Search results for: predictive accuracy
1829 An Exploratory Study into the Suggestive Impact of Alaa Al-Aswany's Political Essays
Authors: Valerii Dudin
Abstract:
With the continuous increase in quantity and importance of the information surrounding our daily lives, it has become crucial to understand what makes information stand out and affect our point of view, regardless of the accuracy of the facts involved. Alaa Al-Aswany’s numerous works have been an inspiration for millions of his readers in Egypt and all across the Arab World. While highly factual, the author’s political essays are both lexically and stylistically rich; they also implement descriptive allusions and proverbs to support the presented opinions. We have undertaken an effort to explore the impact on the individual perception through these political works of the author. In this study, we have overviewed previously made research on similar subjects and through contextual, intertextual, linguistic and corpus analyses we have come to realize the presence of suggestive themes in these works, capable of shaping the reader’s perception regarding a certain topic, specifically targeting the reader’s emotional bias. The findings presented in the study will reveal an overview of such examples of suggestive elements used in the author’s works, as well as various new insights on what can be considered suggestive in the context of modern Arabic printed press.Keywords: Alaa al-Aswany, cognitive linguistics, political essays, suggestion
Procedia PDF Downloads 1571828 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing
Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar
Abstract:
The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic
Procedia PDF Downloads 4861827 Empirical Modeling of Air Dried Rubberwood Drying System
Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit
Abstract:
Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (R²), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (R² = 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.Keywords: empirical models, rubberwood, moisture ratio, hot air drying
Procedia PDF Downloads 2671826 Irrigation and Thermal Buffering Mathematical Modeling
Authors: Yara Elborolosy, Harsho Sanyal, Joseph Cataldo
Abstract:
Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.Keywords: green infrastructure, black roof, thermal buffering, irrigation
Procedia PDF Downloads 701825 A Dynamic Neural Network Model for Accurate Detection of Masked Faces
Authors: Oladapo Tolulope Ibitoye
Abstract:
Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.Keywords: convolutional neural network, face detection, face mask, masked faces
Procedia PDF Downloads 681824 Rapid Method for Low Level 90Sr Determination in Seawater by Liquid Extraction Technique
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of low level 90Sr in seawater has been widely developed for the purpose of environmental monitoring and radiological research because 90Sr is one of the most hazardous radionuclides released from atmospheric during the testing of nuclear weapons, waste discharge from the generation nuclear energy and nuclear accident occurring at power plants. A liquid extraction technique using bis-2-etylhexyl-phosphoric acid to separate and purify yttrium followed by Cherenkov counting using a liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed to monitor 90Sr in the Asia Pacific Ocean. The analytical performance was validated for the accuracy, precision, and trueness criteria. Sr-90 determination in seawater using various low concentrations in a range of 0.01 – 1 Bq/L of 30 liters spiked seawater samples and 0.5 liters of IAEA-RML-2015-01 proficiency test sample was performed for statistical evaluation. The results had a relative bias in the range from 3.41% to 12.28%, which is below accepted relative bias of ± 25% and passed the criteria confirming that our analytical approach for determination of low levels of 90Sr in seawater was acceptable. Moreover, the approach is economical, non-laborious and fast.Keywords: proficiency test, radiation monitoring, seawater, strontium determination
Procedia PDF Downloads 1691823 Site Selection of CNG Station by Using FUZZY-AHP Model (Case Study: Gas Zone 4, Tehran City Iran)
Authors: Hamidrza Joodaki
Abstract:
The most complex issue in urban land use planning is site selection that needs to assess the verity of elements and factors. Multi Criteria Decision Making (MCDM) methods are the best approach to deal with complex problems. In this paper, combination of the analytical hierarchy process (AHP) model and FUZZY logic was used as MCDM methods to select the best site for gas station in the 4th gas zone of Tehran. The first and the most important step in FUZZY-AHP model is selection of criteria and sub-criteria. Population, accessibility, proximity and natural disasters were considered as the main criteria in this study. After choosing the criteria, they were weighted based on AHP by EXPERT CHOICE software, and FUZZY logic was used to enhance accuracy and to approach the reality. After these steps, criteria layers were produced and weighted based on FUZZY-AHP model in GIS. Finally, through ARC GIS software, the layers were integrated and the 4th gas zone in TEHRAN was selected as the best site to locate gas station.Keywords: multiple criteria decision making (MCDM), analytic hierarchy process (AHP), FUZZY logic, geographic information system (GIS)
