Search results for: tumor immune response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6240

Search results for: tumor immune response

6000 Combined Treatment of Estrogen-Receptor Positive Breast Microtumors with 4-Hydroxytamoxifen and Novel Non-Steroidal Diethyl Stilbestrol-Like Analog Produces Enhanced Preclinical Treatment Response and Decreased Drug Resistance

Authors: Sarah Crawford, Gerry Lesley

Abstract:

This research is a pre-clinical assessment of anti-cancer effects of novel non-steroidal diethyl stilbestrol-like estrogen analogs in estrogen-receptor positive/ progesterone-receptor positive human breast cancer microtumors of MCF 7 cell line. Tamoxifen analog formulation (Tam A1) was used as a single agent or in combination with therapeutic concentrations of 4-hydroxytamoxifen, currently used as a long-term treatment for the prevention of breast cancer recurrence in women with estrogen receptor positive/ progesterone receptor positive malignancies. At concentrations ranging from 30-50 microM, Tam A1 induced microtumor disaggregation and cell death. Incremental cytotoxic effects correlated with increasing concentrations of Tam A1. Live tumor microscopy showed that microtumos displayed diffuse borders and substrate-attached cells were rounded-up and poorly adherent. A complete cytotoxic effect was observed using 40-50 microM Tam A1 with time course kinetics similar to 4-hydroxytamoxifen. Combined treatment with TamA1 (30-50 microM) and 4-hydroxytamoxifen (10-15 microM) induced a highly cytotoxic, synergistic combined treatment response that was more rapid and complete than using 4-hydroxytamoxifen as a single agent therapeutic. Microtumors completely dispersed or formed necrotic foci indicating a highly cytotoxic combined treatment response. Moreover, breast cancer microtumors treated with both 4-hydroxytamoxifen and Tam A1 displayed lower levels of long-term post-treatment regrowth, a critical parameter of primary drug resistance, than observed for 4-hydroxytamoxifen when used as a single agent therapeutic. Tumor regrowth at 6 weeks post-treatment with either single agent 4-hydroxy tamoxifen, Tam A1 or a combined treatment was assessed for the development of drug resistance. Breast cancer cells treated with both 4-hydroxytamoxifen and Tam A1 displayed significantly lower levels of post-treatment regrowth, indicative of decreased drug resistance, than observed for either single treatment modality. The preclinical data suggest that combined treatment involving the use of tamoxifen analogs may be a novel clinical approach for long-term maintenance therapy in patients with estrogen-receptor positive/progesterone-receptor positive breast cancer receiving hormonal therapy to prevent disease recurrence. Detailed data on time-course, IC50 and tumor regrowth assays post- treatment as well as a proposed mechanism of action to account for observed synergistic drug effects will be presented.

Keywords: 4-hydroxytamoxifen, tamoxifen analog, drug-resistance, microtumors

Procedia PDF Downloads 46
5999 A pH-Activatable Nanoparticle Self-Assembly Triggered by 7-Amino Actinomycin D Demonstrating Superior Tumor Fluorescence Imaging and Anticancer Performance

Authors: Han Xiao

Abstract:

The development of nanomedicines has recently achieved several breakthroughs in the field of cancer treatment; however, the biocompatibility and targeted burst release of these medications remain a limitation, which leads to serious side effects and significantly narrows the scope of their applications. The self-assembly of intermediate filament protein (IFP) peptides was triggered by a hydrophobic cation drug 7-amino actinomycin D (7-AAD) to synthesize pH-activatable nanoparticles (NPs) that could simultaneously locate tumors and produce antitumor effects. The designed IFP peptide included a target peptide (arginine–glycine–aspartate), a negatively charged region, and an α-helix sequence. It also possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. 7-AAD molecules with excellent near-infrared fluorescence properties could be target delivered into tumor cells by NPs and released immediately in the acidic environments of tumors and endosome/lysosomes, ultimately inducing cytotoxicity by arresting the tumor cell cycle with inserted DNA. It is noteworthy that the IFP/7-AAD NPs tail vein injection approach demonstrated not only high tumor-targeted imaging potential, but also strong antitumor therapeutic effects in vivo. The proposed strategy may be used in the delivery of cationic antitumor drugs for precise imaging and cancer therapy.

Keywords: 7-amino actinomycin D, intermediate filament protein, nanoparticle, tumor image

Procedia PDF Downloads 123
5998 Effect of Total Body Irradiation for Metastatic Lymph Node and Lung Metastasis in Early Stage

Authors: Shouta Sora, Shizuki Kuriu, Radhika Mishra, Ariunbuyan Sukhbaatar, Maya Sakamoto, Shiro Mori, Tetsuya Kodama

Abstract:

Lymph node (LN) metastasis accounts for 20 - 30 % of all deaths in patients with head and neck cancer. Therefore, the control of metastatic lymph nodes (MLNs) is necessary to improve the life prognosis of patients with cancer. In a classical metastatic theory, tumor cells are thought to metastasize hematogenously through a bead-like network of lymph nodes. Recently, a lymph node-mediated hematogenous metastasis theory has been proposed, in which sentinel LNs are regarded as a source of distant metastasis. Therefore, the treatment of MLNs at the early stage is essential to prevent distant metastasis. Radiation therapy is one of the primary therapeutic modalities in cancer treatment. In addition, total body irradiation (TBI) has been reported to act as activation of natural killer cells and increase of infiltration of CD4+ T-cells to tumor tissues. However, the treatment effect of TBI for MLNs remains unclear. This study evaluated the possibilities of low-dose total body irradiation (L-TBI) and middle-dose total body irradiation (M-TBI) for the treatment of MLNs. Mouse breast cancer FM3A-Luc cells were injected into subiliac lymph node (SiLN) of MXH10/Mo/LPR mice to induce the metastasis to the proper axillary lymph node (PALN) and lung. Mice were irradiated for the whole body on 4 days after tumor injection. The L-TBI and M-TBI were defined as irradiations to the whole body at 0.2 Gy and 1.0 Gy, respectively. Tumor growth was evaluated by in vivo bioluminescence imaging system. In the non-irradiated group, tumor activities on SiLN and PALN significantly increased over time, and the metastasis to the lung from LNs was confirmed 28 days after tumor injection. The L-TBI led to a tumor growth delay in PALN but did not control tumor growth in SiLN and metastasis to the lung. In contrast, it was found that the M-TBI significantly delayed the tumor growth of both SiLN and PALN and controlled the distant metastasis to the lung compared with non-irradiated and L-TBI groups. These results suggest that the M-TBI is an effective treatment method for MLNs in the early stage and distant metastasis from lymph nodes via blood vessels connected with LNs.

Keywords: metastatic lymph node, lung metastasis, radiation therapy, total body irradiation, lymphatic system

Procedia PDF Downloads 165
5997 Positron Emission Tomography Parameters as Predictors of Pathologic Response and Nodal Clearance in Patients with Stage IIIA NSCLC Receiving Trimodality Therapy

Authors: Andrea L. Arnett, Ann T. Packard, Yolanda I. Garces, Kenneth W. Merrell

Abstract:

Objective: Pathologic response following neoadjuvant chemoradiation (CRT) has been associated with improved overall survival (OS). Conflicting results have been reported regarding the pathologic predictive value of positron emission tomography (PET) response in patients with stage III lung cancer. The aim of this study was to evaluate the correlation between post-treatment PET response and pathologic response utilizing novel FDG-PET parameters. Methods: This retrospective study included patients with non-metastatic, stage IIIA (N2) NSCLC cancer treated with CRT followed by resection. All patients underwent PET prior to and after neoadjuvant CRT. Univariate analysis was utilized to assess correlations between PET response, nodal clearance, pCR, and near-complete pathologic response (defined as the microscopic residual disease or less). Maximal standard uptake value (SUV), standard uptake ratio (SUR) [normalized independently to the liver (SUR-L) and blood pool (SUR-BP)], metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured pre- and post-chemoradiation. Results: A total of 44 patients were included for review. Median age was 61.9 years, and median follow-up was 2.6 years. Histologic subtypes included adenocarcinoma (72.2%) and squamous cell carcinoma (22.7%), and the majority of patients had the T2 disease (59.1%). The rate of pCR and near-complete pathologic response within the primary lesion was 28.9% and 44.4%, respectively. The average reduction in SUVmₐₓ was 9.2 units (range -1.9-32.8), and the majority of patients demonstrated some degree of favorable treatment response. SUR-BP and SUR-L showed a mean reduction of 4.7 units (range -0.1-17.3) and 3.5 units (range –1.7-12.6), respectively. Variation in PET response was not significantly associated with histologic subtype, concurrent chemotherapy type, stage, or radiation dose. No significant correlation was found between pathologic response and absolute change in MTV or TLG. Reduction in SUVmₐₓ and SUR were associated with increased rate of pathologic response (p ≤ 0.02). This correlation was not impacted by normalization of SUR to liver versus mediastinal blood pool. A threshold of > 75% decrease in SUR-L correlated with near-complete response, with a sensitivity of 57.9% and specificity of 85.7%, as well as positive and negative predictive values of 78.6% and 69.2%, respectively (diagnostic odds ratio [DOR]: 5.6, p=0.02). A threshold of >50% decrease in SUR was also significantly associated pathologic response (DOR 12.9, p=0.2), but specificity was substantially lower when utilizing this threshold value. No significant association was found between nodal PET parameters and pathologic nodal clearance. Conclusions: Our results suggest that treatment response to neoadjuvant therapy as assessed on PET imaging can be a predictor of pathologic response when evaluated via SUV and SUR. SUR parameters were associated with higher diagnostic odds ratios, suggesting improved predictive utility compared to SUVmₐₓ. MTV and TLG did not prove to be significant predictors of pathologic response but may warrant further investigation in a larger cohort of patients.

Keywords: lung cancer, positron emission tomography (PET), standard uptake ratio (SUR), standard uptake value (SUV)

Procedia PDF Downloads 211
5996 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 228
5995 The Robotic Factor in Left Atrial Myxoma

Authors: Abraham J. Rizkalla, Tristan D. Yan

Abstract:

Atrial myxoma is the most common primary cardiac tumor, and can result in cardiac failure secondary to obstruction, or systemic embolism due to fragmentation. Traditionally, excision of atrial an myxoma has been performed through median sternotomy, however the robotic approach offers several advantages including less pain, improved cosmesis, and faster recovery. Here, we highlight the less well recognized advantages and technical aspects to robotic myxoma resection. This video-presentation demonstrates the resection of a papillary subtype left atrial myxoma using the DaVinci© Xi surgical robot. The 10x magnification and 3D vision allows for the interface between the tumor and the interatrial septum to be accurately dissected, without the need to patch the interatrial septum. Several techniques to avoid tumor fragmentation and embolization are demonstrated throughout the procedure. The tumor was completely excised with clear margins. There was no atrial septal defect or mitral valve injury on post operative transesophageal echocardiography. The patient was discharged home on the fourth post-operative day. This video-presentation highlights the advantages of the robotic approach in atrial myxoma resection compared with sternotomy, as well as emphasizing several technical considerations to avoid potential complications.

