Search results for: regular graph
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1597

Search results for: regular graph

1357 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 75
1356 Language Development and Growing Spanning Trees in Children Semantic Network

Authors: Somayeh Sadat Hashemi Kamangar, Fatemeh Bakouie, Shahriar Gharibzadeh

Abstract:

In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization.

Keywords: maximum spanning trees, word-embedding, semantic networks, language development

Procedia PDF Downloads 145
1355 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 22
1354 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 37
1353 Topological Language for Classifying Linear Chord Diagrams via Intersection Graphs

Authors: Michela Quadrini

Abstract:

Chord diagrams occur in mathematics, from the study of RNA to knot theory. They are widely used in theory of knots and links for studying the finite type invariants, whereas in molecular biology one important motivation to study chord diagrams is to deal with the problem of RNA structure prediction. An RNA molecule is a linear polymer, referred to as the backbone, that consists of four types of nucleotides. Each nucleotide is represented by a point, whereas each chord of the diagram stands for one interaction for Watson-Crick base pairs between two nonconsecutive nucleotides. A chord diagram is an oriented circle with a set of n pairs of distinct points, considered up to orientation preserving diffeomorphisms of the circle. A linear chord diagram (LCD) is a special kind of graph obtained cutting the oriented circle of a chord diagram. It consists of a line segment, called its backbone, to which are attached a number of chords with distinct endpoints. There is a natural fattening on any linear chord diagram; the backbone lies on the real axis, while all the chords are in the upper half-plane. Each linear chord diagram has a natural genus of its associated surface. To each chord diagram and linear chord diagram, it is possible to associate the intersection graph. It consists of a graph whose vertices correspond to the chords of the diagram, whereas the chord intersections are represented by a connection between the vertices. Such intersection graph carries a lot of information about the diagram. Our goal is to define an LCD equivalence class in terms of identity of intersection graphs, from which many chord diagram invariants depend. For studying these invariants, we introduce a new representation of Linear Chord Diagrams based on a set of appropriate topological operators that permits to model LCD in terms of the relations among chords. Such set is composed of: crossing, nesting, and concatenations. The crossing operator is able to generate the whole space of linear chord diagrams, and a multiple context free grammar able to uniquely generate each LDC starting from a linear chord diagram adding a chord for each production of the grammar is defined. In other words, it allows to associate a unique algebraic term to each linear chord diagram, while the remaining operators allow to rewrite the term throughout a set of appropriate rewriting rules. Such rules define an LCD equivalence class in terms of the identity of intersection graphs. Starting from a modelled RNA molecule and the linear chord, some authors proposed a topological classification and folding. Our LCD equivalence class could contribute to the RNA folding problem leading to the definition of an algorithm that calculates the free energy of the molecule more accurately respect to the existing ones. Such LCD equivalence class could be useful to obtain a more accurate estimate of link between the crossing number and the topological genus and to study the relation among other invariants.

Keywords: chord diagrams, linear chord diagram, equivalence class, topological language

Procedia PDF Downloads 201
1352 Social Media Utilisation and Addiction among Students in Nigerian Universities

Authors: Kolawole Akinjide Aramide, Razaq Oyewo

Abstract:

This study investigates social media utilisation and addiction among students in Nigerian universities. Three hundred and twenty seven (327) students were randomly selected across five selected universities in Nigeria but only 215 provided useful responses for the study. The study revealed regular use of social media for the purpose of communicating and connecting with friends only while Picassa, Twitter, Flickr, Youtube, MySpace, Blogger, Linkedln and LibraryThing were found to top the list of social media being used on regular basis by the students. The level of social media addiction among the students was found to be low. A significant difference was established between undergraduate and postgraduate students’ utilization of social media as the undergraduate students were found to utilise social media more than the postgraduate students. However, no significant difference was found in the level of addiction to social media between the undergraduate and postgraduate students.

Keywords: social media utilisation, social media addiction, Nigerian students, universities

Procedia PDF Downloads 505
1351 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale

Authors: Imene Skhakhfa, Lahbaci Ouerdachi

Abstract:

To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.

Keywords: model calibration, intensity, runoff, hydrograph

Procedia PDF Downloads 484
1350 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs

Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar

Abstract:

The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.

Keywords: simulation, probability, confidence interval, sensitivity analysis

Procedia PDF Downloads 381
1349 Fabrication and Characterization of Cadmium Sulfide Nanowires on Aluminum Oxide Template

Authors: Malik Imran Afzal

Abstract:

Cadmium supplied nanowires have unique electrical and optical properties and applications. To obtain cadmium supplied nanowires with regular and good aspect ratio, they can be synthesized by template synthesis method. Porous anodized aluminum oxide is the most promising template with regular hexagonal shapes. Their aspect ratio can be controlled by controlling the pores’ depth and diameter which greatly depend on anodization voltage and temperature of the electrolyte. In this research, high purity aluminium was used to prepare nanotemplates at 5-6°C in 1M phosphoric acid and cadmium supplied was deposited electrochemically using a co-solution of thiourea, cadmium acetate and ammonium acetate. pH was maintained at 11 in a heat bath at 75°C with the help of aqueous ammonia solution. Both porous anodized alumina and cadmium supplied nanowires were characterized suing SEM. A good quality Nanowires were obtained in bunches with reasonably high aspect ratio.