Procedia PDF Downloads 3611822 Identification and Quantification of Phenolic Compounds In Cassia tora Collected from Three Different Locations Using Ultra High Performance Liquid Chromatography – Electro Spray Ionization – Mass Spectrometry (UHPLC-ESI-MS-MS)
Authors: Shipra Shukla, Gaurav Chaudhary, S. K. Tewari, Mahesh Pal, D. K. Upreti
Abstract:
Cassia tora L. is widely distributed in tropical Asian countries, commonly known as sickle pod. Various parts of the plant are reported for their medicinal value due to presence of anthraquinones, phenolic compounds, emodin, β-sitosterol, and chrysophanol. Therefore a sensitive analytical procedure using UHPLC-ESI-MS/MS was developed and validated for simultaneous quantification of five phenolic compounds in leaf, stem and root extracts of Cassia tora. Rapid chromatographic separation of compounds was achieved on Acquity UHPLC BEH C18 column (50 mm×2.1 mm id, 1.7µm) column in 2.5 min. Quantification was carried out using negative electrospray ionization in multiple-reaction monitoring mode. The method was validated as per ICH guidelines and showed good linearity (r2 ≥ 0.9985) over the concentration range of 0.5-200 ng/mL. The intra- and inter-day precisions and accuracy were within RSDs ≤ 1.93% and ≤ 1.90%, respectively. The developed method was applied to investigate variation of five phenolic compounds in the three geographical collections. Results indicated significant variation among analyzed samples collected from different locations in India.Keywords: Cassia tora, phenolic compounds, quantification, UHPLC-ESI-MS/MS
Procedia PDF Downloads 2691821 Investigations of Protein Aggregation Using Sequence and Structure Based Features
Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan
Abstract:
The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.Keywords: aggregation, amyloids, thermophilic proteins, amino acid residues, machine learning techniques
Procedia PDF Downloads 6141820 Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements
Authors: Nurul Izzati Abd Karim, Samira Albati Kamaruddin, Rozaimi Che Hasan
Abstract:
The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements.Keywords: common-offset measurements, ground penetrating radar, petrophysical relationship, soil water content
Procedia PDF Downloads 2521819 The Effect of Hemsball Shooting Techniques on Fine Motor Skill Level of Chidren with Hearing Disabilities
Authors: Meltem Işık, Fatma Gür, İbrahim Kılıç
Abstract:
This study aims to explore the effects of hemsball shooting techniques on the fine motor skill level of children with hearing disabilities. A total number of 26 children with hearing disabilities, ages ranging between 7 and 11 and which were equally divided into experimental group and control group participated in the study. In this context, an exercise training program dedicated to hemsball shooting techniques was introduced to the experimental group 3 days a week in one hour sessions for a period of 10 weeks. BOT-2 fine motor skills test which includes three dimensions (fine motor accuracy, fine motor task completion, and dexterity) was selected as the data collection method. Descriptive statistics along with two-factor ANOVA which was focused on repetitive measurements of the differences between pretest and posttest scores of both groups were used in the analysis of the data collected. The results of this study showed that hemsball shooting techniques have a statistically significant effect on the fine motor skill level.Keywords: hemsball shooting techniques, BOT-2 test, fine motor skills, hearing disabilities
Procedia PDF Downloads 3531818 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 901817 Research on Robot Adaptive Polishing Control Technology
Authors: Yi Ming Zhang, Zhan Xi Wang, Hang Chen, Gang Wang
Abstract:
Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. It is more and more necessary to replace manual polishing with robot polishing. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a new type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model shows that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.Keywords: robot polishing, force feedback, impedance control, adaptive control
Procedia PDF Downloads 1991816 Improved Acoustic Source Sensing and Localization Based On Robot Locomotion
Authors: V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information.Keywords: acoustic source localization, acoustic sensing, recursive direction of arrival, robot locomotion
Procedia PDF Downloads 4921815 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion
Authors: Hebert Montegranario, Mauricio Londoño
Abstract:
Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion
Procedia PDF Downloads 5471814 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding
Procedia PDF Downloads 3621813 Attributable Mortality of Nosocomial Infection: A Nested Case Control Study in Tunisia
Authors: S. Ben Fredj, H. Ghali, M. Ben Rejeb, S. Layouni, S. Khefacha, L. Dhidah, H. Said
Abstract:
