Search results for: green DME production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9264

Search results for: green DME production

6564 Porous Ni Electrodes Modified with Au Nanoparticles for Hydrogen Production

Authors: V. Pérez-Herranz, C. González-Buch, E. M. Ortega, S. Mestre

Abstract:

In this work new macroporous Ni electrodes modified with Au nanoparticles for hydrogen production have been developed. The supporting macroporous Ni electrodes have been obtained by means of the electrodeposition at high current densities. Then, the Au nanoparticles were synthesized and added to the electrode surface. The electrocatalytic behaviour of the developed electrocatalysts was studied by means of pseudo-steady-state polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen discharge curves. The size of the Au synthetized nanoparticles shows a monomodal distribution, with a very sharp band between 10 and 50 nm. The characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. From Tafel polarization data has been concluded that the Au nanoparticles improve the catalytic activity of the developed electrodes towards the HER respect to the macroporous Ni electrodes. EIS permits to obtain the electrochemically active area by means of the roughness factor value. All the developed electrodes show roughness factor values in the same order of magnitude. From the activation energy results it can be concluded that the Au nanoparticles improve the intrinsic catalytic activity of the macroporous Ni electrodes.

Keywords: Au nano particles, hydrogen evolution reaction, porous Ni electrodes, electrochemical impedance spectroscopy

Procedia PDF Downloads 625
6563 Rheological Properties of Dough and Sensory Quality of Crackers with Dietary Fibers

Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Zita Šereš, Biljana Pajin, Nils Juul, Nikola Maravić

Abstract:

The possibility of application the dietary fibers in production of crackers was observed in this work, as well as their influence on rheological and textural properties on the dough for crackers and influence on sensory properties of obtained crackers. Three different dietary fibers, oat, potato and pea fibers, replaced 10% of wheat flour. Long fermentation process and baking test method were used for crackers production. The changes of dough for crackers were observed by rheological methods of determination the viscoelastic dough properties and by textural measurements. Sensory quality of obtained crackers was described using quantity descriptive method (QDA) by trained members of descriptive panel. Additional analysis of crackers surface was performed by videometer. Based on rheological determination, viscoelastic properties of dough for crackers were reduced by application of dietary fibers. Manipulation of dough with 10% of potato fiber was disabled, thus the recipe modification included increase in water content at 35%. Dough compliance to constant stress for samples with dietary fibers decreased, due to more rigid and stiffer dough consistency compared to control sample. Also, hardness of dough for these samples increased and dough extensibility decreased. Sensory properties of final products, crackers, were reduced compared to control sample. Application of dietary fibers affected mostly hardness, structure and crispness of the crackers. Observed crackers were low marked for flavor and taste, due to influence of fibers specific aroma. The sample with 10% of potato fibers and increased water content was the most adaptable to applied stresses and to production process. Also this sample was close to control sample without dietary fibers by evaluation of sensory properties and by results of videometer method.

Keywords: crackers, dietary fibers, rheology, sensory properties

Procedia PDF Downloads 326
6562 Studies on Lucrative Process Layout for Medium Scale Industries

Authors: Balamurugan Baladhandapani, Ganesh Renganathan, V. R. Sanal Kumar

Abstract:

In this paper a comprehensive review on various factory layouts has been carried out for designing a lucrative process layout for medium scale industries. Industry data base reveals that the end product rejection rate is on the order of 10% amounting large profit loss. In order to avoid these rejection rates and to increase the quality product production an intermediate non-destructive testing facility (INDTF) has been recommended for increasing the overall profit. We observed through detailed case studies that while introducing INDTF to medium scale industries the expensive production process can be avoided to the defective products well before its final shape. Additionally, the defective products identified during the intermediate stage can be effectively utilized for other applications or recycling; thereby the overall wastage of the raw materials can be reduced and profit can be increased. We concluded that the prudent design of a factory layout through critical path method facilitating with INDTF will warrant profitable outcome.

Keywords: intermediate non-destructive testing, medium scale industries, process layout design

Procedia PDF Downloads 512
6561 Growth of Algal Biomass in Laboratory and in Pilot-Scale Algal Photobioreactors in the Temperate Climate of Southern Ireland

Authors: Linda A. O’Higgins, Astrid Wingler, Jorge Oliveira

Abstract:

The growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1 L) and compared to batch growth in sunlit modules (5–25 L) of the commercial Phytobag photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of a 10m2 pilot-scale photobioreactor, Phytobag (10,000 L). The analysis confirmed light limitation in all three photobioreactors. An additional limitation of biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.

