Search results for: mortar/ natural mineral fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7709

Search results for: mortar/ natural mineral fiber

4979 Process for Separating and Recovering Materials from Kerf Slurry Waste

Authors: Tarik Ouslimane, Abdenour Lami, Salaheddine Aoudj, Mouna Hecini, Ouahiba Bouchelaghem, Nadjib Drouiche

Abstract:

Slurry waste is a byproduct generated from the slicing process of multi-crystalline silicon ingots. This waste can be used as a secondary resource to recover high purity silicon which has a great economic value. From the management perspective, the ever increasing generation of kerf slurry waste loss leads to significant challenges for the photovoltaic industry due to the current low use of slurry waste for silicon recovery. Slurry waste, in most cases, contains silicon, silicon carbide, metal fragments and mineral-oil-based or glycol-based slurry vehicle. As a result, of the global scarcity of high purity silicon supply, the high purity silicon content in slurry has increasingly attracted interest for research. This paper presents a critical overview of the current techniques employed for high purity silicon recovery from kerf slurry waste. Hydrometallurgy is continuously a matter of study and research. However, in this review paper, several new techniques about the process of high purity silicon recovery from slurry waste are introduced. The purpose of the information presented is to improve the development of a clean and effective recovery process of high purity silicon from slurry waste.

Keywords: Kerf-loss, slurry waste, silicon carbide, silicon recovery, photovoltaic, high purity silicon, polyethylen glycol

Procedia PDF Downloads 311
4978 Grains of Winter Wheat Spelt (Triticum spelta L.) for Save Food Production

Authors: D. Jablonskytė-Raščė, A. Mankevičienė, S. Supronienė, I. Kerienė, S. Maikštėnienė, S. Bliznikas, R. Česnulevičienė

Abstract:

Organic farming does not allow the use of conventional mineral fertilizers and crop protection products. As a result, in our experiments we chose to grow different species of cereals and to see how cereal species affects mycotoxin accumulation. From the phytopathological and entomological viewpoint, the glumes of spelt grain perform a positive role since they protect grain from the infection of pathogenic microorganisms. On the background of the above-mentioned infection, there were more Fusarium–affected grains of spelt than of common wheat. It can be assumed that spelt is more susceptible to the Fusarium fungi infection than common wheat. This study describes the occurrence of DON, ZEA and T2/HT2 toxin in a survey of spelt and common wheat and their bran as well as flour. The analysis was conducted using the enzyme-linked immunosorbent assay (ELISA) method. The concentrations of DON, ZEA, and T2/HT2 in Triticum spelta and Triticum aestivum are influenced by species, cereal type and year interaction. The highest concentration of mycotoxin was found in spelt grain with glumes. The obtained results indicate the significantly higher concentrations of Fusarium toxins in glumes than in dehulled grain which implicate the possible protective effect of spelt wheat glumes. The lowest DON, ZEA, and T2/HT2 concentration was determined in spelt grain without glumes.

Keywords: Fusarium mycotoxins, organic farming, spelt

Procedia PDF Downloads 313
4977 Opaque Mineralogy of the Late Precambrian Ophiolites from Bou Azzer Area, Anti-atlas, Morrocco

Authors: Yaser Maher Abdelaziz Hawa

Abstract:

The Basic-ultrabasic rocks of Bou Azzer ophiolite complex in the Anti-atlas , Morrocco enclose some oxide and sulfide minerals as dissiminated traces. The oxide minerals show a wide variation in composition ranging from Cr-free. Titanomagnetite and ilmenite in the chilled margin gabbro of the upper part of the ophiolite sequence to Al-rich chromian spinel and pure magnetite enclosed in the serpentinized peridotite in the lower part of the sequence. Five mineral assemblages have been distinguished depending on the rock type of the ophiolite sequence. 1-Gersodorfite + Chalcopyrite + Al-Mg rich chromian spinel + pure magnetite, hosted by serpentinized peridotite. 2- Pyrite + Chalcopyrite, enclosed in metagabbro and overlying the ultrabasic cumulates. 3- Al-Fe rich Chromian spinel with rims of Al –rich chromian magnetite enclosed in wherlite. 4- Titanomagnetite replaced by sphene enclosed in marginal Gabbro. 5- Pyrrhotite exsolving Pentlandite + ilmenite + Ilmenite + Al- rich Chromian spinel + magnetite enclosed in fresh olivine olivine in the upper part of the ophiolite sequence.