Keywords: cardiac surgery, left atrial myxoma, cardiac tumour, robotic resection

Procedia PDF Downloads 53
5994 Strabismus Management in Retinoblastoma Survivors

Authors: Babak Masoomian, Masoud Khorrami Nejad, Hamid Riazi Esfahani

Abstract:

Purpose: To report the result of strabismus surgery in eye-salvaged retinoblastoma (Rb) patients. Methods: A retrospective case series including 18 patients with Rb and strabismus who underwent strabismus surgery after completing tumor treatment by a single pediatric ophthalmologist. Results: A total of 18 patients (10 females and 8 males) were included with a mean age of 13.3 ± 3.0 (range, 2-39) months at the time tumor presentation and 6.0 ± 1.5 (range, 4-9) years at the time of strabismus surgery. Ten (56%) patients had unilateral, and 8(44%) had bilateral involvement, and the most common worse eye tumor’s group was D (n=11), C (n=4), B (n=2) and E (n=1). Macula was involved by the tumors in 12 (67%) patients. The tumors were managed by intravenous chemotherapy (n=8, 47%), intra-arterial chemotherapy (n=7, 41%) and both (n=3, 17%). After complete treatment, the average time to strabismus surgery was 29.9 ± 20.5 (range, 12-84) months. Except for one, visual acuity was equal or less than 1.0 logMAR (≤ 20/200) in the affected eye. Seven (39%) patients had exotropia, 11(61%) had esotropia (P=0.346) and vertical deviation was found in 8 (48%) cases. The angle of deviation was 42.0 ± 10.4 (range, 30-60) prism diopter (PD) for esotropic and 35.7± 7.9 (range, 25-50) PD for exotropic patients (P=0.32) that after surgery significantly decreased to 8.5 ± 5.3 PD in esotropic cases and 5.9±6.7 PD in exotropic cases (P<0.001). The mean follow-up after surgery was 15.2 ± 2.0 (range, 10-24) months, in which 3 (17%) patients needed a second surgery. Conclusion: Strabismus surgery in treated Rb is safe, and results of the surgeries are acceptable and close to the general population. There was not associated with tumor recurrence or metastasis.

Keywords: retinoblastoma, strabismus, chemotherapy, surgery

Procedia PDF Downloads 39
5993 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 403
5992 The Role of Txnrd2 Deficiency in Epithelial-to-Mesenchymal-Transition (EMT) and Tumor Formation in Pancreatic Cancer

Authors: Chao Wu

Abstract:

Thioredoxin reductase 2 is a mitochondrial enzyme that belongs to the cellular defense against oxidative stress. We deleted mitochondrial Txnrd2 in a KrasG12D-driven pancreatic tumor model. Despite an initial increase in precursor lesions, tumor incidence decreased significantly. We isolated cancer cell lines from these genetically engineered mice and observed an impaired proliferation and colony formation. Reactive Oxygen Species, as determined by DCF fluorescence, were increased. We detected a higher mitochondrial copy number in Txnrd2-deficient cells (KTP). However, measurement of mitochondrial bioenergetics showed no impairment of mitochondrial function and comparable O₂-consumption and extracellular acidification rates. In addition, the mitochondrial complex composition was affected in Txnrd2 deleted cell lines. To gain better insight into the role of Txnrd2, we deleted Txnrd2 in clones from parental KrasG12D cell lines using Crispr/Cas9 technology. The deletion was confirmed by western blot and activity assay. Interestingly, and in line with previous RNA expression analysis, we saw changes in EMT markers in Txnrd2 deleted cell lines and control cell lines. This might help us explain the reduced tumor incidence in KrasG12D; Txnrd2∆panc mice.

Keywords: PDAC, TXNRD2, epithelial-to-mesenchymal-transition, ROS

Procedia PDF Downloads 92
5991 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level

Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti

Abstract:

The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.

Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor

Procedia PDF Downloads 263
5990 Using Multiomic Plasma Profiling From Liquid Biopsies to Identify Potential Signatures for Disease Diagnostics in Late-Stage Non-small Cell Lung Cancer (NSCLC) in Trinidad and Tobago

Authors: Nicole Ramlachan, Samuel Mark West

Abstract:

Lung cancer is the leading cause of cancer-associated deaths in North America, with the vast majority being non-small cell lung cancer (NSCLC), with a five-year survival rate of only 24%. Non-invasive discovery of biomarkers associated with early-diagnosis of NSCLC can enable precision oncology efforts using liquid biopsy-based multiomics profiling of plasma. Although tissue biopsies are currently the gold standard for tumor profiling, this method presents many limitations since these are invasive, risky, and sometimes hard to obtain as well as only giving a limited tumor profile. Blood-based tests provides a less-invasive, more robust approach to interrogate both tumor- and non-tumor-derived signals. We intend to examine 30 stage III-IV NSCLC patients pre-surgery and collect plasma samples.Cell-free DNA (cfDNA) will be extracted from plasma, and next-generation sequencing (NGS) performed. Through the analysis of tumor-specific alterations, including single nucleotide variants (SNVs), insertions, deletions, copy number variations (CNVs), and methylation alterations, we intend to identify tumor-derived DNA—ctDNA among the total pool of cfDNA. This would generate data to be used as an accurate form of cancer genotyping for diagnostic purposes. Using liquid biopsies offer opportunities to improve the surveillance of cancer patients during treatment and would supplement current diagnosis and tumor profiling strategies previously not readily available in Trinidad and Tobago. It would be useful and advantageous to use this in diagnosis and tumour profiling as well as to monitor cancer patients, providing early information regarding disease evolution and treatment efficacy, and reorient treatment strategies in, timethereby improving clinical oncology outcomes.