Keywords: microalgae, batch cultivation, Chlorella vulgaris, Mathematical model, photobioreactor, scale-up

Procedia PDF Downloads 120
6560 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands

Authors: Ross J. Maestas

Abstract:

Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.

Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands

Procedia PDF Downloads 330
6559 FWGE Production From Wheat Germ Using Co-culture of Saccharomyces cerevisiae and Lactobacillus plantarum

Authors: Valiollah Babaeipour, Mahdi Rahaie

Abstract:

food supplements are rich in specific nutrients and bioactive compounds that eliminate free radicals and improve cellular metabolism. The major bioactive compounds are found in bran and cereal sprouts. Secondary metabolites of these microorganisms have antioxidant properties that can be used alone or in combination with chemotherapy and radiation therapy to treat cancer. Biologically active compounds such as benzoquinone derivatives extracted from fermented wheat germ extract (FWGE) have several positive effects on the overall state of human health and strengthen the immune system. The present work describes the discontinuous fermentation of raw wheat germ for FWGE production through the simultaneous culture process using the probiotic strains of Saccharomyces cerevisiae, Lactobacillus plantarum, and the possibility of using solid waste. To increase production efficiency, first to select important factors in the optimization of each fermentation process, using a factorial statistical scheme of stirring fraction (120 to 200 rpm), dilution of solids to solvent (1 to 8-12), fermentation time (16 to 24 hours) and strain to wheat germ ratio (20% to 50%) were studied and then simultaneous culture was performed to increase the yields of 2 and 6 dimethoxybenzoquinone (2,6-DMBQ). Since 2 and 6 dimethoxy benzoquinone were fermented as the main biologically active compound in wheat germ extract, UV-Vis analysis was performed to confirm the presence of 2 and 6 dimethoxy benzoquinone in the final product. In addition, 2,6-DMBQ of some products was isolated in a non-polar C-18 column and quantified using high performance liquid chromatography (HPLC). Based on our findings, it can be concluded that the increase of 2 and 6 dimethoxybenzoquinone in the simultaneous culture of Saccharomyces cerevisiae - Lactobacillus plantarum compared to pure culture of Saccharomyces cerevisiae (from 1.89 mg / g) to 28.9% (2.66 mg / g) Increased.

Keywords: wheat germ, FWGE, saccharomyces cerevisiae, lactobacillus plantarum, co-culture, 2, 6-DMBQ

Procedia PDF Downloads 132
6558 Exploring the Impact of Additive Manufacturing on Supply Chains: A Game-Theoretic Analysis of Manufacturer-Retailer Dynamics

Authors: Mohammad Ebrahim Arbabian

Abstract:

This paper investigates the impact of 3D printing, also known as additive manufacturing, on a multi-item supply chain comprising a manufacturer and retailer. Operating under a wholesale-price contract and catering to stochastic customer demand, this study delves into the largely unexplored realm of how 3D printing technology reshapes supply chain dynamics. A distinguishing aspect of 3D printing is its versatility in producing various product types, yet its slower production pace compared to traditional methods poses a challenge. We analyze the trade-off between 3D printing's limited capacity and its enhancement of production flexibility. By delineating the economic circumstances favoring 3D printing adoption by the manufacturer, we establish the Stackelberg equilibrium in the retailer-manufacturer game. Additionally, we determine optimal order quantities for the retailer considering 3D printing as an option for the manufacturer, ascertain optimal wholesale prices in the presence of 3D printing, and compute optimal profits for both parties involved in the supply chain.

Keywords: additive manufacturing, supply chain management, contract theory, Stackelberg game, optimization

Procedia PDF Downloads 67
6557 A Replicon-Baculovirus Model for Efficient Packaging of Hepatitis E Virus RNA and Production of Infectious Virions

Authors: Mohammad K. Parvez, Mohammed S. Al-Dosari

Abstract:

Hepatitis E virus (HEV) is an emerging RNA virus that causes acute and chronic liver disease with a global mortality rate of about 2%. Despite milestone developments in understanding of HEV biology, there is still lack of a robust culture system or animal model. Therefore, in a novel approach, two recombinant-baculoviruses (vBac-ORF2 and vBac-ORF3) that could overexpress HEV ORF2 (structural/capsid) and ORF3 (nonstructural/regulatory) proteins, respectively were constructed. The established HEV-SAR55 (genotype 1) replicon that contained GFP gene, in place of ORF2/ORF3 sequences was in vitro transcribed, and GFP production in RNA transfected S10-3 cells was scored by FACS. Enhanced infectivity, if any, of nascent virions produced by exogenously-supplied ORF2 and viral RNA by co-expression of ORF3 was tested on naïve HepG2 cells. Co-transduction with vBac-ORF2/vBac-ORF3 (108 pfu/microL) produced high amounts of native ORF2/ORF3 in approximately 60% of S10-3 cells, determined by immunofluorescence microscopy and Western analysis. FACS analysis showed about 9% GFP positivity of S10-3 cells on day6 post-transfection (i.e, day5 post-transduction). Further, FACS scoring indicated that lysates from S10-3 cultures receiving the RNA plus vBac-ORF2 were capable of producing HEV particles with about 4% infectivity in HepG2 cells. However, lysates of cultures co-transduced with vBac-ORF3, were found to further enhance virion infectivity by approximately 17%. This supported a previously proposed role of ORF3 as a minor-structural protein in HEV virion assembly and infectivity. In conclusion, the present model for efficient genomic RNA packaging and production of infectious virions could be a valuable tool to study various aspects of HEV molecular biology, in vitro.

Keywords: chronic liver disease, hepatitis E virus, ORF2, ORF3, replicon

Procedia PDF Downloads 258
6556 Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators

Authors: K. Bourouni, M. Chacha, T. Jaber, A. Tchantchane

Abstract:

In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer.

Keywords: multi-effect-evaporator, scale deposition, water desalination, heat transfer coefficient

Procedia PDF Downloads 156
6555 Reflection on the Resilience Construction of Megacities Under the Background of Territorial Space Governance

Authors: Xin Jie Li

Abstract:

Due to population agglomeration, huge scale, and complex activities, megacities have become risk centers. To resist the risks brought by development uncertainty, the construction of resilient cities has become a common strategic choice for megacities. As a key link in promoting the modernization of the national governance system and governance capacity, optimizing the layout of national land space that focuses on ecology, production, and life and improving the rationality of spatial resource allocation are conducive to fundamentally promoting the resilience construction of megacities. Therefore, based on the perspective of territorial space governance, this article explores the potential risks faced by the territorial space of megacities and proposes possible paths for the resilience construction of megacities from four aspects: promoting the construction of a resilience system throughout the entire life cycle, constructing a disaster prevention and control system with ecological resilience, creating an industrial spatial pattern with production resilience, and enhancing community resilience to anchor the front line of risk response in megacities.

Keywords: mega cities, potential risks, resilient city construction, territorial and spatial governance

Procedia PDF Downloads 64
6554 Maturity Model for Agro-Industrial Logistics

Authors: Erika Tatiana Ruiz, Wilson Adarme Jaimes

Abstract:

This abstract presents the methodology for improving the logistics processes of agricultural production units belonging to the coffee, cocoa, and fruit sectors, starting from the fundamental concepts and detailing each of the phases to carry out the diagnosis, which will be the basis for the formulation of its action plan and implementation of the maturity model. As a result of this work, the maturity model is formulated to improve logistics processes. This model seeks to: generate a progressive model that is useful for all productive units belonging to these sectors at the national level, regardless of their initial conditions, focus on the improvement of logistics processes as a strategy that contributes to improving the competitiveness of the agricultural sector in Colombia and spread the implementation of good logistics practices in postharvest in all departments of the country through autonomous tools. This model has been built through a series of steps that allow the evaluation and improvement of the logistics dimensions or indicators. The potential improvements for each dimension provide the foundation on which to advance to the next level. Within the maturity model, a methodology is indicated for the design and execution of strategies to improve its logistics processes, taking into account the current state of each production unit.

Keywords: agroindustrial, characterization, logistics, maturity model, processes

Procedia PDF Downloads 141
6553 Solid Waste Management Challenges and Possible Solution in Kabul City

Authors: Ghulam Haider Haidaree, Nsenda Lukumwena

Abstract:

Most developing nations face energy production and supply problems. This is also the case of Afghanistan whose generating capacity does not meet its energy demand. This is due in part to high security and risk caused by war which deters foreign investments and insufficient internal revenue. To address the issue above, this paper would like to suggest an alternative and affordable way to deal with the energy problem. That is by converting Solid Waste to energy. As a result, this approach tackles the municipal solid waste issue (potential cause of several diseases), contributes to the improvement of the quality of life, local economy, and so on. While addressing the solid waste problem in general, this paper samples specifically one municipality which is District-12, one of the 22 districts of Kabul city. Using geographic information system (GIS) technology, District-12 is divided into nine different zones whose municipal solid waste is respectively collected, processed, and converted into electricity and distributed to the closest area. It is important to mention that GIS has been used to estimate the amount of electricity to be distributed and to optimally position the production plant.