Keywords: opaques, ophiolites, anti-atlas, morrocco

Procedia PDF Downloads 106
4976 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 354
4975 Enhancing Archaeological Sites: Interconnecting Physically and Digitally

Authors: Eleni Maistrou, D. Kosmopoulos, Carolina Moretti, Amalia Konidi, Katerina Boulougoura

Abstract:

InterArch is an ongoing research project that has been running since September 2020. It aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. The research project is co‐financed by the European Union and Greek national funds, through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE – INNOVATE (project code: Τ2ΕΔΚ-01659). It involves mutual collaboration between academic and cultural institutions and the contribution of an IT applications development company. The research will be completed by July 2023 and will run as a pilot project for the city of Ancient Messene, a place of outstanding natural beauty in the west of Peloponnese, which is considered one of the most important archaeological sites in Greece. The applied research project integrates an interactive approach to the natural environment, aiming at a manifold sensory experience. It combines the physical space of the archaeological site with the digital space of archaeological and cultural data while at the same time, it embraces storytelling processes by engaging an interdisciplinary approach that familiarizes the user with multiple semantic interpretations. The mingling of the real-world environment with its digital and cultural components by using augmented reality techniques could potentially transform the visit on-site into an immersive multimodal sensory experience. To this purpose, an extensive spatial analysis along with a detailed evaluation of the existing digital and non-digital archives is proposed in our project, intending to correlate natural landscape morphology (including archaeological material remains and environmental characteristics) with the extensive historical records and cultural digital data. On-site research was carried out, during which visitors’ itineraries were monitored and tracked throughout the archaeological visit using GPS locators. The results provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location. InterArch aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. Extensive spatial analysis, along with a detailed evaluation of the existing digital and non-digital archives, is used in our project, intending to correlate natural landscape morphology with the extensive historical records and cultural digital data. The results of the on-site research provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location.

Keywords: archaeological site, digital space, semantic interpretations, cultural heritage

Procedia PDF Downloads 70
4974 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: halloysite, palygorskite, photocatalysis, titanium dioxide

Procedia PDF Downloads 315
4973 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics

Authors: H. Loumi-Fergane, A. Belaidi

Abstract:

The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.  In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.

Keywords: conservation laws, field theories, multisymplectic geometry, relativistic mechanics

Procedia PDF Downloads 207
4972 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 446
4971 Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy

Authors: Shivankar Agrawal, Indira Sarangthem

Abstract:

Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell.

Keywords: antibacterial activity, antioxidant, fungi, Staphylococcus aureus, MRSA, thermophiles

Procedia PDF Downloads 134
4970 Geo-spatial Analysis: The Impact of Drought and Productivity to the Poverty in East Java, Indonesia

Authors: Yessi Rahmawati, Andiga Kusuma Nur Ichsan, Fitria Nur Anggraeni

Abstract:

Climate change is one of the focus studies that many researchers focus on in the present world, either in the emerging countries or developed countries which is one of the main pillars on Sustainable Development Goals (SDGs). There is on-going discussion that climate change can affect natural disaster, namely drought, storm, flood, and many others; and also the impact on human life. East Java is the best performances and has economic potential that should be utilized. Despite the economic performance and high agriculture productivity, East Java has the highest number of people under the poverty line. The present study is to measuring the contribution of drought and productivity of agriculture to the poverty in East Java, Indonesia, using spatial econometrics analysis. The authors collect data from 2008 – 2015 from Indonesia’s Ministry of Agriculture, Natural Disaster Management Agency (BNPB), and Official Statistic (BPS). First, the result shows the existence of spatial autocorrelation between drought and poverty. Second, the present research confirms that there is strong relationship between drought and poverty. the majority of farmer in East Java are still relies on the rainfall and traditional irrigation system. When the drought strikes, mostly the farmer will lose their income; make them become more vulnerable household, and trap them into poverty line. The present research will give empirical studies regarding drought and poverty in the academics world.