Keywords: genomics, multiomics, clinical genetics, genotyping, oncology, diagnostics

Procedia PDF Downloads 135
5989 Biocompatible Chitosan Nanoparticles as an Efficient Delivery Vehicle for Mycobacterium Tuberculosis Lipids to Induce Potent Cytokines and Antibody Response through Activation of γδ T-Cells in Mice

Authors: Ishani Das, Avinash Padhi, Sitabja Mukherjee, Santosh Kar, Avinash Sonawane

Abstract:

Activation of cell mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) are critical for protection. Herein, we show that mice immunized with Mtb lipid bound chitosan nanoparticles(NPs) induce secretion of prominent Th1 and Th2 cytokines in lymph node and spleen cells, and also induced significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice measured by ELISA. Furthermore, significantly enhanced γδ-T cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid coated chitosan-NPs as compared to mice immunized with chitosan-NPs alone or Mtb lipid liposomes through flow cytometric analysis. Also, it was observed that in comparison to CD8+ cells, significantly higher CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid coated chitosan NP. In conclusion, this study represents a promising new strategy for efficient delivery of Mtb lipids using chitosan NPs to trigger enhanced cell mediated and antibody response against Mtb lipids.

Keywords: antibody response, chitosan nanoparticles, cytokines, mycobacterium tuberculosis lipids

Procedia PDF Downloads 258
5988 Process Development of pVAX1/lacZ Plasmid DNA Purification Using Design of Experiment

Authors: Asavasereerat K., Teacharsripaitoon T., Tungyingyong P., Charupongrat S., Noppiboon S. Hochareon L., Kitsuban P.

Abstract:

Third generation of vaccines is based on gene therapy where DNA is introduced into patients. The antigenic or therapeutic proteins encoded from transgenes DNA triggers an immune-response to counteract various diseases. Moreover, DNA vaccine offers the customization of its ability on protection and treatment with high stability. The production of DNA vaccines become of interest. According to USFDA guidance for industry, the recommended limits for impurities from host cell are lower than 1%, and the active conformation homogeneity supercoiled DNA, is more than 80%. Thus, the purification strategy using two-steps chromatography has been established and verified for its robustness. Herein, pVax1/lacZ, a pre-approved USFDA DNA vaccine backbone, was used and transformed into E. coli strain DH5α. Three purification process parameters including sample-loading flow rate, the salt concentration in washing and eluting buffer, were studied and the experiment was designed using response surface method with central composite face-centered (CCF) as a model. The designed range of selected parameters was 10% variation from the optimized set point as a safety factor. The purity in the percentage of supercoiled conformation obtained from each chromatography step, AIEX and HIC, were analyzed by HPLC. The response data were used to establish regression model and statistically analyzed followed by Monte Carlo simulation using SAS JMP. The results on the purity of the product obtained from AIEX and HIC are between 89.4 to 92.5% and 88.3 to 100.0%, respectively. Monte Carlo simulation showed that the pVAX1/lacZ purification process is robust with confidence intervals of 0.90 in range of 90.18-91.00% and 95.88-100.00%, for AIEX and HIC respectively.

Keywords: AIEX, DNA vaccine, HIC, puification, response surface method, robustness

Procedia PDF Downloads 191
5987 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients

Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera

Abstract:

Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.

Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine

Procedia PDF Downloads 238
5986 Analysis of Differentially Expressed Genes in Spontaneously Occurring Canine Melanoma

Authors: Simona Perga, Chiara Beltramo, Floriana Fruscione, Isabella Martini, Federica Cavallo, Federica Riccardo, Paolo Buracco, Selina Iussich, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari, Paola Modesto

Abstract:

Introduction: Human and canine melanoma have common clinical, histologic characteristics making dogs a good model for comparative oncology. The identification of specific genes and a better understanding of the genetic landscape, signaling pathways, and tumor–microenvironmental interactions involved in the cancer onset and progression is essential for the development of therapeutic strategies against this tumor in both species. In the present study, the differential expression of genes in spontaneously occurring canine melanoma and in paired normal tissue was investigated by targeted RNAseq. Material and Methods: Total RNA was extracted from 17 canine malignant melanoma (CMM) samples and from five paired normal tissues stored in RNA-later. In order to capture the greater genetic variability, gene expression analysis was carried out using two panels (Qiagen): Human Immuno-Oncology (HIO) and Mouse-Immuno-Oncology (MIO) and the miSeq platform (Illumina). These kits allow the detection of the expression profile of 990 genes involved in the immune response against tumors in humans and mice. The data were analyzed through the CLCbio Genomics Workbench (Qiagen) software using the Canis lupus familiaris genome as a reference. Data analysis were carried out both comparing the biologic group (tumoral vs. healthy tissues) and comparing neoplastic tissue vs. paired healthy tissue; a Fold Change greater than two and a p-value less than 0.05 were set as the threshold to select interesting genes. Results and Discussion: Using HIO 63, down-regulated genes were detected; 13 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Eighteen genes were up-regulated, 14 of those were also down-regulated comparing neoplastic sample vs. paired healthy tissue. Using the MIO, 35 down regulated-genes were detected; only four of these were down-regulated, also comparing neoplastic sample vs. paired healthy tissue. Twelve genes were up-regulated in both types of analysis. Considering the two kits, the greatest variation in Fold Change was in up-regulated genes. Dogs displayed a greater genetic homology with humans than mice; moreover, the results have shown that the two kits are able to detect different genes. Most of these genes have specific cellular functions or belong to some enzymatic categories; some have already been described to be correlated to human melanoma and confirm the validity of the dog as a model for the study of molecular aspects of human melanoma.

