Search results for: cognitive image dimension
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5556

Search results for: cognitive image dimension

2886 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 271
2885 Length Dimension Correlates of Longitudinal Physical Conditioning on Indian Male Youth

Authors: Seema Sharma Kaushik, Dhananjoy Shaw

Abstract:

Various length dimensions of the body have been a variable of interest in the research areas of kinanthropometry. However the inclusion of length measurements in various studies remains restricted to reflect characteristics of a particular game/sport at a particular time. Hence, the present investigation was conducted to study various length dimensions correlates of a longitudinal physical conditioning program on Indian male youth. The study was conducted on 90 Indian male youth. The sample was equally divided into three groups namely, progressive load training (PLT), constant load training (CLT) and no load training (NL). The variables included sitting height, leg length, arm length and foot length. The study was conducted by adopting the multi group repeated measure design. Three different groups were measured four times after completion of each of the three meso-cycles of six-weeks duration each. The measurements were taken using the standard landmarks and procedures. Mean, standard deviation and analysis of co-variance were computed to analyze the data statistically. The post-hoc analysis was conducted for the significant F-ratios at 0.05 level. The study concluded that the followed longitudinal physical conditioning program had significant effect on various length dimensions of Indian male youth.

Keywords: Indian male youth, longitudinal, length dimensions, physical conditioning

Procedia PDF Downloads 159
2884 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir

Abstract:

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.

Keywords: separation flow, backward facing step, heat transfer, laminar flow

Procedia PDF Downloads 471
2883 Surgical Imaging in Ancient Egypt

Authors: Haitham Nabil Zaghlol Hasan

Abstract:

This research aims to study of the surgery science and imaging in ancient Egypt and how to diagnose the surgical cases, whether due to injuries or disease that requires surgical intervention, Medical diagnosis and how to treat it. The ancient Egyptian physician tried to change over from magic and theological thinking to become a stand-alone experimental science, they were able to distinguish between diseases, and they divide them into internal and external diseases even though this division exists to date in modern medicine. There is no evidence to recognize the amount of human knowledge in the prehistoric knowledge of medicine and surgery except skeleton. It is not far from the human being in those times familiar with some means of treatment, Surgery in the Stone age was rudimentary, Flint stone was used after trimming in a certain way as a lancet to slit and open the skin. Wooden tree branches were used to make splints to treat bone fractures. Surgery developed further when copper was discovered, it led to the advancement of Egyptian civilization, then modern and advanced tools appeared in the operating theater, like a knife or a scalpel, there is evidence of surgery performed in ancient Egypt during the dynastic period (323 – 3200 BC). The climate and environmental conditions have preserved medical papyri and human remains that have confirmed their knowledge of surgical methods, including sedation. The ancient Egyptians reached great importance in surgery, evidenced by the scenes that depict the pathological image and the surgical process, but the image alone is not sufficient to prove the pathology, its presence in ancient Egypt and its treatment method. As there are a number of medical papyri, especially Edwin Smith and Ebris, which prove the ancient Egyptian surgeon's knowledge of the pathological condition that It requires surgical intervention, otherwise, its diagnosis and the method of treatment will not be described with such accuracy through these texts. Some surgeries are described in the department of surgery at Ebris papyrus (recipes from 863 to 877). The level of surgery in ancient Egypt was high, and they performed surgery such as hernias and Aneurysm, however, we have not received a lengthy explanation of the various surgeries, and the surgeon has usually only said: “treated surgically”. It is evident in the Ebris papyrus that they used sharp surgical tools and cautery in operations where bleeding is expected, such as hernias, arterial sacs and tumors.