Keywords: SDGs, drought, poverty, Indonesia, spatial econometrics, spatial autocorrelation

Procedia PDF Downloads 154
4969 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 277
4968 An Experimental Determination of the Limiting Factors Governing the Operation of High-Hydrogen Blends in Domestic Appliances Designed to Burn Natural Gas

Authors: Haiqin Zhou, Robin Irons

Abstract:

The introduction of hydrogen into local networks may, in many cases, require the initial operation of those systems on natural gas/hydrogen blends, either because of a lack of sufficient hydrogen to allow a 100% conversion or because existing infrastructure imposes limitations on the % hydrogen that can be burned before the end-use technologies are replaced. In many systems, the largest number of end-use technologies are small-scale but numerous appliances used for domestic and industrial heating and cooking. In such a scenario, it is important to understand exactly how much hydrogen can be introduced into these appliances before their performance becomes unacceptable and what imposes that limitation. This study seeks to explore a range of significantly higher hydrogen blends and a broad range of factors that might limit operability or environmental acceptability. We will present tests from a burner designed for space heating and optimized for natural gas as an increasing % of hydrogen blends (increasing from 25%) were burned and explore the range of parameters that might govern the acceptability of operation. These include gaseous emissions (particularly NOx and unburned carbon), temperature, flame length, stability and general operational acceptability. Results will show emissions, Temperature, and flame length as a function of thermal load and percentage of hydrogen in the blend. The relevant application and regulation will ultimately determine the acceptability of these values, so it is important to understand the full operational envelope of the burners in question through the sort of extensive parametric testing we have carried out. The present dataset should represent a useful data source for designers interested in exploring appliance operability. In addition to this, we present data on two factors that may be absolutes in determining allowable hydrogen percentages. The first of these is flame blowback. Our results show that, for our system, the threshold between acceptable and unacceptable performance lies between 60 and 65% mol% hydrogen. Another factor that may limit operation, and which would be important in domestic applications, is the acoustic performance of these burners. We will describe a range of operational conditions in which hydrogen blend burners produce a loud and invasive ‘screech’. It will be important for equipment designers and users to find ways to avoid this or mitigate it if performance is to be deemed acceptable.

Keywords: blends, operational, domestic appliances, future system operation.

Procedia PDF Downloads 24
4967 The Effect of Excess Sulphur on Najdi Sheep

Authors: Fatima Al-Humaid

Abstract:

This research work was done to investigate the cause of paralysis in Najdi lambs born in certain farms where the drinking water and diet contained high concentrations of sulphur. The drinking water in these farms was obtained from deep bore wells drilled in the farm. The lambs developed paralysis of the hind limbs at the age of 4-6 weeks and their condition deteriorated continuously until they finally died. The appetite and suckling ability remained good throughout the course of the disease but when the lambs were completely unable to move and reach for the udder, feed and water they died. Postmortem examination of the brain of paralyzed lambs showed that it was liquefied. When the brain was examined histologically, a liquefactive necrosis was seen in the form of cavities in the nervous tissue. Similar histologic picture was seen in the spinal cord of the affected lambs. Analysis for the mineral content of the fodder showed that the concentration of sulphur was 21.6 3.4 g/kg DM which is considered very high for the nutrition of sheep. Analysis for the concentration of copper and selenium in the feed showed that the concentrations of both were normal. This excluded diseases such as swayback which is caused by copper deficiency and white muscle disease, which caused by selenium deficiency. Both of these two last diseases are characterized by paralysis of lambs.