Background: The Intensive Care Unit (ICU) provides continuous care and uses a high level of treatment technologies. Although developed country hospitals allocate only 5–10% of beds in critical care areas, approximately 20% of nosocomial infections (NI) occur among patients treated in ICUs. Whereas in the developing countries the situation is still less accurate. The aim of our study is to assess mortality rates in ICUs and to determine its predictive factors. Methods: We carried out a nested case-control study in a 630-beds public tertiary care hospital in Eastern Tunisia. We included in the study all patients hospitalized for more than two days in the surgical or medical ICU during the entire period of the surveillance. Cases were patients who died before ICU discharge, whereas controls were patients who survived to discharge. NIs were diagnosed according to the definitions of ‘Comité Technique des Infections Nosocomiales et les Infections Liées aux Soins’ (CTINLIS, France). Data collection was based on the protocol of Rea-RAISIN 2009 of the National Institute for Health Watch (InVS, France). Results: Overall, 301 patients were enrolled from medical and surgical ICUs. The mean age was 44.8 ± 21.3 years. The crude ICU mortality rate was 20.6% (62/301). It was 35.8% for patients who acquired at least one NI during their stay in ICU and 16.2% for those without any NI, yielding an overall crude excess mortality rate of 19.6% (OR= 2.9, 95% CI, 1.6 to 5.3). The population-attributable fraction due to ICU-NI in patients who died before ICU discharge was 23.46% (95% CI, 13.43%–29.04%). Overall, 62 case-patients were compared to 239 control patients for the final analysis. Case patients and control patients differed by age (p=0,003), simplified acute physiology score II (p < 10-3), NI (p < 10-3), nosocomial pneumonia (p=0.008), infection upon admission (p=0.002), immunosuppression (p=0.006), days of intubation (p < 10-3), tracheostomy (p=0.004), days with urinary catheterization (p < 10-3), days with CVC ( p=0.03), and length of stay in ICU (p=0.003). Multivariate analysis demonstrated 3 factors: age older than 65 years (OR, 5.78 [95% CI, 2.03-16.05] p=0.001), duration of intubation 1-10 days (OR, 6.82 [95% CI, [1.90-24.45] p=0.003), duration of intubation > 10 days (OR, 11.11 [95% CI, [2.85-43.28] p=0.001), duration of CVC 1-7 days (OR, 6.85[95% CI, [1.71-27.45] p=0.007) and duration of CVC > 7 days (OR, 5.55[95% CI, [1.70-18.04] p=0.004). Conclusion: While surveillance provides important baseline data, successful trials with more active intervention protocols, adopting multimodal approach for the prevention of nosocomial infection incited us to think about the feasibility of similar trial in our context. Therefore, the implementation of an efficient infection control strategy is a crucial step to improve the quality of care.Keywords: intensive care unit, mortality, nosocomial infection, risk factors
Procedia PDF Downloads 4061812 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 3261811 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments
Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments
Procedia PDF Downloads 4521810 Comparison of Efficient Production of Small Module Gears
Authors: Vaclav Musil, Robert Cep, Sarka Malotova, Jiri Hajnys, Frantisek Spalek
Abstract:
The new designs of satellite gears comprising a number of small gears pose high requirements on the precise production of small module gears. The objective of the experimental activity stated in this article was to compare the conventional rolling gear cutting technology with the modern wire electrical discharge machining (WEDM) technology for the production of small module gear m=0.6 mm (thickness of 2.5 mm and material 30CrMoV9). The WEDM technology lies in copying the profile of gearing from the rendered trajectory which is then transferred to the track of a wire electrode. During the experiment, we focused on the comparison of these production methods. Main measured parameters which significantly influence the lifetime and noise was chosen. The first parameter was to compare the precision of gearing profile in respect to the mathematic model. The second monitored parameter was the roughness and surface topology of the gear tooth side. The experiment demonstrated high accuracy of WEDM technology, but a low quality of machined surface.Keywords: precision of gearing, small module gears, surface topology, WEDM technology
Procedia PDF Downloads 2331809 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability
Procedia PDF Downloads 3231808 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2261807 Resolution and Experimental Validation of the Asymptotic Model of a Viscous Laminar Supersonic Flow around a Thin Airfoil
Authors: Eddegdag Nasser, Naamane Azzeddine, Radouani Mohammed, Ensam Meknes
Abstract:
In this study, we are interested in the asymptotic modeling of the two-dimensional stationary supersonic flow of a viscous compressible fluid around wing airfoil. The aim of this article is to solve the partial differential equations of the flow far from the leading edge and near the wall using the triple-deck technique is what brought again in precision according to the principle of least degeneration. In order to validate our theoretical model, these obtained results will be compared with the experimental results. The comparison of the results of our model with experimentation has shown that they are quantitatively acceptable compared to the obtained experimental results. The experimental study was conducted using the AF300 supersonic wind tunnel and a NACA Reduced airfoil model with two pressure Taps on extrados. In this experiment, we have considered the incident upstream supersonic Mach number over a dissymmetric NACA airfoil wing. The validation and the accuracy of the results support our model.Keywords: supersonic, viscous, triple deck technique, asymptotic methods, AF300 supersonic wind tunnel, reduced airfoil model