Keywords: egypt, ancient_egypt, civilization, archaeology

Procedia PDF Downloads 70
2882 An Experimental Study of Scalar Implicature Processing in Chinese

Authors: Liu Si, Wang Chunmei, Liu Huangmei

Abstract:

A prominent component of the semantic versus pragmatic debate, scalar implicature (SI) has been gaining great attention ever since it was proposed by Horn. The constant debate is between the structural and pragmatic approach. The former claims that generation of SI is costless, automatic, and dependent mostly on the structural properties of sentences, whereas the latter advocates both that such generation is largely dependent upon context, and that the process is costly. Many experiments, among which Katsos’s text comprehension experiments are influential, have been designed and conducted in order to verify their views, but the results are not conclusive. Besides, most of the experiments were conducted in English language materials. Katsos conducted one off-line and three on-line text comprehension experiments, in which the previous shortcomings were addressed on a certain extent and the conclusion was in favor of the pragmatic approach. We intend to test the results of Katsos’s experiment in Chinese scalar implicature. Four experiments in both off-line and on-line conditions to examine the generation and response time of SI in Chinese "yixie" (some) and "quanbu (dou)" (all) will be conducted in order to find out whether the structural or the pragmatic approach could be sustained. The study mainly aims to answer the following questions: (1) Can SI be generated in the upper- and lower-bound contexts as Katsos confirmed when Chinese language materials are used in the experiment? (2) Can SI be first generated, then cancelled as default view claimed or can it not be generated in a neutral context when Chinese language materials are used in the experiment? (3) Is SI generation costless or costly in terms of processing resources? (4) In line with the SI generation process, what conclusion can be made about the cognitive processing model of language meaning? Is it a parallel model or a linear model? Or is it a dynamic and hierarchical model? According to previous theoretical debates and experimental conflicts, presumptions could be made that SI, in Chinese language, might be generated in the upper-bound contexts. Besides, the response time might be faster in upper-bound than that found in lower-bound context. SI generation in neutral context might be the slowest. At last, a conclusion would be made that the processing model of SI could not be verified by either absolute structural or pragmatic approaches. It is, rather, a dynamic and complex processing mechanism, in which the interaction of language forms, ad hoc context, mental context, background knowledge, speakers’ interaction, etc. are involved.

Keywords: cognitive linguistics, pragmatics, scalar implicture, experimental study, Chinese language

Procedia PDF Downloads 364
2881 The Impact of Task Type and Group Size on Dialogue Argumentation between Students

Authors: Nadia Soledad Peralta

Abstract:

Within the framework of socio-cognitive interaction, argumentation is understood as a psychological process that supports and induces reasoning and learning. Most authors emphasize the great potential of argumentation to negotiate with contradictions and complex decisions. So argumentation is a target for researchers who highlight the importance of social and cognitive processes in learning. In the context of social interaction among university students, different types of arguments are analyzed according to group size (dyads and triads) and the type of task (reading of frequency tables, causal explanation of physical phenomena, the decision regarding moral dilemma situations, and causal explanation of social phenomena). Eighty-nine first-year social sciences students of the National University of Rosario participated. Two groups were formed from the results of a pre-test that ensured the heterogeneity of points of view between participants. Group 1 consisted of 56 participants (performance in dyads, total: 28), and group 2 was formed of 33 participants (performance in triads, total: 11). A quasi-experimental design was performed in which effects of the two variables (group size and type of task) on the argumentation were analyzed. Three types of argumentation are described: authentic dialogical argumentative resolutions, individualistic argumentative resolutions, and non-argumentative resolutions. The results indicate that individualistic arguments prevail in dyads. That is, although people express their own arguments, there is no authentic argumentative interaction. Given that, there are few reciprocal evaluations and counter-arguments in dyads. By contrast, the authentically dialogical argument prevails in triads, showing constant feedback between participants’ points of view. It was observed that, in general, the type of task generates specific types of argumentative interactions. However, it is possible to emphasize that the authentically dialogic arguments predominate in the logical tasks, whereas the individualists or pseudo-dialogical are more frequent in opinion tasks. Nerveless, these relationships between task type and argumentative mode are best clarified in an interactive analysis based on group size. Finally, it is important to stress the value of dialogical argumentation in educational domains. Argumentative function not only allows a metacognitive reflection about their own point of view but also allows people to benefit from exchanging points of view in interactive contexts.

