Search results for: signal classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3701

Search results for: signal classification

1031 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 163
1030 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 339
1029 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 333
1028 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 229
1027 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques

Authors: Raymond Feng, Shadi Ghiasi

Abstract:

An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.

Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals

Procedia PDF Downloads 62
1026 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 428
1025 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 72
1024 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
1023 A Preliminary Literature Review of Digital Transformation Case Studies

Authors: Vesna Bosilj Vukšić, Lucija Ivančić, Dalia Suša Vugec

Abstract:

While struggling to succeed in today’s complex market environment and provide better customer experience and services, enterprises encompass digital transformation as a means for reaching competitiveness and foster value creation. A digital transformation process consists of information technology implementation projects, as well as organizational factors such as top management support, digital transformation strategy, and organizational changes. However, to the best of our knowledge, there is little evidence about digital transformation endeavors in organizations and how they perceive it – is it only about digital technologies adoption or a true organizational shift is needed? In order to address this issue and as the first step in our research project, a literature review is conducted. The analysis included case study papers from Scopus and Web of Science databases. The following attributes are considered for classification and analysis of papers: time component; country of case origin; case industry and; digital transformation concept comprehension, i.e. focus. Research showed that organizations – public, as well as private ones, are aware of change necessity and employ digital transformation projects. Also, the changes concerning digital transformation affect both manufacturing and service-based industries. Furthermore, we discovered that organizations understand that besides technologies implementation, organizational changes must also be adopted. However, with only 29 relevant papers identified, research positioned digital transformation as an unexplored and emerging phenomenon in information systems research. The scarcity of evidence-based papers calls for further examination of this topic on cases from practice.

Keywords: digital strategy, digital technologies, digital transformation, literature review

Procedia PDF Downloads 218
1022 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 59
1021 Changes in When and Where People Are Spending Time in Response to COVID-19

Authors: Nicholas Reinicke, Brennan Borlaug, Matthew Moniot

Abstract:

The COVID-19 pandemic has resulted in a significant change in driving behavior as people respond to the new environment. However, existing methods for analyzing driver behavior, such as travel surveys and travel demand models, are not suited for incorporating abrupt environmental disruptions. To address this, we analyze a set of high-resolution trip data and introduce two new metrics for quantifying driving behavioral shifts as a function of time, allowing us to compare the time periods before and after the pandemic began. We apply these metrics to the Denver, Colorado metropolitan statistical area (MSA) to demonstrate the utility of the metrics. Then, we present a case study for comparing two distinct MSAs, Louisville, Kentucky, and Des Moines, Iowa, which exhibit significant differences in the makeup of their labor markets. The results indicate that although the regions of study exhibit certain unique driving behavioral shifts, emerging trends can be seen when comparing between seemingly distinct regions. For instance, drivers in all three MSAs are generally shown to have spent more time at residential locations and less time in workplaces in the time period after the pandemic started. In addition, workplaces that may be incompatible with remote working, such as hospitals and certain retail locations, generally retained much of their pre-pandemic travel activity.

Keywords: COVID-19, driver behavior, GPS data, signal analysis, telework

Procedia PDF Downloads 111
1020 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect

Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan

Abstract:

Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearing

Keywords: bearing, dipole, noise, sound

Procedia PDF Downloads 294
1019 Landscape Classification in North of Jordan by Integrated Approach of Remote Sensing and Geographic Information Systems

Authors: Taleb Odeh, Nizar Abu-Jaber, Nour Khries

Abstract:

The southern part of Wadi Al Yarmouk catchment area covers north of Jordan. It locates within latitudes 32° 20’ to 32° 45’N and longitudes 35° 42’ to 36° 23’ E and has an area of about 1426 km2. However, it has high relief topography where the elevation varies between 50 to 1100 meter above sea level. The variations in the topography causes different units of landforms, climatic zones, land covers and plant species. As a results of these different landscapes units exists in that region. Spatial planning is a major challenge in such a vital area for Jordan which could not be achieved without determining landscape units. However, an integrated approach of remote sensing and geographic information Systems (GIS) is an optimized tool to investigate and map landscape units of such a complicated area. Remote sensing has the capability to collect different land surface data, of large landscape areas, accurately and in different time periods. GIS has the ability of storage these land surface data, analyzing them spatially and present them in form of professional maps. We generated a geo-land surface data that include land cover, rock units, soil units, plant species and digital elevation model using ASTER image and Google Earth while analyzing geo-data spatially were done by ArcGIS 10.2 software. We found that there are twenty two different landscape units in the study area which they have to be considered for any spatial planning in order to avoid and environmental problems.

Keywords: landscape, spatial planning, GIS, spatial analysis, remote sensing

Procedia PDF Downloads 528
1018 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
1017 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay

Procedia PDF Downloads 397
1016 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer

Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang

Abstract:

Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.

Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase

Procedia PDF Downloads 412
1015 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer

Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri

Abstract:

A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.

Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet

Procedia PDF Downloads 218
1014 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 532
1013 Factors Associated with Weight Loss Maintenance after an Intervention Program

Authors: Filipa Cortez, Vanessa Pereira

Abstract:

Introduction: The main challenge of obesity treatment is long-term weight loss maintenance. The 3 phases method is a weight loss program that combines a low carb and moderately high-protein diet, food supplements and a weekly one-to-one consultation with a certified nutritionist. Sustained weight control is the ultimate goal of phase 3. Success criterion was the minimum loss of 10% of initial weight and its maintenance after 12 months. Objective: The aim of this study was to identify factors associated with successful weight loss maintenance after 12 months at the end of 3 phases method. Methods: The study included 199 subjects that achieved their weight loss goal (phase 3). Weight and body mass index (BMI) were obtained at the baseline and every week until the end of the program. Therapeutic adherence was measured weekly on a Likert scale from 1 to 5. Subjects were considered in compliance with nutritional recommendation and supplementation when their classification was ≥ 4. After 12 months of the method, the current weight and number of previous weight-loss attempts were collected by telephone interview. The statistical significance was assumed at p-values < 0.05. Statistical analyses were performed using SPSS TM software v.21. Results: 65.3% of subjects met the success criterion. The factors which displayed a significant weight loss maintenance prediction were: greater initial percentage weight loss (OR=1.44) during the weight loss intervention and a higher number of consultations in phase 3 (OR=1.10). Conclusion: These findings suggest that the percentage weight loss during the weight loss intervention and the number of consultations in phase 3 may facilitate maintenance of weight loss after the 3 phases method.

Keywords: obesity, weight maintenance, low-carbohydrate diet, dietary supplements

Procedia PDF Downloads 150
1012 A Neuropsychological Investigation of the Relationship between Anxiety Levels and Loss of Inhibitory Cognitive Control in Ageing and Dementia

Authors: Nasreen Basoudan, Andrea Tales, Frederic Boy

Abstract:

Non-clinical anxiety may be comprised of state anxiety - temporarily experienced anxiety related to a specific situation, and trait anxiety - a longer lasting response or a general disposition to anxiety. While temporary and occasional anxiety whether as a mood state or personality dimension is normal, nonclinical anxiety may influence many more components of information processing than previously recognized. In ageing and dementia-related research, disease characterization now involves attempts to understand a much wider range of brain function such as loss of inhibitory control, as against the more common focus on memory and cognition. However, in many studies, the tendency has been to include individuals with clinical anxiety disorders while excluding persons with lower levels of state or trait anxiety. Loss of inhibitory cognitive control can lead to behaviors such as aggression, reduced sensitivity to others, sociopathic thoughts and actions. Anxiety has also been linked to inhibitory control, with research suggesting that people with anxiety are less capable of inhibiting their emotions than the average person. This study investigates the relationship between anxiety and loss of inhibitory control in younger and older adults, using a variety of questionnaires and computers-based tests. Based on the premise that irrespective of classification, anxiety is associated with a wide range of physical, affective, and cognitive responses, this study explores evidence indicative of the potential influence anxiety per se on loss of inhibitory control, in order to contribute to discussion and appropriate consideration of anxiety-related factors in methodological practice.

Keywords: anxiety, ageing, dementia, inhibitory control

Procedia PDF Downloads 240
1011 Notched Bands in Ultra-Wideband UWB Filter Design for Advanced Wireless Applications

Authors: Abdul Basit, Amil Daraz, Guoqiang Zhang

Abstract:

With the increasing demand for wireless communication systems for unlicensed indoor applications, the FCC, in February 2002, allocated unlicensed bands ranging from 3.1 GHZ to 10.6 GHz with fractional bandwidth of about 109 %, because it plays a key role in the radiofrequency (RF) front ends devices and has been widely applied in many other microwave circuits. Targeting the proposed band defined by the FCC for the UWB system, this article presents a UWB bandpass filter with three stop bands for the mitigation of wireless bands that may interfere with the UWB range. For this purpose, two resonators are utilized for the implementation of triple-notched bands. The C-shaped resonator is used for the first notch band creation at 3.4 GHz to suppress the WiMAX signal, while the H-shaped resonator is employed in the initial UWB design to introduce the dual notched characteristic at 4.5 GHz and 8.1 GHz to reject the WLAN and Satellite Communication signals. The overall circuit area covered by the proposed design is 30.6 mm × 20 mm, or in terms of guided wavelength at the first stopband, its size is 0.06 λg × 0.02 λg. The presented structure shows a good return loss under -10 dB over most of the passband and greater than -15 dB for the notched frequency bands. Finally, the filter is simulated and analyzed in HFSS 15.0. All the bands for the rejection of wireless signals are independently controlled, which makes this work superior to the rest of the UWB filters presented in the literature.