Procedia PDF Downloads 2401806 Preventive Effect of Locoregional Analgesia Techniques on Chronic Post-Surgical Neuropathic Pain: A Prospective Randomized Study
Authors: Beloulou Mohamed Lamine, Bouhouf Attef, Meliani Walid, Sellami Dalila, Lamara Abdelhak
Abstract:
Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with post-surgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariate analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature or component, particularly in surgeries that are more prone to chronicization.Keywords: chronic postsurgical pain, postsurgical chronic neuropathic pain, regional anesthesia and analgesia techniques (RAAT), neuropathic pain score dn2, preventive impact
Procedia PDF Downloads 271805 Individual Differences in Affective Neuroscience Personality Traits Predict Several Dimensions of Psychological Wellbeing. A Cross-Sectional Study in Healthy Subjects
Authors: Valentina Colonnello, Paolo Maria Russo
Abstract:
Decades of cross-species affective neuroscience research by Panksepp and others have identified basic evolutionarily preserved subcortical emotional systems that humans share with mammals and many vertebrates. These primary emotional systems encode unconditional affective responses and contribute to the development of personality traits throughout ontogenesis and interactions with the environment. The Affective Neuroscience Personality Scale (ANPS) measures individual differences in affective personality traits associated with the basic emotional systems of CARE, PLAY, SEEKING, SADNESS, FEAR, and ANGER, along with Spirituality, which is a more cognitively and socially refined expression of affectivity. Though the ANPS’s power to predict human psychological distress has been documented, to the best of our knowledge, its predictive power for psychological wellbeing has not been explored. This study therefore investigates the relationship between affective neuroscience traits and psychological wellbeing facets. Because the emotional systems are thought to influence cognitively-mediated mental processes about the self and the world, understanding the relationship between affective traits and psychological wellbeing is particularly relevant to understanding the affective dimensions of health. In a cross-sectional study, healthy participants (n = 402) completed the ANPS and the Psychological Wellbeing scale. Multiple regressions revealed that each facet of wellbeing was explained by two to four affective traits, and each trait was significantly related to at least one aspect of wellbeing. Specifically, SEEKING predicted all the wellbeing facets, except for positive relations; CARE predicted personal growth, positive relations, purpose in life, and self-acceptance; PLAY and, inversely, ANGER predicted positive relations; SADNESS inversely predicted autonomy, while FEAR inversely predicted purpose in life. SADNESS and FEAR inversely predicted environmental mastery and self-acceptance. Finally, Spirituality predicted personal growth, positive relations, and self-acceptance. These findings are the first to show the relationship between affective neuroscience personality traits and psychological wellbeing. They also call attention to the distinctive role of FEAR and PANIC traits in psychological wellbeing facets, thereby complementing or even overcoming the traditional personality approach to neuroticism as a global trait.Keywords: affective neuroscience, individual differences, personality, wellbeing
Procedia PDF Downloads 1201804 DOA Estimation Using Golden Section Search
Authors: Niharika Verma, Sandeep Santosh
Abstract:
DOA technique is a localization technique used in the communication field. Various algorithms have been developed for direction of arrival estimation like MUSIC, ROOT MUSIC, etc. These algorithms depend on various parameters like antenna array elements, number of snapshots and various others. Basically the MUSIC spectrum is evaluated and peaks obtained are considered as the angle of arrivals. The angles evaluated using this process depends on the scanning interval chosen. The accuracy of the results obtained depends on the coarseness of the interval chosen. In this paper, golden section search is applied to the MUSIC algorithm and therefore, more accurate results are achieved. Initially the coarse DOA estimations is done using the MUSIC algorithm in the range -90 to 90 degree at the interval of 10 degree. After the peaks obtained then fine DOA estimation is done using golden section search. Also, the partitioning method is applied to estimate the number of signals incident on the antenna array. Dependency of the algorithm on the number of snapshots is also being explained. Hence, the accurate results are being determined using this algorithm.Keywords: Direction of Arrival (DOA), golden section search, MUSIC, number of snapshots