Keywords: energy problem, estimation of electricity, GIS zones, solid waste management system

Procedia PDF Downloads 340
6552 Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction

Authors: Shayli Varasteh Moradi, Wayne A. Johnston, Dejan Gagoski, Kirill Alexandrov

Abstract:

The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput.

Keywords: AlphaLISA technology, cell-free protein expression, epitope mapping, Leishmania tarentolae, protein-protein interaction

Procedia PDF Downloads 240
6551 Achieving Environmentally Sustainable Supply Chain in Textile and Apparel Industries

Authors: Faisal Bin Alam

Abstract:

Most of the manufacturing entities cause negative footprint to nature that demand due attention. Textile industries have one of the longest supply chains and bear the liability of significant environmental impact to our planet. Issues of environmental safety, scarcity of energy and resources, and demand for eco-friendly products have driven research to search for safe and suitable alternatives in apparel processing. Consumer awareness, increased pressure from fashion brands and actions from local legislative authorities have somewhat been able to improve the practices. Objective of this paper is to reveal the best selection of raw materials and methods of production, taking environmental sustainability into account. Methodology used in this study is exploratory in nature based on personal experience, field visits in the factories of Bangladesh and secondary sources. Findings are limited to exploring better alternatives to conventional operations of a Readymade Garment manufacturing, from fibre selection to final product delivery, therefore showing some ways of achieving greener environment in the supply chain of a clothing industry.

Keywords: textile and apparel, environmental sustainability, supply chain, production, clothing

Procedia PDF Downloads 139
6550 Macroalgae as a Gaseous Fuel Option: Potential and Advanced Conversion Technologies

Authors: Muhammad Rizwan Tabassum, Ao Xia, Jerry D. Murphy

Abstract:

The aim of this work is to provide an overview of macroalgae as an alternative feedstock for gaseous fuel production and key innovative technologies. Climate change and continuously depleting resources are the key driving forces to think for alternative sources of energy. Macroalgae can be favored over land based energy crops because they are not in direct competition with food crops. However, some drawbacks, such as high moisture content, seasonal variation in chemical composition and process inhibition limit the economic practicability. Macroalgae, like brown seaweed can be converted into gaseous and liquid fuel by different conversion technologies. Biomethane via anaerobic digestion is the appealing technology due to its dual advantage of a commercially applicable and environment friendly technology. Other technologies like biodiesel and bioethanol conversion technologies from seaweed are still under progress. Screening of high yielding macroalgae species, peak harvesting season and process optimization make the technology economically feasible for alternative source of feedstock for biofuel production in future.

Keywords: anaerobic digestion, biofuels, bio-methane, advanced conversion technologies, macroalgae

Procedia PDF Downloads 310
6549 Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition

Authors: Sergey Nikitenko, Vladimir Klishin, Yury Malakhov, Elena Goosen

Abstract:

Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies.

Keywords: resilience, resilience concept, resilience indicator, resilience in the Russian coal industry, value chains

Procedia PDF Downloads 110
6548 Protective Role of Peroxiredoxin V against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice

Authors: Eun Gyeong Lee, Ji Young Park, Hyun Ae Woo

Abstract:

Reactive oxygen species (ROS) production is involved in ischemia/reperfusion (I/R) injury in kidney of mice. Oxidative stress develops from an imbalance between ROS production and reduced antioxidant defenses. Many enzymatic and nonenzymatic antioxidant systems including peroxiredoxins (Prxs) are present in kidney to maintain an appropriate level of ROS and prevent oxidative damage. Prxs are a family of peroxidases that reduce peroxides, with a conserved cysteine residue serving as the site of oxidation by peroxides. In this study, we examined the protective role of Prx V against I/R-induced acute kidney injury (AKI) using Prx V wild type (WT) and knockout (KO) mice. We compared the response of Prx V WT and KO mice in mice model of I/R injury. Renal structure, functions, oxidative stress markers, protein levels of oxidative damage marker were worse in Prx V KO mice. Ablation of Prx V enhanced susceptibility to I/R-induced oxidative stress. Prx V KO mice were seen to have more severe renal damage than Prx V WT mice in mice model of I/R injury. Our results demonstrate that Prx V is protective against I/R-induced AKI.