Keywords: sociocognitive interaction, argumentation, university students, size of the grup

Procedia PDF Downloads 85
2880 Object-Scene: Deep Convolutional Representation for Scene Classification

Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang

Abstract:

Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.

Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization

Procedia PDF Downloads 333
2879 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 21
2878 The Impact of Social Customer Relationship Management on Brand Loyalty and Reducing Co-Destruction of Value by Customers

Authors: Sanaz Farhangi, Habib Alipour

Abstract:

The main objective of this paper is to explore how social media as a critical platform would increase the interactions between the tourism sector and stakeholders. Nowadays, human interactions through social media in many areas, especially in tourism, provide various experiences and information that users share and discuss. Organizations and firms can gain customer loyalty through social media platforms, albeit consumers' negative image of the product or services. Such a negative image can be reduced through constant communication between produces and consumers, especially with the availability of the new technology. Therefore, effective management of customer relationships in social media creates an extraordinary opportunity for organizations to enhance value and brand loyalty. In this study, we seek to develop a conceptual model for addressing factors such as social media, SCRM, and customer engagement affecting brand loyalty and diminish co-destruction. To support this model, we scanned the relevant literature using a comprehensive category of ideas in the context of marketing and customer relationship management. This will allow exploring whether there is any relationship between social media, customer engagement, social customer relationship management (SCRM), co-destruction, and brand loyalty. SCRM has been explored as a moderating factor in the relationship between customer engagement and social media to secure brand loyalty and diminish co-destruction of the company’s value. Although numerous studies have been conducted on the impact of social media on customers and marketing behavior, there are limited studies for investigating the relationship between SCRM, brand loyalty, and negative e-WOM, which results in the reduction of the co-destruction of value by customers. This study is an important contribution to the tourism and hospitality industry in orienting customer behavior in social media using SCRM. This study revealed that through social media platforms, management can generate discussion and engagement about the product and services, which facilitates customers feeling in an appositive way towards the firm and its product. Study has also revealed that customers’ complaints through social media have a multi-purpose effect; it can degrade the value of the product, but at the same time, it will motivate the firm to overcome its weaknesses and correct its shortcomings. This study has also implications for the managers and practitioners, especially in the tourism and hospitality sector. Future research direction and limitations of the research were also discussed.

Keywords: brand loyalty, co-destruction, customer engagement, SCRM, tourism and hospitality

Procedia PDF Downloads 117
2877 Artificial Intelligence Based Method in Identifying Tumour Infiltrating Lymphocytes of Triple Negative Breast Cancer

Authors: Nurkhairul Bariyah Baharun, Afzan Adam, Reena Rahayu Md Zin

Abstract:

Tumor microenvironment (TME) in breast cancer is mainly composed of cancer cells, immune cells, and stromal cells. The interaction between cancer cells and their microenvironment plays an important role in tumor development, progression, and treatment response. The TME in breast cancer includes tumor-infiltrating lymphocytes (TILs) that are implicated in killing tumor cells. TILs can be found in tumor stroma (sTILs) and within the tumor (iTILs). TILs in triple negative breast cancer (TNBC) have been demonstrated to have prognostic and potentially predictive value. The international Immune-Oncology Biomarker Working Group (TIL-WG) had developed a guideline focus on the assessment of sTILs using hematoxylin and eosin (H&E)-stained slides. According to the guideline, the pathologists use “eye balling” method on the H&E stained- slide for sTILs assessment. This method has low precision, poor interobserver reproducibility, and is time-consuming for a comprehensive evaluation, besides only counted sTILs in their assessment. The TIL-WG has therefore recommended that any algorithm for computational assessment of TILs utilizing the guidelines provided to overcome the limitations of manual assessment, thus providing highly accurate and reliable TILs detection and classification for reproducible and quantitative measurement. This study is carried out to develop a TNBC digital whole slide image (WSI) dataset from H&E-stained slides and IHC (CD4+ and CD8+) stained slides. TNBC cases were retrieved from the database of the Department of Pathology, Hospital Canselor Tuanku Muhriz (HCTM). TNBC cases diagnosed between the year 2010 and 2021 with no history of other cancer and available block tissue were included in the study (n=58). Tissue blocks were sectioned approximately 4 µm for H&E and IHC stain. The H&E staining was performed according to a well-established protocol. Indirect IHC stain was also performed on the tissue sections using protocol from Diagnostic BioSystems PolyVue™ Plus Kit, USA. The slides were stained with rabbit monoclonal, CD8 antibody (SP16) and Rabbit monoclonal, CD4 antibody (EP204). The selected and quality-checked slides were then scanned using a high-resolution whole slide scanner (Pannoramic DESK II DW- slide scanner) to digitalize the tissue image with a pixel resolution of 20x magnification. A manual TILs (sTILs and iTILs) assessment was then carried out by the appointed pathologist (2 pathologists) for manual TILs scoring from the digital WSIs following the guideline developed by TIL-WG 2014, and the result displayed as the percentage of sTILs and iTILs per mm² stromal and tumour area on the tissue. Following this, we aimed to develop an automated digital image scoring framework that incorporates key elements of manual guidelines (including both sTILs and iTILs) using manually annotated data for robust and objective quantification of TILs in TNBC. From the study, we have developed a digital dataset of TNBC H&E and IHC (CD4+ and CD8+) stained slides. We hope that an automated based scoring method can provide quantitative and interpretable TILs scoring, which correlates with the manual pathologist-derived sTILs and iTILs scoring and thus has potential prognostic implications.

