Search results for: electrical double layer capacitor
2846 Kinematic Analysis of Human Gait for Typical Postures of Walking, Running and Cart Pulling
Authors: Nupur Karmaker, Hasin Aupama Azhari, Abdul Al Mortuza, Abhijit Chanda, Golam Abu Zakaria
Abstract:
Purpose: The purpose of gait analysis is to determine the biomechanics of the joint, phases of gait cycle, graphical and analytical analysis of degree of rotation, analysis of the electrical activity of muscles and force exerted on the hip joint at different locomotion during walking, running and cart pulling. Methods and Materials: Visual gait analysis and electromyography method has been used to detect the degree of rotation of joints and electrical activity of muscles. In cinematography method an object is observed from different sides and takes its video. Cart pulling length has been divided into frames with respect to time by using video splitter software. Phases of gait cycle, degree of rotation of joints, EMG profile and force analysis during walking and running has been taken from different papers. Gait cycle and degree of rotation of joints during cart pulling has been prepared by using video camera, stop watch, video splitter software and Microsoft Excel. Results and Discussion: During the cart pulling the force exerted on hip is the resultant of various forces. The force on hip is the vector sum of the force Fg= mg, due the body of weight of the person and Fa= ma, due to the velocity. Maximum stance phase shows during cart pulling and minimum shows during running. During cart pulling shows maximum degree of rotation of hip joint, knee: running, and ankle: cart pulling. During walking, it has been observed minimum degree of rotation of hip, ankle: during running. During cart pulling, dynamic force depends on the walking velocity, body weight and load weight. Conclusions: 80% people suffer gait related disease with increasing their age. Proper care should take during cart pulling. It will be better to establish the gait laboratory to determine the gait related diseases. If the way of cart pulling is changed i.e the design of cart pulling machine, load bearing system is changed then it would possible to reduce the risk of limb loss, flat foot syndrome and varicose vein in lower limb.Keywords: kinematic, gait, gait lab, phase, force analysis
Procedia PDF Downloads 5762845 Mariculture Trials of the Philippine Blue Sponge Xestospongia sp.
Authors: Clairecynth Yu, Geminne Manzano
Abstract:
The mariculture potential of the Philippine blue sponge, Xestospongia sp. was assessed through the pilot sponge culture in the open-sea at two different biogeographic regions in the Philippines. Thirty explants were randomly allocated for the Puerto Galera, Oriental Mindoro culture setup and the other nine were transported to Lucero, Bolinao, Pangasinan. Two different sponge culture methods of the sponge explants- the lantern and the wall method, were employed to assess the production of the Renieramycin M. Both methods have shown to be effective in growing the sponge explants and that the Thin Layer Chromatography (TLC) results have shown that Renieramycin M is present on the sponges. The effect of partial harvesting in the growth and survival rates of the blue sponge in the Puerto Galera setup was also determined. Results showed that a higher growth rate was observed on the partially harvested explants on both culture methods as compared to the unharvested explants.Keywords: chemical ecology, porifera, sponge, Xestospongia sp.
Procedia PDF Downloads 2732844 Natural Forest Ecosystem Services Provided to Local Populations
Authors: Mohammed Sghir Taleb
Abstract:
Located at the northwest corner of the African continent between 21 ° and 36 ° north latitude and between the 1st and the 17th degree of west longitude, Morocco, with a total area of 715,000 km2, enjoys a privileged position with a coastline of 3 446 km long opening to the Mediterranean and the Atlantic Ocean. Its privileged location with a double coastline and its diverse mountain with four major mountain ranges: the Rif, Middle Atlas, High Atlas and Anti Atlas, with altitudes exceeding 2000 m in the Rif, 3000 m in the Middle Atlas and 4000 m in the High Atlas. Morocco is characterized by an important forest genetic diversity represented by a rich and varied flora and many ecosystems: forest, preforest, presteppe, steppe, Sahara that spans a range of bioclimatic zones: arid, semiarid, subhumid, and humid. The vascular flora of Morocco is rich and highly diversified, with a very significant degree of endemism. Natural flora and ecosystems provide important services to populations represented by grazing, timber harvest, harvesting of medicinal and aromatic plants. This work will be focused on the Moroccan biodiversity and natural ecosystem services and on the interaction between local populations and ecosystems and on the strategies developed by Morocco for restoring and conserving biodiversity and ecosystem services.Keywords: morocco, biodiversity, forest ecosystems, local population
Procedia PDF Downloads 832843 Using Shape Memory Alloys for Structural Engineering Applications
Authors: Donatello Cardone
Abstract:
Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges
Procedia PDF Downloads 972842 Improvement of Ground Water Quality Index Using Citrus limetta
Authors: Rupas Kumar M., Saravana Kumar M., Amarendra Kumar S., Likhita Komal V., Sree Deepthi M.