Keywords: peroxiredoxin, ischemia/reperfusion, kidney, oxidative stress

Procedia PDF Downloads 387
6547 Optimizing Cell Culture Performance in an Ambr15 Microbioreactor Using Dynamic Flux Balance and Computational Fluid Dynamic Modelling

Authors: William Kelly, Sorelle Veigne, Xianhua Li, Zuyi Huang, Shyamsundar Subramanian, Eugene Schaefer

Abstract:

The ambr15™ bioreactor is a single-use microbioreactor for cell line development and process optimization. The ambr system offers fully automatic liquid handling with the possibility of fed-batch operation and automatic control of pH and oxygen delivery. With operating conditions for large scale biopharmaceutical production properly scaled down, micro bioreactors such as the ambr15™ can potentially be used to predict the effect of process changes such as modified media or different cell lines. In this study, gassing rates and dilution rates were varied for a semi-continuous cell culture system in the ambr15™ bioreactor. The corresponding changes to metabolite production and consumption, as well as cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15™ bioreactor that produced metabolic shifts and specific metabolic and protein production rates also seen in the corresponding larger (5 liter) scale perfusion process. A Dynamic Flux Balance model was employed to understand and predict the metabolic changes observed. The DFB model-predicted trends observed experimentally, including lower specific glucose consumption when CO₂ was maintained at higher levels (i.e. 100 mm Hg) in the broth. A Computational Fluid Dynamic (CFD) model of the ambr15™ was also developed, to understand transfer of O₂ and CO₂ to the liquid. This CFD model predicted gas-liquid flow in the bioreactor using the ANSYS software. The two-phase flow equations were solved via an Eulerian method, with population balance equations tracking the size of the gas bubbles resulting from breakage and coalescence. Reasonable results were obtained in that the Carbon Dioxide mass transfer coefficient (kLa) and the air hold up increased with higher gas flow rate. Volume-averaged kLa values at 500 RPM increased as the gas flow rate was doubled and matched experimentally determined values. These results form a solid basis for optimizing the ambr15™, using both CFD and FBA modelling approaches together, for use in microscale simulations of larger scale cell culture processes.

Keywords: cell culture, computational fluid dynamics, dynamic flux balance analysis, microbioreactor

Procedia PDF Downloads 286
6546 Efficiency and Factors Affecting Inefficiency in the Previous Enclaves of Northern Region of Bangladesh: An Analysis of SFA and DEA Approach

Authors: Md. Mazharul Anwar, Md. Samim Hossain Molla, Md. Akkas Ali, Mian Sayeed Hassan

Abstract:

After 68 years, the agreement between Bangladesh and India was ratified on 6 June 2015 and Bangladesh received 111 Indian enclaves. Millions of farm household lived in these previous enclaves, being detached from the mainland of the country, they were socially, economically and educationally deprived people in the world. This study was undertaken to compare of the Stochastic Frontier Analysis (SFA) and the constant returns to scale (CRS) and variable returns to scale (VRS) output-oriented DEA models, based on a sample of 300 farms from the three largest enclaves of Bangladesh in 2017. However, the aim of the study was not only to compare estimates of technical efficiency obtained from the two approaches, but also to examine the determinants of inefficiency. The results from both the approaches indicated that there is a potential for increasing farm production through efficiency improvement and that farmers' age, educational level, new technology dissemination and training on crop production technology have a significant effect on efficiency. The detection and measurement of technical inefficiency and its determinants can be used as a basis of policy recommendations.

Keywords: DEA approach, previous enclaves, SFA approach, technical inefficiency

Procedia PDF Downloads 133
6545 Machine Installation and Maintenance Management

Authors: Mohammed Benmostefa

Abstract:

In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company.

Keywords: maintenance, vibration, efficiency, production, machinery

Procedia PDF Downloads 92
6544 Low-Emission Commuting with Micro Public Transport: Investigation of Travel Times and CO₂ Emissions

Authors: Marcel Ciesla, Victoria Oberascher, Sven Eder, Stefan Kirchweger, Wolfgang E. Baaske, Gerald Ostermayer

Abstract:

The omnipresent trend towards sustainable mobility is a major challenge, especially for commuters in rural areas. The use of micro public transport systems is expected to significantly reduce pollutant emissions, as several commuters travel the first mile together with a single pick-up bus instead of their own car. In this paper, different aspects of such a micro public transport system are analyzed. The main findings of the investigations should be how the travel times of commuters change and how many CO₂ emissions can be saved if some of the commuters use public transport instead of their own vehicle.

