal transformation and the role of religion in this process. By examining the case of Bangladesh, it provides insights into how religion influences education choices and societal values. Data Collection and Analysis Procedures: Data for this research is collected through case studies, including interviews and observations of educated middle-class families who send their children to madrasas. In addition, analysis is conducted on relevant published materials such as news articles, op-eds, and websites. The reading syllabus of Aliya and Qwami madrasas is also analyzed to gain a comprehensive understanding of the education system. Questions Addressed: The research addresses two questions: a) what motivates the educated middle class to choose madrasa education for their children? b) To what extent can it be argued that Bangladeshi society is transforming from its secular nature to being more religious?Conclusion: The preliminary findings of this research highlight the motivations of the educated middle class in opting for madrasa education, including the desire to maintain religious traditions, promote moral values, and provide a strong foundation for their children. It also suggests that Bangladeshi society is experiencing a transformation towards a more religious orientation. This research contributes to the understanding of societal changes and the role of religion within Bangladesh, shedding light on the complex dynamics between religion and education.

Keywords: madrasa education, transformation, Bangladesh, religion and society, education

Procedia PDF Downloads 64
48 Petrogenetic Model of Formation of Orthoclase Gabbro of the Dzirula Crystalline Massif, the Caucasus

Authors: David Shengelia, Tamara Tsutsunava, Manana Togonidze, Giorgi Chichinadze, Giorgi Beridze

Abstract:

Orthoclase gabbro intrusive exposes in the Eastern part of the Dzirula crystalline massif of the Central Transcaucasian microcontinent. It is intruded in the Baikal quartz-diorite gneisses as a stock-like body. The intrusive is characterized by heterogeneity of rock composition: variability of mineral content and irregular distribution of rock-forming minerals. The rocks are represented by pyroxenites, gabbro-pyroxenites and gabbros of different composition – K-feldspar, pyroxene-hornblende and biotite bearing varieties. Scientific views on the genesis and age of the orthoclase gabbro intrusive are considerably different. Based on the long-term pertogeochemical and geochronological investigations of the intrusive with such an extraordinary composition the authors came to the following conclusions. According to geological and geophysical data, it is stated that in the Saurian orogeny horizontal tectonic layering of the Earth’s crust of the Central Transcaucasian microcontinent took place. That is precisely this fact that explains the formation of the orthoclase gabbro intrusive. During the tectonic doubling of the Earth’s crust of the mentioned microcontinent thick tectonic nappes of mafic and sialic layers overlap the sialic basement (‘inversion’ layer). The initial magma of the intrusive was of high-temperature basite-ultrabasite composition, crystallization products of which are pyroxenites and gabbro-pyroxenites. Petrochemical data of the magma attest to its formation in the Upper mantle and partially in the ‘crustal astenolayer’. Then, a newly formed overheated dry magma with phenocrysts of clinopyrocxene and basic plagioclase intruded into the ‘inversion’ layer. From the new medium it was enriched by the volatile components causing the selective melting and as a result the formation of leucocratic quartz-feldspar material. At the same time in the basic magma intensive transformation of pyroxene to hornblende was going on. The basic magma partially mixed with the newly formed acid magma. These different magmas intruded first into the allochthonous basite layer without its significant transformation and then into the upper sialic layer and crystallized here at a depth of 7-10 km. By petrochemical data the newly formed leucocratic granite magma belongs to the S type granites, but the above mentioned mixed magma – to H (hybrid) type. During the final stage of magmatic processes the gabbroic rocks impregnated with high-temperature feldspar-bearing material forming anorthoclase or orthoclase. Thus, so called ‘orthoclase gabbro’ includes the rocks of various genetic groups: 1. protolith of gabbroic intrusive; 2. hybrid rock – K-feldspar gabbro and 3. leucocratic quartz-feldspar bearing rock. Petrochemical and geochemical data obtained from the hybrid gabbro and from the inrusive protolith differ from each other. For the identification of petrogenetic model of the orthoclase gabbro intrusive formation LA-ICP-MS- U-Pb zircon dating has been conducted in all three genetic types of gabbro. The zircon age of the protolith – mean 221.4±1.9 Ma and of hybrid K-feldspar gabbro – mean 221.9±2.2 Ma, records crystallization time of the intrusive, but the zircon age of quartz-feldspar bearing rocks – mean 323±2.9 Ma, as well as the inherited age (323±9, 329±8.3, 332±10 and 335±11 Ma) of hybrid K-feldspar gabbro corresponds to the formation age of Late Variscan granitoids widespread in the Dzirula crystalline massif.