Abstract:
The demand for water is increasing at an alarming rate due to rapid urbanization and increase in population. Due to freshwater scarcity, Groundwater became the necessary source of potable water to major parts of the world. This problem of freshwater scarcity and groundwater dependency is very severe particularly in developing countries and overpopulated regions like India. The present study aimed at evaluating the Ground Water Quality Index (GWQI), which represents overall quality of water at certain location and time based on water quality parameters. To evaluate the GWQI, sixteen water quality parameters have been considered viz. colour, pH, electrical conductivity, total dissolved solids, turbidity, total hardness, alkalinity, calcium, magnesium, sodium, chloride, nitrate, sulphate, iron, manganese and fluorides. The groundwater samples are collected from Kadapa City in Andhra Pradesh, India and subjected to comprehensive physicochemical analysis. The high value of GWQI has been found to be mainly from higher values of total dissolved solids, electrical conductivity, turbidity, alkalinity, hardness, and fluorides. in the present study, citrus limetta (sweet lemon) peel powder has used as a coagulant and GWQI values are recorded in different concentrations to improve GWQI. Sensitivity analysis is also carried out to determine the effect of coagulant dosage, mixing speed and stirring time on GWQI. The research found the maximum percentage improvement in GWQI values are obtained when the coagulant dosage is 100ppm, mixing speed is 100 rpm and stirring time is 10 mins. Alum is also used as a coagulant aid and the optimal ratio of citrus limetta and alum is identified as 3:2 which resulted in best GWQI value. The present study proposes Citrus limetta peel powder as a potential natural coagulant to treat Groundwater and to improve GWQI.Keywords: alum, Citrus limetta, ground water quality index, physicochemical analysis
Procedia PDF Downloads 2272841 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment
Authors: Bulcha Belay Etana
Abstract:
Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile
Procedia PDF Downloads 1352840 Governance Framework for an Emerging Trust Ecosystem with a Blockchain-Based Supply Chain
Authors: Ismael Ávila, José Reynaldo F. Filho, Vasco Varanda Picchi
Abstract:
The ever-growing consumer awareness of food provenance in Brazil is driving the creation of a trusted ecosystem around the animal protein supply chain. The traceability and accountability requirements of such an ecosystem demand a blockchain layer to strengthen the weak links in that chain. For that, direct involvement of the companies in the blockchain transactions, including as validator nodes of the network, implies formalizing a partnership with the consortium behind the ecosystem. Yet, their compliance standards usually require that a formal governance structure is in place before they agree with any membership terms. In light of such a strategic role of blockchain governance, the paper discusses a framework for tailoring a governance model for a blockchain-based solution aimed at the meat supply chain and evaluates principles and attributes in terms of their relevance to the development of a robust trust ecosystem.Keywords: blockchain, governance, trust ecosystem, supply chain, traceability
Procedia PDF Downloads 1202839 Preparation and Quality Control of 68Ga-1,2-Propylene Di-Amino Tetra (Methylenephosphonic Acid)
Authors: N. Tadayon, H. Yousefnia, S. Zolghadri, A. Ramazani, A. R. Jalilian
Abstract:
Bone metastases occur in many patients with solid malignant tumors. Recently, 1,2 propylene di-amino tetra methylenephosphonic acid (PDTMP) has been introduced as a suitable carrier in the development of therapeutic bone-avid radiopharmaceuticals. In this study, due to the desirable characteristics of 68Ga, 68Ga-PDTMP was prepared. 68Ga was obtained from SnO2 based generator. A stock solution of PDTMP was prepared by dissolving in 2 N NaOH. A certain volume of the stock solution was added to the vial containing 68GaCl3 and the pH of the mixture was adjusted to 4 using HEPES. Radiochemical purity of the radiolabelled complex was checked by thin layer chromatography. 68Ga-PDTMP was prepared in only 15 min with radiochemical purity of more than 98%. This new bone-seeking complex can be considered as a good candidate of PET-based radiopharmaceutical for imaging of bone metastases.Keywords: bone metastases, Ga-68, imaging, PDTMP
Procedia PDF Downloads 2912838 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils
Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo
Abstract:
The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance
Procedia PDF Downloads 1372837 Dynamic Analysis and Design of Lower Extremity Power-Assisted Exoskeleton