Keywords: a bandpass filter (BPF), ultra-wideband (UWB), wireless communication, C-shaped resonator, triple notch

Procedia PDF Downloads 80
1010 Lip Localization Technique for Myanmar Consonants Recognition Based on Lip Movements

Authors: Thein Thein, Kalyar Myo San

Abstract:

Lip reading system is one of the different supportive technologies for hearing impaired, or elderly people or non-native speakers. For normal hearing persons in noisy environments or in conditions where the audio signal is not available, lip reading techniques can be used to increase their understanding of spoken language. Hearing impaired persons have used lip reading techniques as important tools to find out what was said by other people without hearing voice. Thus, visual speech information is important and become active research area. Using visual information from lip movements can improve the accuracy and robustness of a speech recognition system and the need for lip reading system is ever increasing for every language. However, the recognition of lip movement is a difficult task because of the region of interest (ROI) is nonlinear and noisy. Therefore, this paper proposes method to detect the accurate lips shape and to localize lip movement towards automatic lip tracking by using the combination of Otsu global thresholding technique and Moore Neighborhood Tracing Algorithm. Proposed method shows how accurate lip localization and tracking which is useful for speech recognition. In this work of study and experiments will be carried out the automatic lip localizing the lip shape for Myanmar consonants using the only visual information from lip movements which is useful for visual speech of Myanmar languages.

Keywords: lip reading, lip localization, lip tracking, Moore neighborhood tracing algorithm

Procedia PDF Downloads 352
1009 Optimization of Economic Order Quantity of Multi-Item Inventory Control Problem through Nonlinear Programming Technique

Authors: Prabha Rohatgi

Abstract:

To obtain an efficient control over a huge amount of inventory of drugs in pharmacy department of any hospital, generally, the medicines are categorized on the basis of their cost ‘ABC’ (Always Better Control), first and then categorize on the basis of their criticality ‘VED’ (Vital, Essential, desirable) for prioritization. About one-third of the annual expenditure of a hospital is spent on medicines. To minimize the inventory investment, the hospital management may like to keep the medicines inventory low, as medicines are perishable items. The main aim of each and every hospital is to provide better services to the patients under certain limited resources. To achieve the satisfactory level of health care services to outdoor patients, a hospital has to keep eye on the wastage of medicines because expiry date of medicines causes a great loss of money though it was limited and allocated for a particular period of time. The objectives of this study are to identify the categories of medicines requiring incentive managerial control. In this paper, to minimize the total inventory cost and the cost associated with the wastage of money due to expiry of medicines, an inventory control model is used as an estimation tool and then nonlinear programming technique is used under limited budget and fixed number of orders to be placed in a limited time period. Numerical computations have been given and shown that by using scientific methods in hospital services, we can give more effective way of inventory management under limited resources and can provide better health care services. The secondary data has been collected from a hospital to give empirical evidence.

Keywords: ABC-VED inventory classification, multi item inventory problem, nonlinear programming technique, optimization of EOQ

Procedia PDF Downloads 256
1008 Phosphate Bonded Hemp (Cannabis sativa) Fibre Composites

Authors: Stephen O. Amiandamhen, Martina Meinken, Luvuyo Tyhoda

Abstract:

The properties of Hemp (Cannabis sativa) in phosphate bonded composites were investigated in this research. Hemp hurds were collected from the Hemporium institute for research, South Africa. The hurds were air-dried and shredded using a hammer mill. The shives were screened into different particle sizes and were treated separately with 5% solution of acetic anhydride and sodium hydroxide. The binding matrix was prepared using a reactive magnesia, phosphoric acid, class S fly ash and unslaked lime. The treated and untreated hemp fibers were mixed thoroughly in different ratios with the inorganic matrix. Boric acid and excess water were used to retard and control the rate of the reaction and the setting of the binder. The Hemp composite was formed in a rectangular mold and compressed at room temperature at a pressure of 100KPa. After de-molding the composites, they were cured in a conditioning room for 96 h. Physical and mechanical tests were conducted to evaluate the properties of the composites. A central composite design (CCD) was used to determine the best conditions to optimize the performance of the composites. Thereafter, these combinations were applied in the production of the composites, and the properties were evaluated. Scanning electron microscopy (SEM) was used to carry out the advance examination of the behavior of the composites while X-ray diffractometry (XRD) was used to analyze the reaction pathway in the composites. The results revealed that all properties of phosphate bonded Hemp composites exceeded the LD-1 grade classification of particle boards. The proposed product can be used for ceiling, partitioning, wall claddings and underlayment.