Keywords: brain histology, sulphur poisoning, Najdi sheep, veterinary medicine

Procedia PDF Downloads 605
4966 Drivers on Climate in a Neotropical City: Urbanizations and Natural Variability

Authors: Nuria Vargas, Frances Rodriguez

Abstract:

Neotropical medium cities have opportunities to develop in a good manner. Xalapa City (Veracruz capital, Mexico) and its metropolitan region, near to the Gulf of Mexico, has already <1 million inhabitants, a medium city size, but it’s growing rapidly as several cities in Latin America. Inside a landscape where it had been a forest cloud and coffee land, emerges the city with an irregular topography. The rapid grow of the urbanization and the loss of vegetation has result in a change on the climate parameters. Frequently warms spells, floods and landslides had been impacted last 2 decades, also a higher incidence of dengue and diarrhea is mentioned in the region. Therefore, the analysis of hydrometeorological events is crucial to understand the role they play in its problem. The urbanization and others radiative forces has created a modulation that can explain the decadal climate changes on the Xalapa region. The Atlantic Multidecadal Oscillation directly influences the temperature and precipitation of the region, even more than climate change does. The total effect of these drivers can create a significant context that origin more risk. However, the most policies frequently consider only the climate change as a principal factor, but other drivers are important to consider and evaluate for the implementation of actions that improve our ambient and cities, in a context of climate change. Medium-sized cities could create better conditions for future citizens, preventing with urban planning that considers possible risks associated with weather and climate.

Keywords: natural variability, urbanization, atlantic multidecadal oscillation, land use changes

Procedia PDF Downloads 64
4965 Integrated ERT and Magnetic Surveys in a Mineralization Zone in Erkowit, Red Sea State, Sudan

Authors: K. M. Kheiralla, M. A. Ali, M. Y. Abdelgalil, N. E. Mohamed, G. Boutsis

Abstract:

The present study focus on integrated geophysical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. The study designates that correlation of magnetic and ERT anomalies with lithology are extremely useful in mineral exploration due to variations in some specific physical properties of rocks.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 389
4964 Thermal Management of Ground Heat Exchangers Applied in High Power LED

Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen

Abstract:

The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.

Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation

Procedia PDF Downloads 579
4963 Bioprospecting of Marine Actinobacteria: The Leading Way for Industrially Important Enzymes and Bioactive Natural Products

Authors: Ramesh Subramani, Mathivanan Narayanasamy, William Aalbersberg

Abstract:

It is well accepted by last 35 years of research and on-going programmes that marine environment harbours abundant and unique biodiversity, which is currently playing as an important source in bioprospecting. It has become apparent that marine microorganisms are lead in the biodiscovery. Among marine organisms, actinobacteria are a target phylum for discovering novel antibiotics against increasing the multi-drug resistant human pathogens because of these taxa representing for novel genera and species. Marine actinomycetes are a proven source of new antibiotic leads and novel enzymes with important industrial applications. A total of 183 streptomycete and 25 non-streptomycete strains were isolated from different marine samples collected from north-eastern part of the Indian Ocean. Among them, 111 isolates displayed antibacterial activity against human pathogens and 151 exhibited antifungal activity against phytopathogens. Importantly, most of them produced various extracellular enzymes and 58 of them produced exopolysaccharides. Totally eight small bioactive compounds and a thermostable alkaline protease have been purified from a selected strain, Streptomyces fungicidicus. Besides, our on-going studies on non-streptomycete strains (rare actinomycetes) are most likely promising resource for new and unique compounds against current emerging drug-resistant pathogens. We have just recognised the chemical diversity in marine microorganisms. Therefore it is worthwhile to continue the exploration of marine microorganisms for new drug leads, novel enzymes and other bioprospecting research.

Keywords: bioactive compounds, industrial enzymes, marine actinobacteria, microbial metabolites, marine natural products

Procedia PDF Downloads 279
4962 Numerical Investigation for External Strengthening of Dapped-End Beams

Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah

Abstract:

The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.

Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation

Procedia PDF Downloads 117
4961 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams

Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding

Abstract:

A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.

Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, Nonlocal Strain Gradient Theory, velocity gradient

Procedia PDF Downloads 267
4960 Stems of Prunus avium: An Unexplored By-product with Great Bioactive Potential

Authors: Luís R. Silva, Fábio Jesus, Catarina Bento, Ana C. Gonçalves

Abstract:

Over the last few years, the traditional medicine has gained ground at nutritional and pharmacological level. The natural products and their derivatives have great importance in several drugs used in modern therapeutics. Plant-based systems continue to play an essential role in primary healthcare. Additionally, the utilization of their plant parts, such as leaves, stems and flowers as nutraceutical and pharmaceutical products, can add a high value in the natural products market, not just by the nutritional value due to the significant levels of phytochemicals, but also by to the high benefit for the producers and manufacturers business. Stems of Prunus avium L. are a byproduct resulting from the processing of cherry, and have been consumed over the years as infusions and decoctions due to its bioactive properties, being used as sedative, diuretic and draining, to relief of renal stones, edema and hypertension. In this work, we prepared a hydroethanolic and infusion extracts from stems of P. avium collected in Fundão Region (Portugal), and evaluate the phenolic profile by LC/DAD, antioxidant capacity, α-glucosidase inhibitory activity and protection of human erythrocytes against oxidative damage. The LC-DAD analysis allowed to the identification of 19 phenolic compounds, catechin and 3-O-caffolquinic acid were the main ones. In a general way, hydroethanolic extract proved to be more active than infusion. This extract had the best antioxidant activity against DPPH• (IC50=22.37 ± 0.28 µg/mL) and superoxide radical (IC50=13.93 ± 0.30 µg/mL). Furthermore, it was the most active concerning inhibition of hemoglobin oxidation (IC50=13.73 ± 0.67 µg/mL), hemolysis (IC50=1.49 ± 0.18 µg/mL) and lipid peroxidation (IC50=26.20 ± 0.38 µg/mL) on human erythrocytes. On the other hand, infusion revealed to be more efficient towards α-glucosidase inhibitory activity (IC50=3.18 ± 0.23 µg/mL) and against nitric oxide radical (IC50=99.99 ± 1.89 µg/mL). The Sweet cherry sector is very important in Fundão Region (Portugal), and taking profit from the great wastes produced during processing of the cherry to produce added-value products, such as food supplements cannot be ignored. Our results demonstrate that P. avium stems possesses remarkable antioxidant and free radical scavenging properties. It is therefore, suggest, that P. avium stems can be used as a natural antioxidant with high potential to prevent or slow the progress of human diseases mediated by oxidative stress.

Keywords: stems, Prunus avium, phenolic compounds, biological potential

Procedia PDF Downloads 297
4959 Bioremediation Potential in Recalcitrant Areas of PCE in Alluvial Fan Deposits

Authors: J. Herrero, D. Puigserver, I. Nijenhuis, K. Kuntze, J. M. Carmona

Abstract:

In the transition zone between aquifers and basal aquitards, the perchloroethene (PCE)-pools are more recalcitrant than those elsewhere in the aquifer. Although biodegradation of chloroethenes occur in this zone, it is a slow process and a remediation strategy is needed. The aim of this study is to demonstrate that combined strategy of biostimulation and in situ chemical reduction (ISCR) is more efficient than the two separated strategies. Four different microcosm experiments with sediment and groundwater of a selected field site where an aged pool exists at the bottom of a transition zone were designed under i) natural conditions, ii) biostimulation with lactic acid, iii) ISCR with zero-value iron (ZVI) and under iv) a combined strategy with lactic acid and ZVI. Biotic and abiotic dehalogenation, terminal electron acceptor processes and evolution of microbial communities were determined for each experiment. The main results were: i) reductive dehalogenation of PCE-pools occurs under sulfate-reducing conditions; ii) biostimulation with lactic acid supports more pronounced reductive dehalogenation of PCE and trichloroethene (TCE), but results in an accumulation of 1,2-cis-dichloroethene (cDCE); iii) ISCR with ZVI produces a sustained dehalogenation of PCE and its metabolites iv) combined strategy of biostimulation and ISCR results in a fast dehalogenation of PCE and TCE and a sustained dehalogenation of cisDCE. These findings suggest that biostimulation and ISCR with ZVI are the most suitable strategies for a complete reductive dehalogenation of PCE-pools in the transition zone and further to enable the dissolution of dense non-aqueous phase liquids.