Keywords: automated quantification, digital pathology, triple negative breast cancer, tumour infiltrating lymphocytes

Procedia PDF Downloads 118
2876 A Comparative Study of Cognitive Factors Affecting Social Distancing among Vaccinated and Unvaccinated Filipinos

Authors: Emmanuel Carlo Belara, Albert John Dela Merced, Mark Anthony Dominguez, Diomari Erasga, Jerome Ferrer, Bernard Ombrog

Abstract:

Social distancing errors are a common prevalence between vaccinated and unvaccinated in the Filipino community. This study aims to identify and relate the factors on how they affect our daily lives. Observed factors include memory, attention, anxiety, decision-making, and stress. Upon applying the ergonomic tools and statistical treatment such as t-test and multiple linear regression, stress and attention turned out to have the most impact to the errors of social distancing.

Keywords: vaccinated, unvaccinated, socoal distancing, filipinos

Procedia PDF Downloads 204
2875 Assessment of Seeding and Weeding Field Robot Performance

Authors: Victor Bloch, Eerikki Kaila, Reetta Palva

Abstract:

Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.

Keywords: agricultural robot, field robot, plant detection, robot performance

Procedia PDF Downloads 88
2874 Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs

Authors: I. Yalcin Enis, J. Vojtech, T. Gok Sadikoglu

Abstract:

In this study, polycaprolactone (PCL) was dissolved in chloroform: ethanol solvent system at a concentration of 18 w/v %. 1, 2, 4, and 6 droplets of formic acid were added to the prepared 10ml PCL-chloroform:ethanol solutions separately. Fibrous webs were produced by electrospinning technique. Morphology of the webs was investigated by using scanning electron microscopy (SEM) whereas fiber diameters were measured by Image J Software System. The effect of formic acid addition to the mostly used chloroform solvent on fiber morphology was examined.

Keywords: chloroform, electrospinning, formic acid polycaprolactone, fiber

Procedia PDF Downloads 278
2873 Evaluation of Uniformity for Gafchromic Sheets for Film Dosimetry

Authors: Fayzan Ahmed, Saad Bin Saeed, Abdul Qadir Jangda

Abstract:

Gafchromic™ sheet are extensively used for the QA of intensity modulated radiation therapy and other in-vivo dosimetry. Intra-sheet Non-uniformity of scanner as well as film causes undesirable fluctuations which are reflected in dosimetry The aim of this study is to define a systematic and robust method to investigate the intra-sheet uniformity of the unexposed Gafchromic Sheets and the region of interest (ROI) of the scanner. Sheets of lot No#: A05151201 were scanned before and after the expiry period with the EPSON™ XL10000 scanner in the transmission mode, landscape orientation and 72 dpi resolution. ROI of (8’x 10’ inches) equal to the sheet dimension in the center of the scanner is used to acquire images with full transmission, block transmission and with sheets in place. 500 virtual grids, created in MATALB® are imported as a macros in ImageJ (1.49m Wayne Rasband) to analyze the images. In order to remove the edge effects, the outer 86 grids are excluded from the analysis. The standard deviation of the block transmission and full transmission are 0.38% and 0.66% confirming a higher uniformity of the scanner. Expired and non-expired sheets have standard deviations of 2.18% and 1.29%, show that uniformity decreases after expiry. The results are promising and indicates a good potential of this method to be used as a uniformity check for scanner and unexposed Gafchromic sheets.

Keywords: IMRT, film dosimetry, virtual grids, uniformity

Procedia PDF Downloads 496
2872 Towards a Computational Model of Consciousness: Global Abstraction Workspace

Authors: Halim Djerroud, Arab Ali Cherif

Abstract:

We assume that conscious functions are implemented automatically. In other words that consciousness as well as the non-consciousness aspect of human thought, planning, and perception, are produced by biologically adaptive algorithms. We propose that the mechanisms of consciousness can be produced using similar adaptive algorithms to those executed by the mechanism. In this paper, we propose a computational model of consciousness, the ”Global Abstraction Workspace” which is an internal environmental modelling perceived as a multi-agent system. This system is able to evolve and generate new data and processes as well as actions in the environment.

Keywords: artificial consciousness, cognitive architecture, global abstraction workspace, multi-agent system

Procedia PDF Downloads 341
2871 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 87
2870 Did Nature of Job Matters - Impact of Perceived Job Autonomy on Turnover Intention in Sales and Marketing Managers: Moderating Effect of Procedural and Distributive Justice

Authors: Muhammad Babar Shahzad

Abstract:

The purpose of our study is to investigate the relationship between perceived job autonomy and turnover intention in sales & marketing staff. Perceived job autonomy is considered one of most studied dimension of Job Characteristic Model. But still there is a confusion in scholars about predictive role of perceived job autonomy in turnover intention. In line of more complex research on this relation, we investigated the relationship between perceived job autonomy and turnover intention. Did nature of job have any impact on this relationship. On the call of different authors we take interactive effect of perceived job autonomy and procedural justice on turnover intention. Predictive role of distributive justice to employee outcomes is not deniable. But predictive role of distributive justice will be prone in different contextual influences. Interactive role of distributive justice and perceived job autonomy is also not tested before. We collected date from 279 marketing and sales managers working in financial institution, FMCG industries, Pharamesutical Industry & Bank. Strong and direct negative relation was found in perceived job autonomy, distributive justice & procedural justice on turnover intention. Distributive and procedural justice is also amplifying the negative relationship of perceived job autonomy and turnover intention. Limitation and future direction for research is also discussed.

Keywords: perceived job autonomy, turnover intention, procedural justice, distributive job

Procedia PDF Downloads 512
2869 Parallel Version of Reinhard’s Color Transfer Algorithm

Authors: Abhishek Bhardwaj, Manish Kumar Bajpai

Abstract:

An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm.

Keywords: Reinhard et al’s algorithm, color transferring, parallelism, speedup

Procedia PDF Downloads 616
2868 Discrimination during a Resume Audit: The Impact of Job Context in Hiring

Authors: Alexandra Roy

Abstract:

Building on literature on cognitive matching and social categorization and using the correspondence testing method, we test the interaction effect of person characteristics (Gender with physical attractiveness) and job context (client contact, industry status, coworker contact). As expected, while findings show a strong impact of gender with beauty on hiring chances, job context characteristics have also a significant overall effect of this hiring outcome. Moreover, the rate of positive responses varies according some of the recruiter’s characteristics. Results are robust to various sensitivity checks. Implications of the results, limitations of the study, and directions for future research are discussed.