Keywords: micro public transport, green transportation, sustainable mobility, low-emission commuting

Procedia PDF Downloads 483
6543 Assessment of Mammary Gland Immunity and Therapeutic Potential of Topical Herbal Gel against Bovine Subclinical Mastitis

Authors: Mukesh N. Kher, Anju P. Kunjadia, Dev S. Nauriyal, Chaitanya G. Joshi, Navin R. Sheth, Vaibhav D. Bhatt

Abstract:

In-vivo immunotherapeutic potential on cytokines production and antibacterial activity of a topical herbal gel was evaluated in two breeds of cattle in bovine subclinical mastitis. The response to treatment was evaluated by enumerating somatic cell count (SCC), determining total bacterial count and studying the expression of different cytokines like (interleukin 6, 8, 12, GMCSF, interferon–γ and TNF‑α). The pre‑ and post‑treatment SCC in mastitic quarters did not differ statistically-significantly. However, total bacterial count declined significantly from day 0 onwards in both the breeds. Significant differences (P < 0.01) were observed in all types of cytokines production on day 0, 5, and 21 post last treatments in both the breeds. The comparison of cytokine expression profiles between crossbred and Gir cattle affirmed a significant difference in expression of IL-6 and TNF-α. The topical herbal gel showed immunomodulatory and antimicrobial activities in subclinical mastitis, and therefore the work supports its use as substitute herbal therapy against subclinical mastitis in bovines.

Keywords: antibacterial activity, immunomodulation, herbal gel, subclinical mastitis

Procedia PDF Downloads 295
6542 Balancing Biodiversity and Agriculture: A Broad-Scale Analysis of the Land Sparing/Land Sharing Trade-Off for South African Birds

Authors: Chevonne Reynolds, Res Altwegg, Andrew Balmford, Claire N. Spottiswoode

Abstract:

Modern agriculture has revolutionised the planet’s capacity to support humans, yet has simultaneously had a greater negative impact on biodiversity than any other human activity. Balancing the demand for food with the conservation of biodiversity is one of the most pressing issues of our time. Biodiversity-friendly farming (‘land sharing’), or alternatively, separation of conservation and production activities (‘land sparing’), are proposed as two strategies for mediating the trade-off between agriculture and biodiversity. However, there is much debate regarding the efficacy of each strategy, as this trade-off has typically been addressed by short term studies at fine spatial scales. These studies ignore processes that are relevant to biodiversity at larger scales, such as meta-population dynamics and landscape connectivity. Therefore, to better understand species response to agricultural land-use and provide evidence to underpin the planning of better production landscapes, we need to determine the merits of each strategy at larger scales. In South Africa, a remarkable citizen science project - the South African Bird Atlas Project 2 (SABAP2) – collates an extensive dataset describing the occurrence of birds at a 5-min by 5-min grid cell resolution. We use these data, along with fine-resolution data on agricultural land-use, to determine which strategy optimises the agriculture-biodiversity trade-off in a southern African context, and at a spatial scale never considered before. To empirically test this trade-off, we model bird species population density, derived for each 5-min grid cell by Royle-Nicols single-species occupancy modelling, against both the amount and configuration of different types of agricultural production in the same 5-min grid cell. In using both production amount and configuration, we can show not only how species population densities react to changes in yield, but also describe the production landscape patterns most conducive to conservation. Furthermore, the extent of both the SABAP2 and land-cover datasets allows us to test this trade-off across multiple regions to determine if bird populations respond in a consistent way and whether results can be extrapolated to other landscapes. We tested the land sparing/sharing trade-off for 281 bird species across three different biomes in South Africa. Overall, a higher proportion of species are classified as losers, and would benefit from land sparing. However, this proportion of loser-sparers is not consistent and varies across biomes and the different types of agricultural production. This is most likely because of differences in the intensity of agricultural land-use and the interactions between the differing types of natural vegetation and agriculture. Interestingly, we observe a higher number of species that benefit from agriculture than anticipated, suggesting that agriculture is a legitimate resource for certain bird species. Our results support those seen at smaller scales and across vastly different agricultural systems, that land sparing benefits the most species. However, our analysis suggests that land sparing needs to be implemented at spatial scales much larger than previously considered. Species persistence in agricultural landscapes will require the conservation of large tracts of land, and is an important consideration in developing countries, which are undergoing rapid agricultural development.