Keywords: animal model, canine melanoma, gene expression, spontaneous tumors, targeted RNAseq

Procedia PDF Downloads 179
5985 The Role of Surgery to Remove the Primary Tumor in Patients with Metastatic Breast Cancer

Authors: A. D. Zikiryahodjaev, L. V. Bolotina, A. S. Sukhotko

Abstract:

Purpose. To evaluate the expediency and timeliness of performance of surgical treatment as a component of multi-therapy treatment of patients with stage IV breast cancers. Materials and Methods. This investigation comparatively analyzed the results of complex treatment with or without surgery in patients with metastatic breast cancer. We analyzed retrospectively treatment experience of 196 patients with generalized breast cancer in the department of oncology and breast reconstructive surgery of P.A. Herzen Moscow Cancer Research Institute from 2000 to 2012. The average age was (58±1,1) years. Invasive ductul carcinoma was verified in128 patients (65,3%), invasive lobular carcinoma-33 (16,8%), complex form - 19 (9,7%). Complex palliative care involving drug and radiation therapies was performed in two patient groups. The first group includes 124 patients who underwent surgical intervention as complex treatment, the second group includes 72 patients with only medical therapy. Standard systemic therapy was given to all patients. Results. Overall, 3-and 5-year survival in fist group was 43,8 and 21%, in second - 15,1 and 9,3% respectively [p=0,00002 log-rank]. Median survival in patients with surgical treatment composed 32 months, in patients with only systemic therapy-21. The factors having influencing an influence on the prognosis and the quality of life outcomes for of patients with generalized breast cancer were are also studied: hormone-dependent tumor, Her2/neu hyper-expression, reproductive function status (age, menopause existence). Conclusion.Removing primary breast tumor in patients with generalized breast cancer improve long-term outcomes. Three- and five-year survival increased by 28,7 and 16,3% respectively, and median survival–for 11 months. These patients may benefit from resection of the breast tumor. One explanation for the effect of this resection is that reducing the tumor load influences metastatic growth.

Keywords: breast cancer, combination therapy, factors of prognosis, primary tumor

Procedia PDF Downloads 396
5984 DOG1 Expression Is in Common Human Tumors: A Tissue Microarray Study on More than 15,000 Tissue Samples

Authors: Kristina Jansen, Maximilian Lennartz, Patrick Lebok, Guido Sauter, Ronald Simon, David Dum, Stefan Steurer

Abstract:

DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types, including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n=1,002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p<0.0001) and the absence of HPV infection in squamous cell carcinomas (p=0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.

Keywords: biomarker, DOG1, immunohistochemistry, tissue microarray

Procedia PDF Downloads 186
5983 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor

Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman

Abstract:

This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.

Keywords: lung tumour, Monte Carlo, polystyrene, Elekta synergy, Monaco planning system

Procedia PDF Downloads 421
5982 Increased Cytolytic Activity of Effector T-Cells against Cholangiocarcinoma Cells by Self-Differentiated Dendritic Cells with Down-Regulation of Interleukin-10 and Transforming Growth Factor-β Receptors

Authors: Chutamas Thepmalee, Aussara Panya, Mutita Junking, Jatuporn Sujjitjoon, Nunghathai Sawasdee, Pa-Thai Yenchitsomanus

Abstract:

Cholangiocarcinoma (CCA) is an aggressive malignancy of bile duct epithelial cells in which the standard treatments, including surgery, radiotherapy, chemotherapy, and targeted therapy are partially effective. Many solid tumors including CCA escape host immune responses by creating tumor microenvironment and generating immunosuppressive cytokines such as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β). These cytokines can inhibit dendritic cell (DC) differentiation and function, leading to decreased activation and response of effector CD4+ and CD8+ T cells for cancer cell elimination. To overcome the effects of these immunosuppressive cytokines and to increase ability of DC to activate effector CD4+ and CD8+ T cells, we generated self-differentiated DCs (SD-DCs) with down-regulation of IL-10 and TGF-β receptors for activation of effector CD4+ and CD8+ T cells. Human peripheral blood monocytes were initially transduced with lentiviral particles containing the genes encoding GM-CSF and IL-4 and then secondly transduced with lentiviral particles containing short-hairpin RNAs (shRNAs) to knock-down mRNAs of IL-10 and TGF-β receptors. The generated SD-DCs showed up-regulation of MHC class II (HLA-DR) and co-stimulatory molecules (CD40 and CD86), comparable to those of DCs generated by convention method. Suppression of IL-10 and TGF-β receptors on SD-DCs by specific shRNAs significantly increased levels of IFN-γ and also increased cytolytic activity of DC-activated effector T cells against CCA cell lines (KKU-213 and KKU-100), but it had little effect to immortalized cholangiocytes (MMNK-1). Thus, SD-DCs with down-regulation of IL-10 and TGF-β receptors increased activation of effector T cells, which is a recommended method to improve DC function for the preparation of DC-activated effector T cells for adoptive T-cell therapy.