Keywords: CCD, fly ash, magnesia, phosphate bonded hemp composites, phosphoric acid, unslaked lime

Procedia PDF Downloads 435
1007 Prevalence of Workplace Bullying in Hong Kong: A Latent Class Analysis

Authors: Catalina Sau Man Ng

Abstract:

Workplace bullying is generally defined as a form of direct and indirect maltreatment at work including harassing, offending, socially isolating someone or negatively affecting someone’s work tasks. Workplace bullying is unfortunately commonplace around the world, which makes it a social phenomenon worth researching. However, the measurements and estimation methods of workplace bullying seem to be diverse in different studies, leading to dubious results. Hence, this paper attempts to examine the prevalence of workplace bullying in Hong Kong using the latent class analysis approach. It is often argued that the traditional classification of workplace bullying into the dichotomous 'victims' and 'non-victims' may not be able to fully represent the complex phenomenon of bullying. By treating workplace bullying as one latent variable and examining the potential categorical distribution within the latent variable, a more thorough understanding of workplace bullying in real-life situations may hence be provided. As a result, this study adopts a latent class analysis method, which was tested to demonstrate higher construct and higher predictive validity previously. In the present study, a representative sample of 2814 employees (Male: 54.7%, Female: 45.3%) in Hong Kong was recruited. The participants were asked to fill in a self-reported questionnaire which included measurements such as Chinese Workplace Bullying Scale (CWBS) and Chinese Version of Depression Anxiety Stress Scale (DASS). It is estimated that four latent classes will emerge: 'non-victims', 'seldom bullied', 'sometimes bullied', and 'victims'. The results of each latent class and implications of the study will also be discussed in this working paper.

Keywords: latent class analysis, prevalence, survey, workplace bullying

Procedia PDF Downloads 330
1006 Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion

Authors: Rui Liu, Klaus Greve

Abstract:

The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets.

Keywords: information fusion, united navigation, dynamic path planning, navigation information visualization

Procedia PDF Downloads 288
1005 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 316
1004 Electrodynamic Principles for Generation and Wireless Transfer of Energy

Authors: Steven D. P. Moore

Abstract:

An electrical discharge in the air induces an electromagnetic (EM) wave capable of wireless transfer, reception, and conversion back into electrical discharge at a distant location. Following Norton’s ground wave principles, EM wave radiation (EMR) runs parallel to the Earth’s surface. Energy in an EMR wave can move through the air and be focused to create a spark at a distant location, focused by a receiver to generate a local electrical discharge. This local discharge can be amplified and stored but also has the propensity to initiate another EMR wave. In addition to typical EM waves, lightning is also associated with atmospheric events, trans-ionospheric pulse pairs, the most powerful natural EMR signal on the planet. With each lightning strike, regardless of global position, it generates naturally occurring pulse-pairs that are emitted towards space within a narrow cone. An EMR wave can self-propagate, travel at the speed of light, and, if polarized, contain vector properties. If this reflective pulse could be directed by design through structures that have increased probabilities for lighting strikes, it could theoretically travel near the surface of the Earth at light speed towards a selected receiver for local transformation into electrical energy. Through research, there are several influencing parameters that could be modified to model, test, and increase the potential for adopting this technology towards the goal of developing a global grid that utilizes natural sources of energy.

Keywords: electricity, sparkgap, wireless, electromagnetic

Procedia PDF Downloads 190
1003 Applied of LAWA Classification for Assessment of the Water by Nutrients Elements: Case Oran Sebkha Basin

Authors: Boualla Nabila

Abstract:

The increasing demand on water, either for the drinkable water supply, or for the agricultural and industrial custom, requires a very thorough hydrochemical study to protect better and manage this resource. Oran is relatively a city with the worst quality of the water. Recently, the growing populations may put stress on natural waters by impairing the quality of the water. Campaign of water sampling of 55 points capturing different levels of the aquifer system was done for chemical analyzes of nutriments elements. The results allowed us to approach the problem of contamination based on the largely uniform nationwide approach LAWA (LänderarbeitsgruppeWasser), based on the EU CIS guidance, has been applied for the identification of pressures and impacts, allowing for easy comparison. Groundwater samples were analyzed, also, for physico-chemical parameters such as pH, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate and bicarbonate. The analytical results obtained in this hydrochemistry study were interpreted using Durov diagram. Based on these representations, the anomaly of high groundwater salinity observed in Oran Sebkha basin was explained by the high chloride concentration and to the presence of inverse cation exchange reaction. Durov diagram plot revealed that the groundwater has been evolved from Ca-HCO3 recharge water through mixing with the pre-existing groundwater to give mixed water of Mg-SO4 and Mg-Cl types that eventually reached a final stage of evolution represented by a Na-Cl water type.

Keywords: contamination, water quality, nutrients elements, approach LAWA, durov diagram

Procedia PDF Downloads 276
1002 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 95