Keywords: correspondence testing, discrimination, hiring, physical attractiveness

Procedia PDF Downloads 209
2867 Consumers and Voters’ Choice: Two Different Contexts with a Powerful Behavioural Parallel

Authors: Valentina Dolmova

Abstract:

What consumers choose to buy and who voters select on election days are two questions that have captivated the interest of both academics and practitioners for many decades. The importance of understanding what influences the behavior of those groups and whether or not we can predict or control it fuels a steady stream of research in a range of fields. By looking only at the past 40 years, more than 70 thousand scientific papers have been published in each field – consumer behavior and political psychology, respectively. From marketing, economics, and the science of persuasion to political and cognitive psychology - we have all remained heavily engaged. The ever-evolving technology, inevitable socio-cultural shifts, global economic conditions, and much more play an important role in choice-equations regardless of context. On one hand, this makes the research efforts always relevant and needed. On the other, the relatively low number of cross-field collaborations, which seem to be picking up only in more in recent years, makes the existing findings isolated into framed bubbles. By performing systematic research across both areas of psychology and building a parallel between theories and factors of influence, however, we find that there is not only a definitive common ground between the behaviors of consumers and voters but that we are moving towards a global model of choice. This means that the lines between contexts are fading which has a direct implication on what we should focus on when predicting or navigating buyers and voters’ behavior. Internal and external factors in four main categories determine the choices we make as consumers and as voters. Together, personal, psychological, social, and cultural create a holistic framework through which all stimuli in relation to a particular product or a political party get filtered. The analogy “consumer-voter” solidifies further. Leading academics suggest that this fundamental parallel is the key to managing successfully political and consumer brands alike. However, we distinguish additional four key stimuli that relate to those factor categories (1/ opportunity costs; 2/the memory of the past; 3/recognisable figures/faces and 4/conflict) arguing that the level of expertise a person has determines the prevalence of factors or specific stimuli. Our efforts take into account global trends such as the establishment of “celebrity politics” and the image of “ethically concerned consumer brands” which bridge the gap between contexts to an even greater extent. Scientists and practitioners are pushed to accept the transformative nature of both fields in social psychology. Existing blind spots as well as the limited number of research conducted outside the American and European societies open up space for more collaborative efforts in this highly demanding and lucrative field. A mixed method of research tests three main hypotheses, the first two of which are focused on the level of irrelevance of context when comparing voting or consumer behavior – both from the factors and stimuli lenses, the third on determining whether or not the level of expertise in any field skews the weight of what prism we are more likely to choose when evaluating options.

Keywords: buyers’ behaviour, decision-making, voters’ behaviour, social psychology

Procedia PDF Downloads 155
2866 Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran

Authors: Manijeh Ghahroudi Tali, Ladan Khedri Gharibvand

Abstract:

Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks.

Keywords: fractal, Gavkhouni, microform, Iran

Procedia PDF Downloads 271
2865 Remote Sensing Application in Environmental Researches: Case Study of Iran Mangrove Forests Quantitative Assessment

Authors: Neda Orak, Mostafa Zarei

Abstract:

Environmental assessment is an important session in environment management. Since various methods and techniques have been produces and implemented. Remote sensing (RS) is widely used in many scientific and research fields such as geology, cartography, geography, agriculture, forestry, land use planning, environment, etc. It can show earth surface objects cyclical changes. Also, it can show earth phenomena limits on basis of electromagnetic reflectance changes and deviations records. The research has been done on mangrove forests assessment by RS techniques. Mangrove forests quantitative analysis in Basatin and Bidkhoon estuaries was the aim of this research. It has been done by Landsat satellite images from 1975- 2013 and match to ground control points. This part of mangroves are the last distribution in northern hemisphere. It can provide a good background to improve better management on this important ecosystem. Landsat has provided valuable images to earth changes detection to researchers. This research has used MSS, TM, +ETM, OLI sensors from 1975, 1990, 2000, 2003-2013. Changes had been studied after essential corrections such as fix errors, bands combination, georeferencing on 2012 images as basic image, by maximum likelihood and IPVI Index. It was done by supervised classification. 2004 google earth image and ground points by GPS (2010-2012) was used to compare satellite images obtained changes. Results showed mangrove area in bidkhoon was 1119072 m2 by GPS and 1231200 m2 by maximum likelihood supervised classification and 1317600 m2 by IPVI in 2012. Basatin areas is respectively: 466644 m2, 88200 m2, 63000 m2. Final results show forests have been declined naturally. It is due to human activities in Basatin. The defect was offset by planting in many years. Although the trend has been declining in recent years again. So, it mentioned satellite images have high ability to estimation all environmental processes. This research showed high correlation between images and indexes such as IPVI and NDVI with ground control points.