Keywords: cholangiocarcinoma, IL-10 receptor, self-differentiated dendritic cells, TGF-β receptor

Procedia PDF Downloads 123
5981 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 429
5980 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 106
5979 Soil and the Gut Microbiome: Supporting the 'Hygiene Hypothesis'

Authors: Chris George, Adam Hamlin, Lily Pereg, Richard Charlesworth, Gal Winter

Abstract:

Background: According to the ‘hygiene hypothesis’ the current rise in allergies and autoimmune diseases stems mainly from reduced microbial exposure due, amongst other factors, to urbanisation and distance from soil. However, this hypothesis is based on epidemiological and not biological data. Useful insights into the underlying mechanisms of this hypothesis can be gained by studying our interaction with soil. Soil microbiota may be directly ingested or inhaled by humans, enter the body through skin-soil contact or using plants as vectors. This study aims to examine the ability of soil microbiota to colonise the gut, study the interaction of soil microbes with the immune system and their potential protective activity. Method: The nutrition of the rats was supplemented daily with fresh or autoclaved soil for 21 days followed by 14 days of no supplementations. Faecal samples were collected throughout and analysed using 16S sequencing. At the end of the experiment rats were sacrificed and tissues and digesta were collected. Results/Conclusion: Results showed significantly higher richness and diversity following soil supplementation even after recovery. Specific soil microbial groups identified as able to colonise the gut. Of particular interest was the mucosal layer which emerged as a receptive host for soil microorganisms. Histological examination revealed innate and adaptive immune activation. Findings of this study reinforce the ‘hygiene hypothesis’ by demonstrating the ability of soil microbes to colonise the gut and activate the immune system. This paves the way for further studies aimed to examine the interaction of soil microorganisms with the immune system.

Keywords: gut microbiota, hygiene hypothesis, microbiome, soil

Procedia PDF Downloads 231
5978 Effects of α-IFN –SingleWalled Carbon NanoTube and α-IFN-PLGA Encapsulated on Breast Cancer in Rats Induced by DMBA by Using CA15-3 Tumor Marker

Authors: Anoosh Eghdami

Abstract:

Background and aim: Conventional anticancer drugs display significant shortcomings which limit their use in cancer therapy. For this reason, important progress has been achieved in the field of nanotechnology to solve these problems and offer a promising and effective alternative for cancer treatment. Tumor markers may also be measured periodically during cancer therapy. Tumor markers may also be measured after treatment has ended to check for recurrence the return of cancer. The aim of this study was to evaluate the effect of nano drug delivery in induced breast cancer with DMBA by using CA15-3 tumor marker. Material and method: the rats were divided into five groups. The first group (control n=15) were fed only sesame oil as a gavage. In the second group n=15,10 mg DMBA was dissolved in 5ml of sesame oil and were fed as a gavage. In addition to DMBA treatment as the second group, in the 3,4and 5 groups after cancer creation, respectively affected by alpha interferon (α-IFN),alpha interferon conjugated with single walled carbon nano tube (α-IFN-SWNT) and encapsulated in poly lactic poly glycolic acid (α-IFN-PLGA). Tumor marker was measured in recent three groups. Results: The ANOVA test was used to determine the differences among the groups. Cancer inducing in rats (group 2) caused a significant increase in blood levels of CA15-3 (P<0.05). Administration of α-IFN, α-IFN –SWNT and α-IFN-PLGA in 3 groups of cancerous rats caused a significant decrease in blood levels of CA15-3 only the group that treated with α-IFN-PLGA (p<0.05). Conclusion: the results of this study indicate that nano drugs more effective than traditional drug in cancer treatment, although further work is needed to elucidate the safety and side effect of these compound in human.

Keywords: breast cancer, nano drug, tumor markers, CA15-3, α-IFN-PLGA, -IFN –SWNT

Procedia PDF Downloads 304
5977 Physiological and Reproductive Changes in Honey Bee Female Castes Following Direct Colony Exposure to Pesticides

Authors: Valizadeh Gever Bita, Joel Caren, Louisa Huand, Yu-Cheng Zhu, Esmaeil Amiri

Abstract:

Within a honey bee colony, queen is the sole reproducer of fertilized eggs, while queens are safeguarded by worker bees, trophallactic behavior and food sharing activities could expose them to agrochemicals. Here, we assessed the effects of three widely used pesticides—Acephate, Bifenthrin, and Chlorantraniliprole— on worker bees, to investigate indirect effects on the physiology and reproductive traits of queens as well as the eggs they produce. Using RT-qPCR we measured the expression of several detoxification and immune genes in adult worker bees, queens, and freshly laid eggs after pesticide exposure. These analyses aimed to elucidate the physiological changes in queens and potential transgenerational effects. While no significant changes in reproductive traits were observed following Chlorantraniliprole and Bifenthrin exposure, Acephate caused adverse effects on egg size, egg-laying activity, and queen weight. The expression of detoxification, immune and antioxidant-related genes in workers, queens and freshly laid eggs changed over time in response to these pesticides. The results of this investigation revealed that pesticides can cause negative impact on queen physiology and reproduction indirectly through their effects on exposed worker bees. These effects can potentially extend to the next generation of honey bees.