Keywords: The Caucasus, isotope dating, orthoclase-bearing gabbro, petrogenetic model

Procedia PDF Downloads 343
47 A Comparative Study of Efficacy and Safety of Salicylic Acid, Trichloroacetic Acid and Glycolic Acid in Various Facial Melanosis

Authors: Shivani Dhande, Sanjiv Choudhary, Adarshlata Singh

Abstract:

Introduction: Chemical peeling is a popular, relatively inexpensive day procedure and generally safe method for treatment of pigmentary skin disorders and for skin rejuvenation. Chemical peels are classified by the depth of action into superficial, medium, and deep peels.Various facial pigmentary conditions have significant impact on quality of life causing psychological stress, necessitating its safe and effective treatment.Aim & Objectives:To compare the efficacy of Salicylic acid, Trichloroaceticacid & Glycolic Acid in facial melanosis(melasma,photomelanosis& post acne pigmentation).To study the side effects of above mentioned peeling agents. Method and Materials:It was a randomized parallel control single blind study consisting of total of 36 cases, 12 cases each of melasma, photo melanosis and post acne pigmentation within age group 20-50 years having fitzpatrick’s skin type4. Woods lamp examination was done to confirm the type of melasma.Patients with keloidal tendency, active herpes infection or past history of hypersensitivity to salicylic acid, trichloroaceticand glycolic acid as well aspatients on systemic isotretinoin were excluded.Clinical photographs at the beginning of therapy and then serially, were taken to assess the clinical response. Prior to application a written informed consent was obtained. A post auricular test peel was performed. Patients were divided into 3 groups, containing 12 patients each of melasma, photomelanosis and post acnepigmentation.All the three peels SA peel 20% (done once in 2 weeks), GA peel 50% (done once in 3 weeks) and TCA 15% (done once in 3 weeks) were used with total six settings for each patient. Before application of peel patients were counseled to wash the face with soap and water. Then face was dried and cleaned with spirit and acetone to remove all cutaneous oils. GA, TCA, SA were applied with cotton buds/gauze withmild strokes. After a contact period off 5-10mins neutralization was done with cold water. Post peel topical sunscreen application was mandatory. MASI was used pre and post treatment to assess melasma. Investigator’s global improvement scale- overall hyperpigmentation (4-significant, 3-moderate, 2-mild, 1-minimal, 0-no change ) and Patient’s satisfaction grading scale (>70%- excellent response, 50-70%- good response, <50%- average response) was used to assess improvement in all the three facial melanosis.Results:In our study of 12 patients of melasma, 4 (33.33%)patients showed excellent results;3 (25%) with GAand 1(8.33%) of TCA.Good response was seen in 4 (33.33%) patients;1(8.33%) each for GA & SA and 2(16.66%) for TCA.Poor response was seen in 4(33.33%) patients;1(8.33%) for TCA and 3 (25%) for SA.Of 12 patients of photomelanosis, excellent resultswas seen in 3(25%)patients of TCA. Good response was seen in 4 (33.33%) patients, 1(8.33%) each of TCA &SA and 2(16.66%) of GA.Poor responsewas seen in 5(41.66%) patients;3 (25%) for SA and 2(16.66%) of GA.Of 12 patients of post acne pigmentation, excellent responsein 3 (25%) patients;2(16.66%) of SA and 1(8.33%) of TCA.Good responsewas seen in 5(41.66%) patients;2(16.66%) of SA and GA and1(8.33%) of TCA.Poor response was seen in 4 (33.33%) patients; 2 (16.66%) for SA and TCA both. No major side effects in the form of scarring or persistant pigmentation was seen. Transient blackening of skin with burning sensation was seen in cases treated with TCA and SA. Post procedural itching and redness was noted with GA peel. Conclusion- In our study GA(50%),TCA(15%) & SA(20%) peels showed excellent response in melasma, photomelanosis and post-acne pigmentation respectively.All the 3 peeling agents were well tolerated without any significant side-effects in the above specified concentrations.

