Search results for: heterogeneous wireless networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3922

Search results for: heterogeneous wireless networks

1222 Production Optimization under Geological Uncertainty Using Distance-Based Clustering

Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe

Abstract:

It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.

Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization

Procedia PDF Downloads 143
1221 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 297
1220 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle

Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat

Abstract:

Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.

Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats

Procedia PDF Downloads 253
1219 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach

Authors: Jens Ehm

Abstract:

Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.

Keywords: production, logistics, integrated scheduling, real-time scheduling

Procedia PDF Downloads 374
1218 Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria

Authors: Jayeola A. O., Ayodele O. S., Olususi J. I.

Abstract:

From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area.

Keywords: petrography, Ila Orangun, petrochemistry, pegmatites, peraluminous

Procedia PDF Downloads 63
1217 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification

Authors: Zhaoxin Luo, Michael Zhu

Abstract:

In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.

Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese

Procedia PDF Downloads 68
1216 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances

Authors: Proud Arunrangsiwed, Sarinya Kongtieng

Abstract:

Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.

Keywords: meta-regression analysis, social networking sites, academic Performances, multitasking, motivation

Procedia PDF Downloads 277
1215 Studying Together Affects Perceived Social Distance but Not Stereotypes: Nursing Students' Perception of Their Intergroup Relationship

Authors: Michal Alon-Tirosh, Dorit Hadar-Shoval

Abstract:

Social Psychology theories, such as the intergroup contact theory, content that bringing members of different social groups into contact is a promising approach for improving intergroup relations. The heterogeneous nature of the nursing profession generates encounters between members of different social groups .The social relations that nursing students develop with their peers during their years of study, and the meanings they ascribe to these contacts, may affect the success of their nursing careers. Jewish-Arab relations in Israel are the product of an ongoing conflict and are characterized by stereotyped negative perceptions and mutual suspicions. Nursing education is often the first situation in which Jewish and Arab nursing students have direct and long-term contact with people from the other group. These encounters present a significant challenge. The current study explores whether this contact between Jewish and Arab nursing students during their academic studies improves their perception of their intergroup relationship. The study explores the students' perceptions of the social relations between the two groups. We examine attribution of stereotypes (positive and negative) and willingness to engage in social interactions with individuals from the other group. The study hypothesis is that academic seniority (beginning students, advanced students) will be related to perceptions of the relations between the two groups, as manifested in attributions of positive and negative stereotypes and willingness to reduce the social distance between the two groups. Method: One hundred and eighty Jewish and Arab nursing students (111 Jewish and 69 Arab) completed questionnaires examining their perceptions of the social relations between the two groups. The questionnaires were administered at two different points in their studies (beginning students and those at more advanced stages Results: No differences were found between beginning students and advanced students with respect to stereotypes. However, advanced students expressed greater willingness to reduce social distance than did beginning students. Conclusions: The findings indicate that bringing members of different social groups into contact may improve some aspects of intergroup relations. The findings suggest that different aspects of perceptions of social relations are influenced by different contexts: the students' specific context (joint studies and joint work in the future) and the broader general context of relations between the groups. Accordingly, it is recommended that programs aimed at improving relations in a between social groups will focus on willingness to cooperate and reduce social distance rather than on attempts to eliminate stereotypes.

Keywords: nursing education, perceived social relations, social distance, stereotypes

Procedia PDF Downloads 104
1214 Corpora in Secondary Schools Training Courses for English as a Foreign Language Teachers

Authors: Francesca Perri

Abstract:

This paper describes a proposal for a teachers’ training course, focused on the introduction of corpora in the EFL didactics (English as a foreign language) of some Italian secondary schools. The training course is conceived as a part of a TEDD participant’s five months internship. TEDD (Technologies for Education: diversity and devices) is an advanced course held by the Department of Engineering and Information Technology at the University of Trento, Italy. Its main aim is to train a selected, heterogeneous group of graduates to engage with the complex interdependence between education and technology in modern society. The educational approach draws on a plural coexistence of various theories as well as socio-constructivism, constructionism, project-based learning and connectivism. TEDD educational model stands as the main reference source to the design of a formative course for EFL teachers, drawing on the digitalization of didactics and creation of learning interactive materials for L2 intermediate students. The training course lasts ten hours, organized into five sessions. In the first part (first and second session) a series of guided and semi-guided activities drive participants to familiarize with corpora through the use of a digital tools kit. Then, during the second part, participants are specifically involved in the realization of a ML (Mistakes Laboratory) where they create, develop and share digital activities according to their teaching goals with the use of corpora, supported by the digital facilitator. The training course takes place into an ICT laboratory where the teachers work either individually or in pairs, with a computer connected to a wi-fi connection, while the digital facilitator shares inputs, materials and digital assistance simultaneously on a whiteboard and on a digital platform where participants interact and work together both synchronically and diachronically. The adoption of good ICT practices is a fundamental step to promote the introduction and use of Corpus Linguistics in EFL teaching and learning processes, in fact dealing with corpora not only promotes L2 learners’ critical thinking and orienteering versus wild browsing when they are looking for ready-made translations or language usage samples, but it also entails becoming confident with digital tools and activities. The paper will explain reasons, limits and resources of the pedagogical approach adopted to engage EFL teachers with the use of corpora in their didactics through the promotion of digital practices.

Keywords: digital didactics, education, language learning, teacher training

Procedia PDF Downloads 154
1213 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. Ladier, S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: nuclear decommissioning, logistical optimization, decision-support framework, waste management

Procedia PDF Downloads 323
1212 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization

Procedia PDF Downloads 152
1211 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 196
1210 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.

Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter

Procedia PDF Downloads 330
1209 A Generative Adversarial Framework for Bounding Confounded Causal Effects

Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu

Abstract:

Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.

Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning

Procedia PDF Downloads 191
1208 Emotiv EPOC BCI Matrix Speller Based on Single Emokey

Authors: S. M. Abdullah Al Mamun

Abstract:

Human Computer Interaction (HCI) is an excellent area for the researchers to make daily life more simple and fast. Necessary hardware equipments for any BCI are generally expensive and not affordable for most of the people. Emotiv is one of the solutions for this problem, which can provide electroencephalograph (EEG) signal and explain the brain activities. BCI virtual speller was one of the important applications for the people who have lost their hand or speaking ability because of diseases or unexpected accident. In this paper, a matrix speller has been designed for the first time for Bengali speaking people around the world. Bengali is one of the most commonly spoken languages. Among them, a lot of disabled person will be able to express their desire in their mother tongue. This application is also usable for the social networks and daily life communications. For this virtual keyboard, the well-known matrix speller method with column flashing is applied and controlled by single Emokey only. Emokey is a great feature which translates emotional state for application inputs. In this paper, it is presented that the ITR (Information Transfer Rate) were 29.4 bits/min and typing speed achieved up to 7.43 char/per min.

Keywords: brain computer interface, Emotiv EPOC, EEG, virtual keyboard, matrix speller

Procedia PDF Downloads 308
1207 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining

Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi

Abstract:

Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.

Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory

Procedia PDF Downloads 403
1206 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 100
1205 Water Supply and Utility Management to Address Urban Sanitation Issues

Authors: Akshaya P., Priyanjali Prabhkaran

Abstract:

The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues.

Keywords: water, benchmarking water supply, water supply networks, water supply management

Procedia PDF Downloads 109
1204 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 363
1203 A Blockchain-Based Protection Strategy against Social Network Phishing

Authors: Francesco Buccafurri, Celeste Romolo

Abstract:

Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.