Procedia PDF Downloads 4461803 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5121802 Production of Rhamnolipids from Different Resources and Estimating the Kinetic Parameters for Bioreactor Design
Authors: Olfat A. Mohamed
Abstract:
Rhamnolipids biosurfactants have distinct properties given them importance in many industrial applications, especially their great new future applications in cosmetic and pharmaceutical industries. These applications have encouraged the search for diverse and renewable resources to control the cost of production. The experimental results were then applied to find a suitable mathematical model for obtaining the design criteria of the batch bioreactor. This research aims to produce Rhamnolipids from different oily wastewater sources such as petroleum crude oil (PO) and vegetable oil (VO) by using Pseudomonas aeruginosa ATCC 9027. Different concentrations of the PO and the VO are added to the media broth separately are in arrangement (0.5 1, 1.5, 2, 2.5 % v/v) and (2, 4, 6, 8 and 10%v/v). The effect of the initial concentration of oil residues and the addition of glycerol and palmitic acid was investigated as an inducer in the production of rhamnolipid and the surface tension of the broth. It was found that 2% of the waste (PO) and 6% of the waste (VO) was the best initial substrate concentration for the production of rhamnolipids (2.71, 5.01 g rhamnolipid/l) as arrangement. Addition of glycerol (10-20% v glycerol/v PO) to the 2% PO fermentation broth led to increase the rhamnolipid production (about 1.8-2 times fold). However, the addition of palmitic acid (5 and 10 g/l) to fermentation broth contained 6% VO rarely enhanced the production rate. The experimental data for 2% initially (PO) was used to estimate the various kinetic parameters. The following results were obtained, maximum rate or velocity of reaction (Vmax) = 0.06417 g/l.hr), yield of cell weight per unit weight of substrate utilized (Yx/s = 0.324 g Cx/g Cs) maximum specific growth rate (μmax = 0.05791 hr⁻¹), yield of rhamnolipid weight per unit weight of substrate utilized (Yp/s)=0.2571gCp/g Cs), maintenance coefficient (Ms =0.002419), Michaelis-Menten constant, (Km=6.1237 gmol/l), endogenous decay coefficient (Kd=0.002375 hr⁻¹). Predictive parameters and advanced mathematical models were applied to evaluate the time of the batch bioreactor. The results were as follows: 123.37, 129 and 139.3 hours in respect of microbial biomass, substrate and product concentration, respectively compared with experimental batch time of 120 hours in all cases. The expected mathematical models are compatible with the laboratory results and can, therefore, be considered as tools for expressing the actual system.Keywords: batch bioreactor design, glycerol, kinetic parameters, petroleum crude oil, Pseudomonas aeruginosa, rhamnolipids biosurfactants, vegetable oil
Procedia PDF Downloads 1311801 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 761800 Study on the Post-Traumatic Stress Disorder and Its Psycho-Social-Genetic Risk Factors among Tibetan Alolescents in Heavily-Hit Area Three Years after Yushu Earthquake in Qinghai Province, China
Authors: Xiaolian Jiang, Dongling Liu, Kun Liu
Abstract:
Aims: To examine the prevalence of POST-TRAUMATIC STRESS DISORDER (PTSD) symptoms among Tibetan adolescents in heavily-hit disaster area three years after Yushu earthquake, and to explore the interactions of the psycho-social-genetic risk factors. Methods: This was a three-stage study. Firstly, demographic variables,PTSD Checklist-Civilian Version (PCL-C),the Internality、Powerful other、Chance Scale,(IPC),Coping Style Scale(CSS),and the Social Support Appraisal(SSA)were used to explore the psychosocial factors of PTSD symptoms among adolescent survivors. PCL-C was used to examine the PTSD symptoms among 4072 Tibetan adolescents,and the Structured Clinical Interview for DSM-IV Disorders(SCID)was used by psychiatrists to make the diagnosis precisely. Secondly,a case-control trial was used to explore the relationship between PTSD and gene polymorphisms. 287adolescents diagnosed with PTSD were recruited in study group, and 280 adolescents without PTSD in control group. Polymerase chain reaction-restriction fragment length polymorphism technology(PCR-RFLP)was used to test gene polymorphisms. Thirdly,SPSS 22.0 was used to explore the interactions of the psycho-social-genetic risk factors of PTSD on the basis of the above results. Results and conclusions: 1.The prevalence of PTSD was 9.70%. 2.The predictive psychosocial factors of PTSD included earthquake exposure, support from others, imagine, abreact, tolerant, powerful others and family support. 3.Synergistic interactions between A1 gene of DRD2 TaqIA and the external locus of control, negative coping style, severe earthquake exposure were found. Antagonism interactions between A1 gene of DRD2 TaqIA and poor social support was found. Synergistic interactions between A1/A1 genotype and the external locus of control, negative coping style were found. Synergistic interactions between 12 gene of 5-HTTVNTR and the external locus of control, negative coping style, severe earthquake exposure were found. Synergistic interactions between 12/12 genotype and the external locus of control, negative coping style, severe earthquake exposure were also found.Keywords: adolescents, earthquake, PTSD, risk factors
Procedia PDF Downloads 152