Keywords: facial melanosis, gycolic acid, salicylic acid, trichloroacetic acid

Procedia PDF Downloads 257
46 A Study on Economic Impacts of Entrepreneurial Firms and Self-Employment: Minority Ethnics in Putatan, Penampang, Inanam, Menggatal, Uitm, Tongod, Sabah, Malaysia

Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Andrew Nicholas, Dewi Binti Tajuddin

Abstract:

Starting and surviving a business is influenced by various entrepreneurship socio-economics activities. The study revealed that some of the entrepreneurs are not registered under SME but running own business as an intermediary with the private organization entrusted as “Self-Employed.” SME is known as “Small Medium Enterprise” contributes growth in Malaysia. Therefore, the entrepreneurialism business interest and entrepreneurial intention enhancing new spurring production, expanding employment opportunities, increasing productivity, promoting exports, stimulating innovation and providing new avenue in the business market place. This study has identified the unique contribution to the full understanding of complex mechanisms through entrepreneurship obstacles and education impacts on happiness and well-being to society. Moreover, “Ethnic” term has defined as a curious meaning refers to a classification of a large group of people customs implies to ancestral, racial, national, tribal, religious, linguistic and cultural origins. It is a social phenomenon.1 According to Sabah data population is amounting to 2,389,494 showed the predominant ethnic group being the Kadazan Dusun (18.4%) followed by Bajau (17.3%) and Malays (15.3%). For the year 2010, data statistic immigrants population report showed the amount to 239,765 people which cover 4% of the Sabahan’s population.2 Sabah has numerous group of talented entrepreneurs. The business environment among the minority ethnics are influenced with the business sentiment competition. The literature on ethnic entrepreneurship recognizes two main type entrepreneurships: the middleman and enclave entrepreneurs. According to Adam Smith,3 there are evidently some principles disposition to admire and maintain the distinction business rank status and cause most universal business sentiments. Due to credit barriers competition, the minority ethnics are losing the business market and since 2014, many illegal immigrants have been found to be using permits of the locals to operate businesses in Malaysia.4 The development of small business entrepreneurship among the minority ethnics in Sabah evidenced based variety of complex perception and differences concepts. The studies also confirmed the effects of heterogeneity on group decision and thinking caused partly by excessive pre-occupation with maintaining cohesiveness and the presence of cultural diversity in groups should reduce its probability.5 The researchers proposed that there are seven success determinants particularly to determine the involvement of minority ethnics comparing to the involvement of the immigrants in Sabah. Although, (SMEs) have always been considered the backbone of the economy development, the minority ethnics are often categorized it as the “second-choice.’ The study showed that illegal immigrants entrepreneur imposed a burden on Sabahan social programs as well as the prison, court and health care systems. The tension between the need for cheap labor and the impulse to protect Malaysian in Sabah workers, entrepreneurs and taxpayers, among the subjects discussed in this study. This is clearly can be advantages and disadvantages to the Sabah economic development.

Keywords: entrepreneurial firms, self-employed, immigrants, minority ethnic, economic impacts

Procedia PDF Downloads 411
45 A Proposed Treatment Protocol for the Management of Pars Interarticularis Pathology in Children and Adolescents

Authors: Paul Licina, Emma M. Johnston, David Lisle, Mark Young, Chris Brady

Abstract:

Background: Lumbar pars pathology is a common cause of pain in the growing spine. It can be seen in young athletes participating in at-risk sports and can affect sporting performance and long-term health due to its resistance to traditional management. There is a current lack of consensus of classification and treatment for pars injuries. Previous systems used CT to stage pars defects but could not assess early stress reactions. A modified classification is proposed that considers findings on MRI, significantly improving early treatment guidance. The treatment protocol is designed for patients aged 5 to 19 years. Method: Clinical screening identifies patients with a low, medium, or high index of suspicion for lumbar pars injury using patient age, sport participation and pain characteristics. MRI of the at-risk cohort enables augmentation of existing CT-based classification while avoiding ionising radiation. Patients are classified into five categories based on MRI findings. A type 0 lesion (stress reaction) is present when CT is normal and MRI shows high signal change (HSC) in the pars/pedicle on T2 images. A type 1 lesion represents the ‘early defect’ CT classification. The group previously referred to as a 'progressive stage' defect on CT can be split into 2A and 2B categories. 2As have HSC on MRI, whereas 2Bs do not. This distinction is important with regard to healing potential. Type 3 lesions are terminal stage defects on CT, characterised by pseudarthrosis. MRI shows no HSC. Results: Stress reactions (type 0) and acute fractures (1 and 2a) can heal and are treated in a custom-made hard brace for 12 weeks. It is initially worn 23 hours per day. At three weeks, patients commence basic core rehabilitation. At six weeks, in the absence of pain, the brace is removed for sleeping. Exercises are progressed to positions of daily living. Patients with continued pain remain braced 23 hours per day without exercise progression until becoming symptom-free. At nine weeks, patients commence supervised exercises out of the brace for 30 minutes each day. This allows them to re-learn muscular control without rigid support of the brace. At 12 weeks, bracing ceases and MRI is repeated. For patients with near or complete resolution of bony oedema and healing of any cortical defect, rehabilitation is focused on strength and conditioning and sport-specific exercise for the full return to activity. The length of this final stage is approximately nine weeks but depends on factors such as development and level of sports participation. If significant HSC remains on MRI, CT scan is considered to definitively assess cortical defect healing. For these patients, return to high-risk sports is delayed for up to three months. Chronic defects (2b and 3) cannot heal and are not braced, and rehabilitation follows traditional protocols. Conclusion: Appropriate clinical screening and imaging with MRI can identify pars pathology early. In those with potential for healing, we propose hard bracing and appropriate rehabilitation as part of a multidisciplinary management protocol. The validity of this protocol will be tested in future studies.

Keywords: adolescents, MRI classification, pars interticularis, treatment protocol

Procedia PDF Downloads 153
44 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 265
43 Comparative Production of Secondary Metabolites by Prunus africana (Hook. F.) Kalkman Provenances in Cameroon and Some Associated Endophytic Fungi

Authors: Gloria M. Ntuba-Jua, Afui M. Mih, Eneke E. T. Bechem

Abstract:

Prunus africana (Hook. F.) Kalkman, commonly known as Pygeum or African cherry belongs to the Rosaceae family. It is a medium to large, evergreen tree with a spreading crown of 10 to 20 m. It is used by the traditional medical practitioners for the treatment of over 45ailments in Cameroon and sub-Sahara Africa. In modern medicine, it is used in the treatment of benign prostrate hyperplasia (BPH), prostate gland hypertrophy (enlarged prostate glands). This is possible because of its ability to produce some secondary metabolites which are believed to have bioactivity against these ailments. The ready international market for the sale of Prunus bark, uncontrolled exploitation, illegal harvesting using inappropriate techniques and poor timing of harvesting have contributed enormously to making the plant endangered. It is known to harbor a large number of endophytic fungi with the potential to produce similar secondary metabolites as the parent plant. Alternative sourcing of medicinal principles through endophytic fungi requires succinct knowledge of the endophytic fungi. This will serve as a conservation measure for Prunus africana by reducing dependence on Prunus bark for such metabolites. This work thus sought to compare the production of some major secondary metabolites produced by P. africana and some of its associated endophytic fungi. The leaves and stem bark of the plant from different provenances were soaked in methanol for 72 hrs to yield the methanolic crude extract. The phytochemical screening of the methanolic crude extracts using different standard procedures revealed the presence of tannins, flavonoids, terpenoids, saponins, phenolics and steroids. Pure cultures of some predominantly isolated endophyte species from the difference Prunus provenances such as Curvularia sp, and Morphospecies P001 were also grown in Potato Dextrose Broth (PDB) for 21 days and later extracted with Methylene dichloride (MDC) solvent after 24hrs to produce crude culture extracts. Qualitative assessment of crude culture extracts showed the presence of tannins, terpenoids, phenolics and steroids particularly β-Sitosterol, (a major bioactive metabolite) as did the plant tissues. Qualitative analysis by thin layer chromatography (TLC) was done to confirm and compare the production of β-Sitosterol (as marker compounds) in the crude extracts of the plant and endophyte. Samples were loaded on TLC silica gel aluminium barked plate (Kieselgel 60 F254, 0.2 mm, Merck) using acetone/hexane, (3.0:7.0) solvent system. They were visualized under an ultra violet lamp (UV254 and UV360). TLC revealed that leaves had a higher concentration of β-sitosterol in terms of band intensity than stem barks from the different provenances. The intensity of β-sitosterol bands in the culture extracts of endophytes was comparable to the plant extracts except for Curvularia sp (very minute) whose band was very faint. The ability of these fungi to make β-sitosterol was confirmed by TLC analysis with the compound having chromatographic properties (retention factor) similar to those of β-sitosterol standard. The ability of these major endophytes to produce secondary metabolites similar to the host has therefore been demonstrated. There is, therefore, the potential of developing the in vitro production system of Prunus secondary metabolites thereby enhancing its conservation.