Authors: Song Shengli, Tan Zhitao, Li Qing, Fang Husheng, Ye Qing, Zhang Xinglong
Abstract:
Lower extremity power-assisted exoskeleton (LEPEX) is a kind of wearable electromechanical integration intelligent system, walking in synchronization with the wearer, which can assist the wearer walk by means of the driver mounted in the exoskeleton on each joint. In this paper, dynamic analysis and design of the LEPEX are performed. First of all, human walking process is divided into single leg support phase, double legs support phase and ground collision model. The three kinds of dynamics modeling is established using the Lagrange method. Then, the flat walking and climbing stairs dynamic information such as torque and power of lower extremity joints is derived for loading 75kg according to scholar Stansfield measured data of flat walking and scholars R. Riener measured data of climbing stair respectively. On this basis, the joint drive way in the sagittal plane is determined, and the structure of LEPEX is designed. Finally, the designed LEPEX is simulated under ADAMS by using a person’s joint sports information acquired under flat walking and climbing stairs. The simulation result effectively verified the correctness of the structure.Keywords: kinematics, lower extremity exoskeleton, simulation, structure
Procedia PDF Downloads 4252836 The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation
Authors: Yan Pang, Xiang Wang, Zhaomiao Liu
Abstract:
Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case.Keywords: droplet generation, droplet size, flow flied, forced fluctuation
Procedia PDF Downloads 2822835 A Randomized Controlled Trial Study on the Effect of Adding Dexmedetomidine to Bupivacaine in Supraclavicular Block Using Ultrasound Guidance
Authors: Nazia Nazir
Abstract:
Background: The benefits of regional anesthetic techniques are well established. Use of additives to local anesthetics can prolong these benefits. The aim of this study was to observe the effect of adding dexmedetomidine to bupivacaine for the supraclavicular block. Methods (Design): In this randomized, double-blind study, seventy ASA I & II patients of either sex undergoing elective surgeries on the upper limb were given supraclavicular block under ultrasound guidance. Group C (n=35), received 38 mL 0.25% bupivacaine + 2mL normal saline and group D received 38 mL 0.25% bupivacaine + 1 µg/kg dexmedetomidine (2mL). Patients were observed for onset, duration of motor and sensory block, duration of analgesia, sedation score, hemodynamic changes and any adverse events. Results: In group D the onset was faster (P < 0.001), duration of sensory and motor block, as well as duration of analgesia, was prolonged as compared to group C (P < 0.0001). There was significant drop in heart rate (HR) from the baseline in group D (P < 0.05) at 30, 60, 90 and 120 min, however, none of the patients dropped HR below 50/min. Mean arterial Pressure (MAP) remained unaffected. The patients in group D were effectively sedated than those in group C (P < 0.05). No adverse event was reported in either group. Conclusion: Dexmedetomidine as adjuvant to bupivacaine in supraclavicular block resulted in faster action, prolonged motor and sensory block, prolonged analgesia with hemodynamic stability and adequate sedation.Keywords: Analgesia, bupivacaine, dexmedetomidine, supraclavicular block
Procedia PDF Downloads 1912834 Six-Phase Tooth-Coil Winding Starter-Generator Embedded in Aerospace Engine
Authors: Flur R. Ismagilov, Vyacheslav E. Vavilov, Denis V. Gusakov
Abstract:
This paper is devoted to solve the problem of increasing the electrification of aircraft engines by installing a synchronous generator at high pressure shaft. Technical solution of this problem by various research centers is discussed. A design solution of the problem was proposed. To evaluate the effectiveness of the proposed cooling system, thermal analysis was carried out in ANSYS software.Keywords: starter-generator, more electrical engine, aircraft engines, high pressure shaft, synchronous generator
Procedia PDF Downloads 2572833 The Prospective Assessment of Zero-Energy Dwellings
Authors: Jovana Dj. Jovanovic, Svetlana M. Stevovic
Abstract:
The highest priority of so called, projected passive houses is to meet the appropriate energy demand. Every single material and layer which is injected into a dwelling has a certain energy quantity stored. The passive houses include optimized insulation levels with minimal thermal bridges, minimum of air leakage through the building, utilization of passive solar and internal gains, and good circulation of air which leans on mechanical ventilation system. The focus of this paper is on passive house features, benefits and targets, their feasibility and energy demands which are set up during each project. Numerous passive house-standards outline the very significant role of zero-energy dwellings towards the modern label of sustainable development. It is clear that the performance of both built and existing housing stock must be addressed if the population across the world sets out the energy objectives. This scientific article examines passive house features since the many passive house cases are launched.Keywords: benefits, energy demands, passive houses, sustainable development