Keywords: phishing, social networks, information sharing, blockchain

Procedia PDF Downloads 328
1202 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 157
1201 Estimation of Delay Due to Loading–Unloading of Passengers by Buses and Reduction of Number of Lanes at Selected Intersections in Dhaka City

Authors: Sumit Roy, A. Uddin

Abstract:

One of the significant reasons that increase the delay time in the intersections at heterogeneous traffic condition is a sudden reduction of the capacity of the roads. In this study, the delay for this sudden capacity reduction is estimated. Two intersections at Dhaka city were brought in to thestudy, i.e., Kakrail intersection, and SAARC Foara intersection. At Kakrail intersection, the sudden reduction of capacity in the roads is seen at three downstream legs of the intersection, which are because of slowing down or stopping of buses for loading and unloading of passengers. At SAARC Foara intersection, sudden reduction of capacity was seen at two downstream legs. At one leg, it was due to loading and unloading of buses, and at another leg, it was for both loading and unloading of buses and reduction of the number of lanes. With these considerations, the delay due to intentional stoppage or slowing down of buses and reduction of the number of lanes for these two intersections are estimated. Here the delay was calculated by two approaches. The first approach came from the concept of shock waves in traffic streams. Here the delay was calculated by determining the flow, density, and speed before and after the sudden capacity reduction. The second approach came from the deterministic analysis of queues. Here the delay is calculated by determining the volume, capacity and reduced capacity of the road. After determining the delay from these two approaches, the results were compared. For this study, the video of each of the two intersections was recorded for one hour at the evening peak. Necessary geometric data were also taken to determine speed, flow, and density, etc. parameters. The delay was calculated for one hour with one-hour data at both intersections. In case of Kakrail intersection, the per hour delay for Kakrail circle leg was 5.79, and 7.15 minutes, for Shantinagar cross intersection leg they were 13.02 and 15.65 minutes, and for Paltan T intersection leg, they were 3 and 1.3 minutes for 1st and 2nd approaches respectively. In the case of SAARC Foara intersection, the delay at Shahbag leg was only due to intentional stopping or slowing down of busses, which were 3.2 and 3 minutes respectively for both approaches. For the Karwan Bazar leg, the delays for buses by both approaches were 5 and 7.5 minutes respectively, and for reduction of the number of lanes, the delays for both approaches were 2 and 1.78 minutes respectively. Measuring the delay per hour for the Kakrail leg at Kakrail circle, it is seen that, with consideration of the first approach of delay estimation, the intentional stoppage and lowering of speed by buses contribute to 26.24% of total delay at Kakrail circle. If the loading and unloading of buses at intersection is made forbidden near intersection, and any other measures for loading and unloading of passengers are established far enough from the intersections, then the delay at intersections can be reduced at significant scale, and the performance of the intersections can be enhanced.

Keywords: delay, deterministic queue analysis, shock wave, passenger loading-unloading

Procedia PDF Downloads 178
1200 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
1199 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 120
1198 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 350
1197 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process

Authors: Hen Friman

Abstract:

Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.

Keywords: renewable energy, solar energy, innovative, wastewater treatment

Procedia PDF Downloads 108
1196 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion

Authors: Prajamitra Bhuyan

Abstract:

Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.

Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome

Procedia PDF Downloads 240
1195 Multiple Identity Construction among Multilingual Minorities: A Quantitative Sociolinguistic Case Study

Authors: Stefanie Siebenhütter

Abstract:

This paper aims to reveal criterions involved in the process of identity-forming among multilingual minority language speakers in Northeastern Thailand and in the capital Bangkok. Using sociolinguistic interviews and questionnaires, it is asked which factors are important for speakers and how they define their identity by their interactions socially as well as linguistically. One key question to answer is how sociolinguistic factors may force or diminish the process of forming social identity of multilingual minority speakers. However, the motivation for specific language use is rarely overt to the speaker’s themselves as well as to others. Therefore, identifying the intentions included in the process of identity construction is to approach by scrutinizing speaker’s behavior and attitudes. Combining methods used in sociolinguistics and social psychology allows uncovering the tools for identity construction that ethnic Kui uses to range themselves within a multilingual setting. By giving an overview of minority speaker’s language use in context of the specific border near multilingual situation and asking how speakers construe identity within this spatial context, the results exhibit some of the subtle and mostly unconscious criterions involved in the ongoing process of identity construction.

Keywords: social identity, identity construction, minority language, multilingualism, social networks, social boundaries

Procedia PDF Downloads 267
1194 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 178
1193 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 126