Keywords: Caneroon, endophytic fungi, Prunus africana, secondary metabolite

Procedia PDF Downloads 230
42 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater

Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio

Abstract:

Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.

Keywords: contamination, water research, biodigester, nutrients

Procedia PDF Downloads 59
41 Study of the Biological Activity of a Ganglioside-Containing Drug (Cronassil) in an Experimental Model of Multiple Sclerosis

Authors: Hasmik V. Zanginyan, Gayane S. Ghazaryan, Laura M. Hovsepyan

Abstract:

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system that is induced in laboratory animals by developing an immune response against myelin epitopes. The typical clinical course is ascending palsy, which correlates with inflammation and tissue damage in the thoracolumbar spinal cord, although the optic nerves and brain (especially the subpial white matter and brainstem) are also often affected. With multiple sclerosis, there is a violation of lipid metabolism in myelin. When membrane lipids (glycosphingolipids, phospholipids) are disturbed, metabolites not only play a structural role in membranes but are also sources of secondary mediators that transmit multiple cellular signals. The purpose of this study was to investigate the effect of ganglioside as a therapeutic agent in experimental multiple sclerosis. The biological activity of a ganglioside-containing medicinal preparation (Cronassial) was evaluated in an experimental model of multiple sclerosis in laboratory animals. An experimental model of multiple sclerosis in rats was obtained by immunization with myelin basic protein (MBP), as well as homogenization of the spinal cord or brain. EAE was induced by administering a mixture of an encephalitogenic mixture (EGM) with Complete Freund’s Adjuvant. Mitochondrial fraction was isolated in a medium containing 0,25 M saccharose and 0, 01 M tris buffer, pH - 7,4, by a method of differential centrifugation on a K-24 centrifuge. Glutathione peroxidase activity was assessed by reduction reactions of hydrogen peroxide (H₂O₂) and lipid hydroperoxides (ROOH) in the presence of GSH. LPO activity was assessed by the amount of malondialdehyde (MDA) in the total homogenate and mitochondrial fraction of the spinal cord and brain of control and experimental autoimmune encephalomyelitis rats. MDA was assessed by a reaction with Thiobarbituric acid. For statistical data analysis on PNP, SPSS (Statistical Package for Social Science) package was used. The nature of the distribution of the obtained data was determined by the Kolmogorov-Smirnov criterion. The comparative analysis was performed using a nonparametric Mann-Whitney test. The differences were statistically significant when р ≤ 0,05 or р ≤ 0,01. Correlational analysis was conducted using a nonparametric Spearman test. In the work, refrigeratory centrifuge, spectrophotometer LKB Biochrom ULTROSPECII (Sweden), pH-meter PL-600 mrc (Israel), guanosine, and ATP (Sigma). The study of the process of lipid peroxidation in the total homogenate of the brain and spinal cord in experimental animals revealed an increase in the content of malonic dialdehyde. When applied, Cronassial observed normalization of lipid peroxidation processes. Reactive oxygen species, causing lipid peroxidation processes, can be toxic both for neurons and for oligodendrocytes that form myelin, causing a violation of their lipid composition. The high content of lipids in the brain and the uniqueness of their structure determines the nature of the development of LPO processes. The lipid layer of cellular and intracellular membranes performs two main functions -barrier and matrix (structural). Damage to the barrier leads to dysregulation of intracellular processes and severe disorders of cellular functions.