Keywords: apis mellifera, egg laying, detoxification enzymes, gene expression, honey bee queen

Procedia PDF Downloads 47
5976 Management of Renal Malignancies with IVC Thrombus: Our Experience

Authors: Sujeet Poudyal

Abstract:

Introduction: Renal cell carcinoma is the most common malignancy associated with Inferior vena cava (IVC) thrombosis. Radical nephrectomy with tumor thrombectomy provides durable cancer-free survival. Other renal malignancies like Wilms’ tumors are also associated with IVC thrombus. We describe our experience with the management of renal malignancies associated with IVC thrombus. Methods: This prospective study included 28 patients undergoing surgery for renal malignancies associated with IVC thrombus from February 2017 to March 2023. Demographics of patients, types of renal malignancy, level of IVC thrombus, intraoperative details, need for venovenous bypass, cardiopulmonary bypass and postoperative outcomes were all documented. Results: Out of a total of 28 patients, 24 patients had clear cell Renal Cell Carcinoma,1 had renal osteosarcoma and 3 patients had Wilms tumor. The levels. of thrombus were II in eight, III in seven, and IV in six patients. The mean age of RCC was 62.81±10.2 years, renal osteosarcoma was 26 years and Wilms tumor was 23 years. There was a need for venovenous bypass in four patients and cardiopulmonary bypass in four patients, and the Postoperative period was uneventful in most cases except for two mortalities, one in Level III due to pneumonia and one in Level IV due to sepsis. All cases followed up till now have no local recurrence and metastasis except one case of RCC with Level IV IVC thrombus, which presented with paraaortic nodal recurrence and is currently managed with sunitinib. Conclusion: The complexity in the management of renal malignancy with IVC thrombus increases with the level of IVC thrombus. As radical nephrectomy with tumor thrombectomy provides durable cancer-free survival in most cases, the surgery should be undertaken in an expert and experienced setup with a strong cardiovascular backup to minimize morbidity and mortality associated with the procedure.

Keywords: renal malignancy, IVC thrombus, radical nephrectomy with tumor thrombectomy, renal cell carcinoma

Procedia PDF Downloads 49
5975 DNA Vaccine Study against Vaccinia Virus Using In vivo Electroporation

Authors: Jai Myung Yang, Na Young Kim, Sung Ho Shin

Abstract:

The adverse reactions of current live smallpox vaccines and potential use of smallpox as a bioterror weapon have heightened the development of new effective vaccine for this infectious disease. In the present study, DNA vaccine vector was produced which was optimized for expression of the vaccinia virus L1 antigen in the mouse model. A plasmid IgM-tL1R, which contains codon-optimized L1R gene, was constructed and fused with an IgM signal sequence under the regulation of a SV40 enhancer. The expression and secretion of recombinant L1 protein was confirmed in vitro 293 T cell. Mice were administered the DNA vaccine by electroporation and challenged with vaccinia virus. We observed that immunization with IgM-tL1R induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Isotyping studies reveal that immunoglobulin G2 (IgG2) antibody predominated after the immunization, indicative of a T helper type 1 response. Our results suggest that an optimized DNA vaccine, IgM-tL1R, can be effective in stimulating anti-vaccinia virus immune response and provide protection against lethal orthopoxvirus challenge.

Keywords: DNA vaccine, electroporation, L1R, vaccinia virus

Procedia PDF Downloads 237
5974 Oncolytic Efficacy of Thymidine Kinase-Deleted Vaccinia Virus Strain Tiantan (oncoVV-TT) in Glioma

Authors: Seyedeh Nasim Mirbahari, Taha Azad, Mehdi Totonchi

Abstract:

Oncolytic viruses, which only replicate in tumor cells, are being extensively studied for their use in cancer therapy. A particular virus known as the vaccinia virus, a member of the poxvirus family, has demonstrated oncolytic abilities glioma. Treating Glioma with traditional methods such as chemotherapy and radiotherapy is quite challenging. Even though oncolytic viruses have shown immense potential in cancer treatment, their effectiveness in glioblastoma treatment is still low. Therefore, there is a need to improve and optimize immunotherapies for better results. In this study, we have designed oncoVV-TT, which can more effectively target tumor cells while minimizing replication in normal cells by replacing the thymidine kinase gene with a luc-p2a-GFP gene expression cassette. Human glioblastoma cell line U251 MG, rat glioblastoma cell line C6, and non-tumor cell line HFF were plated at 105 cells in a 12-well plates in 2 mL of DMEM-F2 medium with 10% FBS added to each well. Then incubated at 37°C. After 16 hours, the cells were treated with oncoVV-TT at an MOI of 0.01, 0.1 and left in the incubator for a further 24, 48, 72 and 96 hours. Viral replication assay, fluorescence imaging and viability tests, including trypan blue and crystal violet, were conducted to evaluate the cytotoxic effect of oncoVV-TT. The finding shows that oncoVV-TT had significantly higher cytotoxic activity and proliferation rates in tumor cells in a dose and time-dependent manner, with the strongest effect observed in U251 MG. To conclude, oncoVV-TT has the potential to be a promising oncolytic virus for cancer treatment, with a more cytotoxic effect in human glioblastoma cells versus rat glioma cells. To assess the effectiveness of vaccinia virus-mediated viral therapy, we have tested U251mg and C6 tumor cell lines taken from human and rat gliomas, respectively. The study evaluated oncoVV-TT's ability to replicate and lyse cells and analyzed the survival rates of the tested cell lines when treated with different doses of oncoVV-TT. Additionally, we compared the sensitivity of human and mouse glioma cell lines to the oncolytic vaccinia virus. All experiments regarding viruses were conducted under biosafety level 2. We engineered a Vaccinia-based oncolytic virus called oncoVV-TT to replicate specifically in tumor cells. To propagate the oncoVV-TT virus, HeLa cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 10 MOI virus was added. After 48 h, cells were harvested by scraping, and viruses were collected by 3 sequential freezing and thawing cycles followed by removal of cell debris by centrifugation (1500 rpm, 5 min). The supernatant was stored at −80 ◦C for the following experiments. To measure the replication of the virus in Hela, cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 5 MOI virus or equal dilution of PBS was added. At the treatment time of 0 h, 24 h, 48 h, 72 h and 96 h, the viral titers were determined under the fluorescence microscope (BZ-X700; Keyence, Osaka, Japan). Fluorescence intensity was quantified using the imagej software according to the manufacturer’s protocol. For the isolation of single-virus clones, HeLa cells seeded in six-well plates (5×105 cells/well). After 24 h (100% confluent), the cells were infected with a 10-fold dilution series of TianTan green fluorescent protein (GFP)virus and incubated for 4 h. To examine the cytotoxic effect of oncoVV-TT virus ofn U251mg and C6 cell, trypan blue and crystal violet assay was used.