Keywords: aged PCE-pool, anaerobic microcosm experiment, biostimulation, in situ chemical reduction, natural attenuation

Procedia PDF Downloads 200
4958 Radionuclide Contents and Exhalation Studies in Soil Samples from Sub-Mountainous Region of Jammu and Kashmir

Authors: Manpreet Kaur

Abstract:

The effect of external and internal exposure in outdoor and indoor environment can be significantly gauged by natural radionuclides. Therefore, it is a consequential to approximate the level of radionuclide contents in soil samples of any area and the risks associated with it. Rate of radon emerging from soil is also one of the prominent parameters for the assessment of radon levels in environmental. In present study, natural radionuclide contents viz. ²³²Th, ²³⁸U and ⁴⁰K and radon/thoron exhalation rates were evaluated operating thallium doped sodium iodide gamma radiation detector and advanced Smart Rn Duo technique in the soil samples from 30 villages of Jammu district, Jammu and Kashmir, India. Radon flux rate was also measured by using surface chamber technique. Results obtained with two different methods were compared to investigate the cause of emanation factor in the soil profile. The radon mass exhalation rate in the soil samples has been found varying from 15 ± 0.4 to 38 ± 0.8 mBq kg⁻¹ h⁻¹ while thoron surface exhalation rate has been found varying from 90 ± 22 to 4880 ± 280 Bq m⁻² h⁻¹. The mean value of radium equivalent activity (99 ± 27 Bq kg⁻¹) was appeared to be well within the admissible limit of 370 Bq kg⁻¹ suggested by Organization for Economic Cooperation and Development (2009) report. The values of various parameters related to radiological hazards were also calculated and all parameters have been found to be well below the safe limits given by various organizations. The outcomes pointed out that region was protected from danger as per health risks effects associated with these radionuclide contents is concerned.

Keywords: absorbed dose rate, exhalation rate, human health, radionuclide

Procedia PDF Downloads 136
4957 Varietal Behavior of Some Chickpea Genotypes to Wilt Disease Induced by Fusarium oxysporum f.sp. ciceris

Authors: Rouag N., Khalifa M. W., Bencheikh A., Abed H.

Abstract:

The behavior study of forty-two varieties and genotypes of chickpeas regarding root wilt disease induced by Fusarium oxysporum under the natural conditions of infection was conducted at the ITGC experimental station in Sétif. The infected plants of the different chickpea genotypes have shown multiple symptoms in the field caused by the local strain of Fusarium oxysporum f.sp.cecris belonging to race II of the pathogen. These symptoms ranged from lateral or partial wilting of some ramifications to total desiccation of the plant, sometimes combined with the very slow growth of symptomatic plants. The results of the search for sources of resistance to Fusarium wilt of chickpeas in the 42 genotypes tested revealed that in terms of infection rate, the presence of 7 groups and no genotype showed absolute resistance. While in terms of severity, the results revealed the presence of three homogeneous groups. The first group formed by the most resistant genotypes, in this case, Flip10-368C; Flip11-77C; Flip11-186C; Flip11-124C; Flip11-142C, Flip11-152C; Flip11-69C; Ghab 05; Flip11-159C; Flip11-90C; Flip10-357C and Flip11-37C while the second group is the FLIP genotype 10-382C which was found to be the most sensitive for the natural infection test. Thus, the genotypes of Cicer arietinum L., which have shown significant levels of resistance to Fusarium wilt, can be integrated into breeding and improvement programs.

Keywords: chickpea, Cicer arietinum, Fusarium oxysporum, genotype resistance

Procedia PDF Downloads 86
4956 Assessment of Gamma Radiation Exposure of Soils Associated with Granitic Rocks in Kapıdağ Peninsula, Turkey

Authors: Buket Canbaz Öztürk, N. Füsun Çam, Günseli Yaprak, Osman Candan

Abstract:

The external terrestrial radiation exposure is related to the types of rock from which the soils originate. Higher radiation levels are associated with igneous rocks, such as granite, and lower levels with sedimentary rocks. Therefore, this study aims to assess the gamma radiation exposure of soils associated with granitic rocks in Kapıdağ Peninsula, Turkey. In the ongoing study, a comprehensive survey carried out systematically as a part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters (238U, 232Th and 40K) in the surface soil samples and the granitic rocks carried out by means of NaI(Tl) gamma-ray spectrometry system. To evaluate the radiological hazard of the natural radioactivity, the absorbed dose rate (D), the annual effective dose rate (AED), the radium equivalent activity (Raeq) and the external (Hex) hazard index were calculated according to the UNSCEAR 2000 report. The corresponding absorbed dose rates in air from all natural radionuclides were always much lower than 200 nGy h-1 and did not exceed the typical range of worldwide average values noticed in the UNSCEAR (2000) report. Furthermore, the correlation between soil and granitic rock samples were utilized, and external gamma radiation exposure distribution was mapped in Kapıdağ Peninsula.