Keywords: agriculture, birds, land sharing, land sparing

Procedia PDF Downloads 212
6541 Life Cycle Assesment (LCA) Study of Shrimp Fishery in the South East Coast of Arabian Sea

Authors: Leela Edwin, Rithin Joseph, P. H. Dhiju Das, K. A. Sayana, P. S. Muhammed Sherief

Abstract:

The shrimp trawl fishery is considered one of the more valuable fisheries from the South east Coast of Arabian Sea. Inventory data for the shrimp were collected over 1 year period and used to carry out a life cycle assessment (LCA). LCA was performed to assess and compare the environmental impacts associated with the fishing operations related to shrimp fishery. This analysis included the operation of the vessels, together with major inputs related to the production of diesel, trawl nets, or anti-fouling paints. Data regarding vessel operation was obtained from the detailed questionnaires filled out by 180 trawlers. The analysis on environmental impacts linked to shrimp extraction on a temporal scale, showed that varying landings enhanced the environmental burdens mainly associated with activities related to diesel production, transport and consumption of the fishing vessels. Discard rates for trawlers were also identified as a major environmental impact in this fishery.

Keywords: shrimp trawling, life cycle assesment (LCA), Arabian sea, environmental impacts

Procedia PDF Downloads 327
6540 A Decision Support System for the Detection of Illicit Substance Production Sites

Authors: Krystian Chachula, Robert Nowak

Abstract:

Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).

Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion

Procedia PDF Downloads 119
6539 A New Approach to the Boom Welding Technique by Determining Seam Profile Tracking

Authors: Muciz Özcan, Mustafa Sacid Endiz, Veysel Alver

Abstract:

In this paper we present a new approach to the boom welding related to the mobile cranes manufacturing, implementing a new method in order to get homogeneous welding quality and reduced energy usage during booms production. We aim to get the realization of the same welding quality carried out on the boom in every region during the manufacturing process and to detect the possible welding errors whether they could be eliminated using laser sensors. We determine the position of the welding region directly through our system and with the help of the welding oscillator we are able to perform a proper boom welding. Errors that may occur in the welding process can be observed by monitoring and eliminated by means of an operator. The major modification in the production of the crane booms will be their form of the booms. Although conventionally, more than one welding is required to perform this process, with the suggested concept, only one particular welding is sufficient, which will be more energy and environment-friendly. Consequently, as only one welding is needed for the manufacturing of the boom, the particular welding quality becomes more essential. As a way to satisfy the welding quality, a welding manipulator was made and fabricated. By using this welding manipulator, the risks of involving dangerous gases formed during the welding process for the operator and the surroundings are diminished as much as possible.

Keywords: boom welding, seam tracking, energy saving, global warming

Procedia PDF Downloads 350
6538 Simultaneous Esterification and Transesterification of High FFA Jatropha Oil Using Reactive Distillation for Biodiesel Production

Authors: Ratna Dewi Kusumaningtyas, Prima Astuti Handayani, Arief Budiman

Abstract:

Reactive Distillation (RD) is a multifunctional reactor which integrates chemical reaction with in situ separation to shift the equilibrium towards the product formation. Thus, it is suitable for equilibrium limited reaction such as esterification and transesterification to enhance the reaction conversion. In this work, the application of RD for high FFA oil esterification-transterification for biodiesel production using sulphuric acid catalyst has been studied. Crude Jatropha Oil with FFA content of 30.57% was utilized as the feedstock. Effects of the catalyst concentration and molar ratio of the alcohol to oils were also investigated. It was revealed that best result was obtained with sulphuric acid catalyst (reaction conversion of 94.71% and FFA content of 1.62%) at 60C, molar ratio of methanol to FFA of 30:1, and catalyst loading of 3%. After undergoing esterification reaction, jatropha oil was then transesterified to produce biodiesel. Transesterification reaction was performed in the presence of NaOH catalyst in RD column at 60C, molar ratio of methanol to oil of 6:1, and catalyst concentration of 1%. It demonstrated that biodiesel produced in this work agreed with the Indonesian National and ASTM standard of fuel.