Procedia PDF Downloads 3372832 Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump
Authors: Merieleen Engtipi
Abstract:
India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand.Keywords: energy demand, energy cooperation, fossil fuels, technology transfer
Procedia PDF Downloads 2512831 Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa
Authors: Retang A. Mokua, Julia Glenday, Jacobus M. Nel
Abstract:
Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed.Keywords: electrical conductivity, Jonkershoek valley, stable isotopes, table mountain group
Procedia PDF Downloads 1092830 Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique
Authors: Sira Suren, Soorathep Kheawhom
Abstract:
This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.Keywords: flexible, Gel Electrolyte, screen printing, thin battery, Zn-Air battery
Procedia PDF Downloads 2102829 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography
Authors: Sudhanshu Sharma
Abstract:
Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.Keywords: lisnopril, surfactant, chromatography, micellar solutions
Procedia PDF Downloads 3672828 Variable Tree Structure QR Decomposition-M Algorithm (QRD-M) in Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Systems
Authors: Jae-Hyun Ro, Jong-Kwang Kim, Chang-Hee Kang, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, QR decomposition-M algorithm (QRD-M) has suboptimal error performance. However, the QRD-M has still high complexity due to many calculations at each layer in tree structure. To reduce the complexity of the QRD-M, proposed QRD-M modifies existing tree structure by eliminating unnecessary candidates at almost whole layers. The method of the elimination is discarding the candidates which have accumulated squared Euclidean distances larger than calculated threshold. The simulation results show that the proposed QRD-M has same bit error rate (BER) performance with lower complexity than the conventional QRD-M.Keywords: complexity, MIMO-OFDM, QRD-M, squared Euclidean distance
Procedia PDF Downloads 3332827 The Impact of Inconclusive Results of Thin Layer Chromatography for Marijuana Analysis and It’s Implication on Forensic Laboratory Backlog
Authors: Ana Flavia Belchior De Andrade
Abstract:
Forensic laboratories all over the world face a great challenge to overcame waiting time and backlog in many different areas. Many aspects contribute to this situation, such as an increase in drug complexity, increment in the number of exams requested and cuts in funding limiting laboratories hiring capacity. Altogether, those facts pose an essential challenge for forensic chemistry laboratories to keep both quality and time of response within an acceptable period. In this paper we will analyze how the backlog affects test results and, in the end, the whole judicial system. In this study data from marijuana samples seized by the Federal District Civil Police in Brazil between the years 2013 and 2017 were tabulated and the results analyzed and discussed. In the last five years, the number of petitioned exams increased from 822 in February 2013 to 1358 in March 2018, representing an increase of 32% in 5 years, a rise of more than 6% per year. Meanwhile, our data shows that the number of performed exams did not grow at the same rate. Product numbers are stationed as using the actual technology scenario and analyses routine the laboratory is running in full capacity. Marijuana detection is the most prevalence exam required, representing almost 70% of all exams. In this study, data from 7,110 (seven thousand one hundred and ten) marijuana samples were analyzed. Regarding waiting time, most of the exams were performed not later than 60 days after receipt (77%). Although some samples waited up to 30 months before being examined (0,65%). When marijuana´s exam is delayed we notice the enlargement of inconclusive results using thin-layer chromatography (TLC). Our data shows that if a marijuana sample is stored for more than 18 months, inconclusive results rise from 2% to 7% and when if storage exceeds 30 months, inconclusive rates increase to 13%. This is probably because Cannabis plants and preparations undergo oxidation under storage resulting in a decrease in the content of