Keywords: external absorbed dose, granitic rocks, Kapıdağ Peninsula, soil

Procedia PDF Downloads 235
4955 Chemical Composition and Antibacterial Activity of Ceratonia siliqua L. Growing in Boumerdes, Algeria

Authors: N. Meziou-Chebouti, A. Merabet, Y. Chebouti N. Behidj

Abstract:

This work is a contribution to the knowledge of physicochemical characteristics of mature carob followed by evaluation of the activity, antimicrobial phenolics leaves and green pods of Ceratonia siliqua L. physicochemical study shows that mature carob it has a considerable content of sugar (50.90%), but poor in proteins (7%), fat (8%) and also has a high mineral content. The results obtained from phenolic extracts of leaves and green pods of Ceratonia siliqua L. show a wealth leaf phenolic extract especially flavonoids (0,545 mg EqQ/g) relative to the extract of green pods (0,226 mgEqQ/g). Polyphenols leaves have a slightly inhibitory effect on the growth of strains: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoiae, Streptococcus sp and Sanmonella enteritidis, a strong inhibitory effect on the growth of Pseudomonas strain aerogenosa. Moreover, polyphenols pod have a slightly inhibitory effect on the growth of Streptococcus sp strains, Pseudomonas and aerogenosa Sanmonella enteritidis, a slightly inhibitory effect on the growth of Klebsiella pneumoniae strains, E. coli and Staphylococcus aureus.

Keywords: antimicrobial activity, bacteria, clove, Ceratonia siliqua, polyphenols

Procedia PDF Downloads 354
4954 Hydrochemical Assessment and Quality Classification of Water in Torogh and Kardeh Dam Reservoirs, North-East Iran

Authors: Mojtaba Heydarizad

Abstract:

Khorasan Razavi is the second most important province in north-east of Iran, which faces a water shortage crisis due to recent droughts and huge water consummation. Kardeh and Torogh dam reservoirs in this province provide a notable part of Mashhad metropolitan (with more than 4.5 million inhabitants) potable water needs. Hydrochemical analyses on these dam reservoirs samples demonstrate that MgHCO3 in Kardeh and CaHCO3 and to lower extent MgHCO3 water types in Torogh dam reservoir are dominant. On the other hand, Gibbs binary diagram demonstrates that rock weathering is the main factor controlling water quality in dam reservoirs. Plotting dam reservoir samples on Mg2+/Na+ and HCO3-/Na+ vs. Ca2+/ Na+ diagrams demonstrate evaporative and carbonate mineral dissolution is the dominant rock weathering ion sources in these dam reservoirs. Cluster Analyses (CA) also demonstrate intense role of rock weathering mainly (carbonate and evaporative minerals dissolution) in water quality of these dam reservoirs. Studying water quality by the U.S. National Sanitation Foundation (NSF) WQI index NSF-WQI, Oregon Water Quality Index (OWQI) and Canadian Water Quality Index DWQI index show moderate and good quality.

Keywords: hydrochemistry, water quality classification, water quality indexes, Torogh and Kardeh dam reservoir

Procedia PDF Downloads 255
4953 Low Resistivity Pay Identification in Carbonate Reservoirs of Yadavaran Oilfield

Authors: Mohammad Mardi

Abstract:

Generally, the resistivity is high in oil layer and low in water layer. Yet there are intervals of oil-bearing zones showing low resistivity, high porosity, and low resistance. In the typical example, well A (depth: 4341.5-4372.0m), both Spectral Gamma Ray (SGR) and Corrected Gamma Ray (CGR) are relatively low; porosity varies from 12-22%. Above 4360 meters, the reservoir shows the conventional positive difference between deep and shallow resistivity with high resistance; below 4360m, the reservoir shows a negative difference with low resistance, especially at depths of 4362.4 meters and 4371 meters, deep resistivity is only 2Ω.m, and the CAST-V imaging map shows that there are low resistance substances contained in the pores or matrix in the reservoirs of this interval. The rock slice analysis data shows that the pyrite volume is 2-3% in the interval 4369.08m-4371.55m. A comprehensive analysis on the volume of shale (Vsh), porosity, invasion features of resistivity, mud logging, and mineral volume indicates that the possible causes for the negative difference between deep and shallow resistivities with relatively low resistance are erosional pores, caves, micritic texture and the presence of pyrite. Full-bore Drill Stem Test (DST) verified 4991.09 bbl/d in this interval. To identify and thoroughly characterize low resistivity intervals coring, Nuclear Magnetic Resonance (NMR) logging and further geological evaluation are needed.

Keywords: low resistivity pay, carbonates petrophysics, microporosity, porosity

Procedia PDF Downloads 167
4952 Evaluation of the Potability Qualities of Pretreated Distilled Water Produced from Biomass Fuelled Water Distiller

Authors: E. I. Oluwasola, J. A. V. Famurewa, R. Aboloma, K. Adesina

Abstract:

Water samples with pretreatment and without pretreatment were obtained from locally constructed biomass fuelled stainless steel water distiller. The water samples were subjected to Microbial, Physicochemical and Minerals analyses for comparison with NAFDAC and WHO Standards for potable water. The results of the physicochemical and microbiological properties of the raw water(A), and the two distilled water samples (B; distill water without pretreatment) and (C; distill water with pretreatment) showed reduction in most of the quality parameters evaluated in the distilled water samples to the level that conforms to the W.H.O standards for drinking water however, lower values were obtained for the pretreated distilled water sample. The values of 0.0016mg/l, 0.0052mg/l and 0.0528mg/l for the arsenic, chromium and lead content respectively in the raw water were within the permissible limit specified by WHO however; the values of cadmium (0.067mg/l) and mercury (0.0287mg/l) are above the maximum tolerable for drinking water thus, making the raw water unsafe for human consumption. Similarly, the high total plate count (278cfu /ml) and coliform count (1100/100ml) indicate that the raw water is potentially harmful while the distilled water samples showed nil coliform count and low total plate count (35cfu/ml,18cfu/ml) for B and C respectively making the distilled water microbiologically safer for human consumption.

Keywords: biomass, distillation, mineral, potable, physicochemical

Procedia PDF Downloads 496
4951 Jopara: Conversational Code Switching Between Spanish and Guarani a Sociolinguistic Study

Authors: Maria Alejandra Mareco

Abstract:

The purpose of this paper is to explore a communicative strategy used by Guaraní-Spanish bilingual speakers. It will be presented in English or Spanish. This strategy is conversational code-switching, which is used by people from rural as well as urban areas in Formosa, Argentina and Paraguay. Guarani is an Aboriginal Language that is the official language in Paraguay. Code-switching is a language-processing phenomenon that creates communicative and social meaning in a given community. This paper poses a broad question at the onset of this study: Spanish-Guaraní speakers tend to use four different conversational code-switching patterns in their oral alternations, these four categories being: quotation, addressee specification, reiteration, and interjections. Later, spoken data were prioritized in terms of their importance and potential impact on the hypothesis outlined. Different groups of people were observed in real-world settings. They consisted of fourteen proficient Spanish Guaraní bilingual speakers from different social groups and ages. Afterward, a group of informants was chosen to obtain a wide range of natural encounters. Informants were observed with special attention to their natural communication, particularly oral interactions. Furthermore, the relationship between interlocutors during code-switching, as based on a negotiation between them, was considered of most relevance. Results were evaluated according to the interpretative method by testing the co-occurrence of the four conversational categories described above. The testing instruments identified that the four aspects of Spanish Guaraní code-switching introduced above were applied.

Keywords: bilingualism, code switching, aboriginal language, language contact

Procedia PDF Downloads 9
4950 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 130