Keywords: IPVI index, Landsat sensor, maximum likelihood supervised classification, Nayband National Park

Procedia PDF Downloads 294
2864 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 331
2863 Feminist Revolution and the Quest for Women Emancipation in Public Life in Nigeria: The African Dimension

Authors: Adekunle Saheed Ajisebiyawo, Christie Omoduwa Achime

Abstract:

In Nigerian society, women have very little or no involvement in the decision-making process and this is large because women are objectified as effective means of reproduction and provision of emotional support to the society. Despite the movements and awareness by international, national and local bodies to promote and encourage women's empowerment, there are still many factors daunting to the efforts of women in society. This paper examined the critical role of feminism in the quest for women's emancipation in public life. Guided by African feminism theory, this paper utilizes both historical and descriptive methods to examine these factors. The paper argues that gender bias in Nigeria's public life is often traced to the onset of colonialism in Nigeria. Thus the Western cultural notion of colonialism woven around male superiority is reflected in their relations with Nigerians. The study outlines how women have strategized pathways through patriarchal structures by deploying their femininity. The paper concludes that women are strong, courageous, natural leaders and indeed have a major strategic role to play in public life; thus, women's movements and groups remain an important and necessary means of social cohesion and strength, especially in a country such as Nigeria.

Keywords: African feminism, democratic governance, feminism, patriarchy, women emancipation.

Procedia PDF Downloads 108
2862 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 137
2861 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan

Abstract:

Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 247
2860 Technological Affordances: Guidelines for E-Learning Design

Authors: Clement Chimezie Aladi, Itamar Shabtai

Abstract:

A review of the literature in the last few years reveals that little attention has been paid to technological affordances in e-learning designs. However, affordances are key to engaging students and enabling teachers to actualize learning goals. E-learning systems (software and artifacts) need to be designed in such a way that the features facilitate perceptions of the affordances with minimal cognition. This study aimed to fill this gap in the literature and encourage further research in this area. It provides guidelines for facilitating the perception of affordances in e-learning design and advances Technology Affordance and Constraints Theory by incorporating the affordance-based design process, the principles of multimedia learning, e-learning design philosophy, and emotional and cognitive affordances.

Keywords: e-learning, technology affrodances, affordance based design, e-learning design

Procedia PDF Downloads 64
2859 Celebrity Culture and Social Role of Celebrities in Türkiye during the 1990s: The Case of Türkiye, Newspaper, Radio, Televison (TGRT) Channel

Authors: Yelda Yenel, Orkut Acele

Abstract:

In a media-saturated world, celebrities have become ubiquitous figures, encountered both in public spaces and within the privacy of our homes, seamlessly integrating into daily life. From Alexander the Great to contemporary media personalities, the image of celebrity has persisted throughout history, manifesting in various forms and contexts. Over time, as the relationship between society and the market evolved, so too did the roles and behaviors of celebrities. These transformations offer insights into the cultural climate, revealing shifts in habits and worldviews. In Türkiye, the emergence of private television channels brought an influx of celebrities into everyday life, making them a pervasive part of daily routines. To understand modern celebrity culture, it is essential to examine the ideological functions of media within political, economic, and social contexts. Within this framework, celebrities serve as both reflections and creators of cultural values and, at times, act as intermediaries, offering insights into the society of their era. Starting its broadcasting life in 1992 with religious films and religious conversation, Türkiye Newspaper, Radio, Television channel (TGRT) later changed its appearance, slogan, and the celebrities it featured in response to the political atmosphere. Celebrities played a critical role in transforming from the existing slogan 'Peace has come to the screen' to 'Watch and see what will happen”. Celebrities hold significant roles in society, and their images are produced and circulated by various actors, including media organizations and public relations teams. Understanding these dynamics is crucial for analyzing their influence and impact. This study aims to explore Turkish society in the 1990s, focusing on TGRT and its visual and discursive characteristics regarding celebrity figures such as Seda Sayan. The first section examines the historical development of celebrity culture and its transformations, guided by the conceptual framework of celebrity studies. The complex and interconnected image of celebrity, as introduced by post-structuralist approaches, plays a fundamental role in making sense of existing relationships. This section traces the existence and functions of celebrities from antiquity to the present day. The second section explores the economic, social, and cultural contexts of 1990s Türkiye, focusing on the media landscape and visibility that became prominent in the neoliberal era following the 1980s. This section also discusses the political factors underlying TGRT's transformation, such as the 1997 military memorandum. The third section analyzes TGRT as a case study, focusing on its significance as an Islamic television channel and the shifts in its public image, categorized into two distinct periods. The channel’s programming, which aligned with Islamic teachings, and the celebrities who featured prominently during these periods became the public face of both TGRT and the broader society. In particular, the transition to a more 'secular' format during TGRT's second phase is analyzed, focusing on changes in celebrity attire and program formats. This study reveals that celebrities are used as indicators of ideology, benefiting from this instrumentalization by enhancing their own fame and reflecting the prevailing cultural hegemony in society.

Keywords: celebrity culture, media, neoliberalism, TGRT

Procedia PDF Downloads 34
2858 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 185
2857 Language in Court: Ideology, Power and Cognition

Authors: Mehdi Damaliamiri

Abstract:

Undoubtedly, the power of language is hardly a new topic; indeed, the persuasive power of language accompanied by ideology has long been recognized in different aspects of life. The two and a half thousand-year-old Bisitun inscriptions in Iran, proclaiming the victories of the Persian King, Darius, are considered by some historians to have been an early example of the use of propaganda. Added to this, the modern age is the true cradle of fully-fledged ideologies and the ongoing process of centrifugal ideologization. The most visible work on ideology today within the field of linguistics is “Critical Discourse Analysis” (CDA). The focus of CDA is on “uncovering injustice, inequality, taking sides with the powerless and suppressed” and making “mechanisms of manipulation, discrimination, demagogy, and propaganda explicit and transparent.” possible way of relating language to ideology is to propose that ideology and language are inextricably intertwined. From this perspective, language is always ideological, and ideology depends on the language. All language use involves ideology, and so ideology is ubiquitous – in our everyday encounters, as much as in the business of the struggle for power within and between the nation-states and social statuses. At the same time, ideology requires language. Its key characteristics – its power and pervasiveness, its mechanisms for continuity and for change – all come out of the inner organization of language. The two phenomena are homologous: they share the same evolutionary trajectory. To get a more robust portrait of the power and ideology, we need to examine its potential place in the structure, and consider how such structures pattern in terms of the functional elements which organize meanings in the clause. This is based on the belief that all grammatical, including syntactic, knowledge is stored mentally as constructions have become immensely popular. When the structure of the clause is taken into account, the power and ideology have a preference for Complement over Subject and Adjunct. The subject is a central interpersonal element in discourse: it is one of two elements that form the central interactive nub of a proposition. Conceptually, there are countless ways of construing a given event and linguistically, a variety of grammatical devices that are usually available as alternate means of coding a given conception, such as political crime and corruption. In the theory of construal, then, which, like transitivity in Halliday, makes options available, Cognitive Linguistics can offer a cognitive account of ideology in language, where ideology is made possible by the choices a language allows for representing the same material situation in different ways. The possibility of promoting alternative construals of the same reality means that any particular choice in representation is always ideologically constrained or motivated and indicates the perspective and interests of the text-producer.

Keywords: power, ideology, court, discourse

Procedia PDF Downloads 165