Keywords: experimental autoimmune encephalomyelitis, multiple sclerosis, neuroinflammation, therapy

Procedia PDF Downloads 92
40 Design Challenges for Severely Skewed Steel Bridges

Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju

Abstract:

There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.

Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint

Procedia PDF Downloads 193
39 Improving the Utility of Social Media in Pharmacovigilance: A Mixed Methods Study

Authors: Amber Dhoot, Tarush Gupta, Andrea Gurr, William Jenkins, Sandro Pietrunti, Alexis Tang

Abstract:

Background: The COVID-19 pandemic has driven pharmacovigilance towards a new paradigm. Nowadays, more people than ever before are recognising and reporting adverse reactions from medications, treatments, and vaccines. In the modern era, with over 3.8 billion users, social media has become the most accessible medium for people to voice their opinions and so provides an opportunity to engage with more patient-centric and accessible pharmacovigilance. However, the pharmaceutical industry has been slow to incorporate social media into its modern pharmacovigilance strategy. This project aims to make social media a more effective tool in pharmacovigilance, and so reduce drug costs, improve drug safety and improve patient outcomes. This will be achieved by firstly uncovering and categorising the barriers facing the widespread adoption of social media in pharmacovigilance. Following this, the potential opportunities of social media will be explored. We will then propose realistic, practical recommendations to make social media a more effective tool for pharmacovigilance. Methodology: A comprehensive systematic literature review was conducted to produce a categorised summary of these barriers. This was followed by conducting 11 semi-structured interviews with pharmacovigilance experts to confirm the literature review findings whilst also exploring the unpublished and real-life challenges faced by those in the pharmaceutical industry. Finally, a survey of the general public (n = 112) ascertained public knowledge, perception, and opinion regarding the use of their social media data for pharmacovigilance purposes. This project stands out by offering perspectives from the public and pharmaceutical industry that fill the research gaps identified in the literature review. Results: Our results gave rise to several key analysis points. Firstly, inadequacies of current Natural Language Processing algorithms hinder effective pharmacovigilance data extraction from social media, and where data extraction is possible, there are significant questions over its quality. Social media also contains a variety of biases towards common drugs, mild adverse drug reactions, and the younger generation. Additionally, outdated regulations for social media pharmacovigilance do not align with new, modern General Data Protection Regulations (GDPR), creating ethical ambiguity about data privacy and level of access. This leads to an underlying mindset of avoidance within the pharmaceutical industry, as firms are disincentivised by the legal, financial, and reputational risks associated with breaking ambiguous regulations. Conclusion: Our project uncovered several barriers that prevent effective pharmacovigilance on social media. As such, social media should be used to complement traditional sources of pharmacovigilance rather than as a sole source of pharmacovigilance data. However, this project adds further value by proposing five practical recommendations that improve the effectiveness of social media pharmacovigilance. These include: prioritising health-orientated social media; improving technical capabilities through investment and strategic partnerships; setting clear regulatory guidelines using multi-stakeholder processes; creating an adverse drug reaction reporting interface inbuilt into social media platforms; and, finally, developing educational campaigns to raise awareness of the use of social media in pharmacovigilance. Implementation of these recommendations would speed up the efficient, ethical, and systematic adoption of social media in pharmacovigilance.

Keywords: adverse drug reaction, drug safety, pharmacovigilance, social media

Procedia PDF Downloads 81
38 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 44
37 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications

Authors: Deon Bezuidenhout

Abstract:

Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.

Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft

Procedia PDF Downloads 296