Δ9-tetrahydrocannabinol ( Δ9-THC). An inconclusive result triggers other procedures that require at least two more working hours of our analysts (e.g., GC/MS analysis) and the report would be delayed at least one day. Those new procedures increase considerably the running cost of a forensic drug laboratory especially when the backlog is significant as inconclusive results tend to increase with waiting time. Financial aspects are not the only ones to be observed regarding backlog cases; there are also social issues as legal procedures can be delayed and prosecution of serious crimes can be unsuccessful. Delays may slow investigations and endanger public safety by giving criminals more time on the street to re-offend. This situation also implies a considerable cost to society as at some point, if the exam takes a long time to be performed, an inconclusive can turn into a negative result and a criminal can be absolved by flawed expert evidence.Keywords: backlog, forensic laboratory, quality management, accreditation
Procedia PDF Downloads 1222826 Identified Transcription Factors and Gene Regulation in Scient Biosynthesis in Ophrys Orchids
Authors: Chengwei Wang, Shuqing Xu, Philipp M. Schlüter
Abstract:
The genus Ophrys is remarkable for its mimicry, flower-lip closely resembling pollinator females in a species-specific manner. Therefore, floral traits associated with pollinator attraction, especially scent, are suitable models for investigating the molecular basis of adaption, speciation, and evolution. Within the two Ophrys species groups: O. sphegodes (S) and O. fusca (F), pollinator shifts among the same insect species have taken place. Preliminary data suggest that they involve a comparable hydrocarbon profile in their scent, which is mainly composed of alkanes and alkenes. Genes encoding stearoyl-acyl carrier protein desaturases (SAD) involved in alkene biosynthesis have been identified in the S group. This study aims to investigate the control and parallel evolution of ecologically significant alkene production in Ophrys. Owing to the central role those SAD genes play in determining positioning of the alkene double-bonds, a detailed understanding of their functional mechanism and of regulatory aspects is of utmost importance. We have identified 5 transcription factors potentially related to SAD expression in O. sphegodes which belong to the MYB, GTE, WRKY, and MADS families. Ultimately, our results will contribute to understanding genes important in the regulatory control of floral scent synthesis.Keywords: floral traits, transcription factors, biosynthesis, parallel evolution
Procedia PDF Downloads 1022825 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4
Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh
Abstract:
Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.Keywords: ZnO, nanorods, hydrothermal, KMnO4
Procedia PDF Downloads 4002824 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1362823 Plane of Equal Settlement above HDD’s Borehole before Operational Condition
Authors: Shokoufeh Sadeghifard
Abstract:
This study is a review of the nature of soil arching that develops in the upper layer of soil during drilling processes before pulling product pipe inside the hole. This study is based on the results of some parametric studies which are investigating the behavior of drained sandy soil above HDD borehole using Plaxis finite element solution. The influence of drilling mud injection in these series of analyses has been ignored. However, a suitable drilling mud pressure helps to achieve stable arch when the height of soil cover over the drilling borehole is not enough. In this study, the soil response to the formation of a HDD borehole is compared to arching theory developed by Terzaghi (1943). It is found that Terzaghi’s approach is capable of describing all of the behaviour seen when a stable arch forms. According to the numerical results, a suitable safe depth of 4D, D is borehole diameter, is suggested for typical range of HDD borehole in sandy soil.Keywords: HDD, Plaxis, finite element, arching, settlement, drilling
Procedia PDF Downloads 3552822 Characteristics and Key Exploration Directions of Gold Deposits in China
Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao
Abstract:
Based on the geodynamic environment, basic geological characteristics of minerals and so on, gold deposits in China are divided into 11 categories, of which tectonic fracture altered rock, mid-intrudes and contact zone, micro-fine disseminated and continental volcanic types are the main prospecting kinds. The metallogenic age of gold deposits in China is dominated by the Mesozoic and Cenozoic. According to the geotectonic units, geological evolution, geological conditions, spatial distribution, gold deposits types, metallogenic factors etc., 42 gold concentration areas are initially determined and have a concentrated distribution feature. On the basis of the gold exploration density, gold concentration areas are divided into high, medium and low level areas. High ones are mainly distributed in the central and eastern regions. 93.04% of the gold exploration drillings are within 500 meters, but there are some problems, such as less and shallower of drilling verification etc.. The paper discusses the resource potentials of gold deposits and proposes the future prospecting directions and suggestions. The deep and periphery of old mines in the central and eastern regions and western area, especially in Xinjiang and Qinghai, will be the future key prospecting one and have huge potential gold reserves. If the exploration depth is extended to 2,000 meters shallow, the gold resources will double.Keywords: gold deposits, gold deposits types, gold concentration areas, prospecting, resource potentiality
Procedia PDF Downloads 772821 Sediment Delivery from Hillslope Cultivation in Northwest Vietnam
Authors: Vu Dinh Tuan, Truc Xuyen Nguyen Phan, Nguyen Thi Truc Nhi
Abstract:
Cultivating on hillslopes in Northwest Vietnam induced soil erosion that reduce overall soil fertility, capacity of water bodies and drainage ditches or channels, and enhance the risk of flooding, even obstruct traffics and create 'mud flooding or landslide’. This study aimed at assessing the magnitude of erosion under maize monocropping and perennial teak plantation on a rainstorm basic over two years 2010-2011 using double sediment fences installed at convergent point of catchments (slope inclination of 27-74%). Mean annual soil erosion under maize cultivation was 4.39 kg.m⁻², being far greater than that under teak plantation 1.65 kg.m⁻². Intensive tillage in maize monocropping and clearance of land before sowing was most probably the causes induced such effect as no tillage was performed in teak plantation during monitored period. Larger sediment generated across two land use types in year 2010 (4.11 kg.m⁻²) compared to year 2011 (1.87 kg.m⁻²) was attributed to higher amount and intensity of precipitation in the first year (1448 mm) as compared to the latter year (1299 mm). Reducing tillage and establishing good cover for maize monocropping on steep slopes, therefore, are necessary to reduce soil erosion and control sediment delivery to downstream.Keywords: maize monocropping, teak plantation, tillage, sediment fence, sediment delivery, soil erosion
Procedia PDF Downloads 2152820 Evaluation of the Effectiveness of the Argon Plasma Jet on Healing Process of the Wagner Grade 2 Diabetic Foot Ulcer
Authors: M. Khaledi Pour, P. Akbartehrani, M. Amini, M. Khani, M. Mohajeri Tehrani, R. Radi, B. Shokri
Abstract:
Diabetic Foot Ulcer (DFU) is one of the costly severe complications of diabetes. Neuropathy and Peripheral Arterial Disease (PAD) due to diabetes are significant causes of this complication. In 10 years the patients with DFUs are twice as likely to die as patients without DFUs. Cold Atmospheric Plasma (CAP) is a promising tool for medical purposes. CAP generate reactive species at room temperature and are effective in killing bacteria and fibroblast proliferation. These CAP-based tools produce NO, which has bactericidal and angiogenesis properties. It also showed promising effects in the DFUs surface reduction and the time to wound closure. In this paper, we evaluated the effect of the Argon Plasma Jet (APJ) on the healing process of the Wagner Grade 2 DFUs in a randomized clinical trial. The 20 kHz sinusoidal voltage frequency derives the APJ. Patients (n=20) were randomly double-blinded assigned into two groups. These groups receive the standard care (SC, n=10) and the standard care with APJ treatment (SC+APJ, n=10) for five sessions in four weeks. The results showed that the APJ treatment along standard care could reduce the wound surface by 20 percent more than the standard care. Also, It showed a more influential role in controlling wound infection.Keywords: argon plasma jet, cold atmospheric plasma, diabetes, diabetic foot ulcer
Procedia PDF Downloads 2012819 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles
Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat
Abstract:
The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle
Procedia PDF Downloads 4022818 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells
Authors: Mariyappan Shanmugam, Bin Yu
Abstract:
Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier
Procedia PDF Downloads 3302817 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures
Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov
Abstract:
At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells
Procedia PDF Downloads 212