Keywords: oncolytic virus, immune therapy, glioma, vaccinia virus

Procedia PDF Downloads 59
5973 Identifying the Host Substrates for the Mycobacterial Virulence Factor Protein Kinase G

Authors: Saha Saradindu, Das Payel, Somdeb BoseDasgupta

Abstract:

Tuberculosis caused by Mycobacteria tuberculosis is a dreadful disease and more so with the advent of extreme and total drug-resistant species. Mycobacterial pathogenesis is an ever-changing paradigm from phagosome maturation block to phagosomal escape into macrophage cytosol and finally acid tolerance and survival inside the lysosome. Mycobacteria are adept at subverting the host immune response by highjacking host cell signaling and secreting virulence factors. One such virulence factor is a ser/thr kinase; Protein kinase G (PknG), which is known to prevent phagosome maturation. The host substrates of PknG, allowing successful pathogenesis still remain an enigma. Hence we carried out a comparative phosphoproteomic screen and identified a number of substrates phosphorylated by PknG. We characterized some of these substrates in vivo and in vitro and observed that PknG mediated phosphorylation of these substrates leads to reduced TNFa production as well as decreased response to TNFa induced macrophage necroptosis, thus enabling mycobacterial survival and proliferation.

Keywords: mycobacteria, Protein kinase G, phosphoproteomics, necroptosis

Procedia PDF Downloads 130
5972 Development of Polymeric Fluorescence Sensor for the Determination of Bisphenol-A

Authors: Neşe Taşci, Soner Çubuk, Ece Kök Yetimoğlu, M. Vezir Kahraman

Abstract:

Bisphenol-A (BPA), 2,2-bis(4-hydroxyphenly)propane, is one of the highest usage volume chemicals in the world. Studies showed that BPA maybe has negative effects on the central nervous system, immune and endocrine systems. Several of analytical methods for the analysis of BPA have been reported including electrochemical processes, chemical oxidation, ozonization, spectrophotometric, chromatographic techniques. Compared with other conventional analytical techniques, optic sensors are reliable, providing quick results, low cost, easy to use, stands out as a much more advantageous method because of the high precision and sensitivity. In this work, a new photocured polymeric fluorescence sensor was prepared and characterized for Bisphenol-A (BPA) analysis. Characterization of the membrane was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) techniques. The response characteristics of the sensor including dynamic range, pH effect and response time were systematically investigated. Acknowledgment: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 115Y469.

Keywords: bisphenol-a, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 211
5971 Differential Infection of Primary Human B-Cells and EBV Positive B-Lymphoma Cell Lines by Recombinant AAV Serotypes

Authors: Elham Ahmadi, Mehrdad Ravanshad, Joyce Fingeroth, Mazyar Ziyaeyan, Rajesh Panigrahi, Jun Xie, Gao Guangping

Abstract:

B-cell proliferative disorders often occur among persons that are T-cell compromised. These disorders are primarily EBV+ and can first present with a focal lesion. Direct introduction of oncolytic viruses into localized tumors provides theoretical advantages over chemotherapy and immunotherapy by reducing systemic toxicity, to which the immunocompromised host is most vulnerable. Widely studied as a vehicle for gene therapy, AAV has only rarely been applied to treat cancer. As a prelude to development of a therapeutic vehicle, we assessed the ability of 15 distinct recombinant AAV serotypes (rAAV1, rAAV2, rAAV3b, rAAV4, rAAV5, rAAV6, rAAV6.2, rAAV6TM, rAAV7, rAAV8, rAAVrh8, rAAV9, rAAVrh10, rAAV39, rAAV43) bearing eGFP to infect human B-cell tumor lines compared with primary B-cells in vitro. Enhanced infection of tumor lines by AAV 6.2 was demonstrated by flow cytometry. EBV superinfection of EBV negative B-cell tumor lines increased susceptibility to AAV6.2 infection. As proof of concept, AAV6.2 bearing HSV-1 thymidine kinase in place of eGFP eliminated tumor cells upon exposure to ganciclovir.

Keywords: AAV, gene therapy, lymphoma, malignancy, tropism

Procedia PDF Downloads 95