Keywords: reactive distillation, biodiesel, esterification, transesterification

Procedia PDF Downloads 465
6537 Performance, Yolk and Serum Cholesterol of Shaver-Brown Layers Fed Moringa Leaf Meal and Sun Dried Garlic Powder

Authors: Anselm Onyimonyi, A. Abaponitus

Abstract:

One hundred and ninety two Shaver-Brown layers aged 40 weeks were used in a 10 weeks feeding trial to investigate the effect of supplementary moringa leaf meal and sun-dried garlic powder (MOGA) on the performance, egg yolk and serum cholesterol profiles of the birds. The birds were randomly assigned to four treatments in a 2 x 2 factorial in a Completely Randomized Design with 48 birds per treatment. Each treatment had 24 replicates with 2 birds, each separately housed in a cell in a battery cage. Birds on treatment 1 received a standard layers mash (16.5% CP and 3000 kcalME/kg) without any MOGA. Treatment 2 birds received the control diet with 5 g moringa leaf meal/kg of feed, treatment 3 received the control diet with 5 g sun-dried garlic powder/kg of feed, treatment 4 had a combination of 5 g each of moringa leaf meal and sun dried garlic powder/kg of feed. Data were kept on daily egg production, egg weight and feed intake. 10 eggs were collected per treatment at the end of the study for yolk cholesterol determination. Blood samples from four birds per treatment were collected and used for the serum cholesterol and triglycerides determination. Results showed that bird on treatment 3 (5% moringa leaf meal/kg of feed) had significantly higher (P < 0.05) Hen Day Egg Production record of 83.3% as against 78.75%, 65.05% and 66.67% recorded for the control, T2 and T4 birds, respectively. Egg weight of 56.39 g recorded for the same birds on treatment 3 was significantly (P< 0.05) lower than the values of 62.61 g, 60.99 g and 59.33 g recorded for birds on T4, T1 and T2, respectively. Yolk and serum cholesterol profiles of the moringa leaf meal fed birds were significantly (P<0.05) lowered when compared to those of the other treatments. Comparatively, the birds on the MOGA diets had significantly reduced yolk and serum cholesterol than the control. It is concluded that supplementation of moringa leaf meal and sun dried garlic powder at the levels used in this study will result in the production of nutritionally healthier eggs with less yolk and serum cholesterol.

Keywords: performance, cholesterol, moringa, garlic

Procedia PDF Downloads 525
6536 Do the Health Benefits of Oil-Led Economic Development Outweigh the Potential Health Harms from Environmental Pollution in Nigeria?

Authors: Marian Emmanuel Okon

Abstract:

Introduction: The Niger Delta region of Nigeria has a vast reserve of oil and gas, which has globally positioned the nation as the sixth largest exporter of crude oil. Production rapidly rose following oil discovery. In most oil producing nations of the world, the wealth generated from oil production and export has propelled economic advancement, enabling the development of industries and other relevant infrastructures. Therefore, it can be assumed that majority of the oil resource such as Nigeria’s, has the potential to improve the health of the population via job creation and derived revenues. However, the health benefits of this economic development might be offset by the environmental consequences of oil exploitation and production. Objective: This research aims to evaluate the balance between the health benefits of oil-led economic development and harmful environmental consequences of crude oil exploitation in Nigeria. Study Design: A pathway has been designed to guide data search and this study. The model created will assess the relationship between oil-led economic development and population health development via job creation, improvement of education, development of infrastructure and other forms of development as well as through harmful environmental consequences from oil activities. Data/Emerging Findings: Diverse potentially suitable datasets which are at different geographical scales have been identified, obtained or applied for and the dataset from the World Bank has been the most thoroughly explored. This large dataset contains information that would enable the longitudinal assessment of both the health benefits and harms from oil exploitation in Nigeria as well as identify the disparities that exist between the communities, states and regions. However, these data do not extend far back enough in time to capture the start of crude oil production. Thus, it is possible that the maximum economic benefits and health harms could be missed. To deal with this shortcoming, the potential for a comparative study with countries like United Kingdom, Morocco and Cote D’ivoire has also been taken into consideration, so as to evaluate the differences between these countries as well as identify the areas of improvement in Nigeria’s environmental and health policies. Notwithstanding, these data have shown some differences in each country’s economic, environmental and health state over time as well as a corresponding summary statistics. Conclusion: In theory, the beneficial effects of oil exploitation to the health of the population may be substantial as large swaths of the ‘wider determinants’ of population heath are influenced by the wealth of a nation. However, if uncontrolled, the consequences from environmental pollution and degradation may outweigh these benefits. Thus, there is a need to address this, in order to improve environmental and population health in Nigeria.

Keywords: environmental pollution, health benefits, oil-led economic development, petroleum exploitation

Procedia PDF Downloads 343
6535 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 117