Keywords: bunches, electrodeposition, hexagonal, thiourea

Procedia PDF Downloads 326
1348 Maintenance Dredging at Port of Townsville

Authors: Mohamed Jaditager, Julie Lovisa, Nagaratnam Sivakugan

Abstract:

The Port of Townsville conducts regular annual maintenance dredging to maintain depths of its harbor basin and approach channels for the navigational safety of the vessels against the natural accumulation of marine sediments. In addition to the regular maintenance dredging, the port undertakes emergency dredging in cases where large quantities of sediments are mobilized and deposited in port waters by cyclone or major flood events. The maintenance dredging material derived from the port may be disposed at sea or on land in accordance with relevant state and commonwealth regulations. For the land disposal, the dredged mud slurry is hydraulically placed into containment ponds and left to undergo sedimentation and self-weight consolidation to form fill material for land reclamation. This paper provides an overview of the maintenance dredging at the Port of Townsville and emphasis on maintenance dredging requirements, sediment quality, bathymetry, dredging methods used, and dredged material disposal options.

Keywords: consolidation, dredged material, maintenance dredging, marine sediments, sedimentation

Procedia PDF Downloads 443
1347 An Optimized Association Rule Mining Algorithm

Authors: Archana Singh, Jyoti Agarwal, Ajay Rana

Abstract:

Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.

Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph

Procedia PDF Downloads 419
1346 Use of Green Coconut Pulp as Cream, Milk, Stabilizer and Emulsifier Replacer in Germinated Brown Rice Ice Cream

Authors: Naruemon Prapasuwannakul, Supitcha Boonchai, Nawapat Pengpengpit

Abstract:

The aim of this study was to determine physicochemical and sensory properties of germinated brown rice ice cream as affected by replacement of cream, milk, stabilizer, and emulsifier with green coconut pulp. Five different formulations of ice cream were performed. Regular formulation of ice cream consisted of GBR juice, milk cream, milk powder, stabilizer, emulsifier, sucrose and salt. Replacing of cream, milk, stabilizer, and emulsifier with coconut pulp resulted in an increase in viscosity and overrun, but a decrease in hardness, melting rate, lightness (l*) and redness (a*). However, there was no significant difference among all formulations on any sensory attributes. The results also showed that the ice cream with replacement of coconut pulp contained less fat and protein than those of the regular ice cream. The findings suggested that green coconut pulp can be used as alternative ingredient to replace fat, milk stabilizer and emulsifier even in a high carbohydrate ice cream formulation.

Keywords: ice cream, germinated brown rice, coconut pulp, milk, cream

Procedia PDF Downloads 226
1345 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 14
1344 Screening of Congenital Heart Diseases with Fetal Phonocardiography

Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney

Abstract:

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Keywords: cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system

Procedia PDF Downloads 330
1343 Advantages and Disadvantages of Distance Learning in Comparison with Full-time Teaching from the Perspective of Chinese University Students

Authors: Daniel Ecler

Abstract:

The aim of this paper was to find out how Chinese university students perceive distance learning compared to full-time teaching, to reveal its advantages and disadvantages, and to try to find what elements could be implemented in regular full-time teaching in order to make it more effective. Recent events have shown that online teaching has a significant role to play in the field of education and needs to be given increased attention and scrutiny. For this purpose, a research survey was conducted using semi-structured questionnaires, which aimed to determine the attitudes of Chinese university students to the phenomenon of distance learning. The results of this survey revealed that most students prefer distance learning to full-time teaching, mainly because it gives them more freedom to participate in teaching, regardless of the environment in which they are currently located. In conclusion, it is necessary to mention that the possibility to participate virtually in teaching from anywhere is a huge advantage that could become part of regular teaching in the future. However, further research into this issue will be necessary.

Keywords: distance learning, full-time teaching, Chinese college students, cultural background

Procedia PDF Downloads 175
1342 Examining Social Connectivity through Email Network Analysis: Study of Librarians' Emailing Groups in Pakistan

Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq

Abstract:

Social platforms like online discussion and mailing groups are well aligned with academic as well as professional learning spaces. Professional communities are increasingly moving to online forums for sharing and capturing the intellectual abilities. This study investigated dynamics of social connectivity of yahoo mailing groups of Pakistani Library and Information Science (LIS) professionals using Graph Theory technique. Design/Methodology: Social Network Analysis is the increasingly concerned domain for scientists in identifying whether people grow together through online social interaction or, whether they just reflect connectivity. We have conducted a longitudinal study using Network Graph Theory technique to analyze the large data-set of email communication. The data was collected from three yahoo mailing groups using network analysis software over a period of six months i.e. January to June 2016. Findings of the network analysis were reviewed through focus group discussion with LIS experts and selected respondents of the study. Data were analyzed in Microsoft Excel and network diagrams were visualized using NodeXL and ORA-Net Scene package. Findings: Findings demonstrate that professionals and students exhibit intellectual growth the more they get tied within a network by interacting and participating in communication through online forums. The study reports on dynamics of the large network by visualizing the email correspondence among group members in a network consisting vertices (members) and edges (randomized correspondence). The model pair wise relationship between group members was illustrated to show characteristics, reasons, and strength of ties. Connectivity of nodes illustrated the frequency of communication among group members through examining node coupling, diffusion of networks, and node clustering has been demonstrated in-depth. Network analysis was found to be a useful technique in investigating the dynamics of the large network.

Keywords: emailing networks, network graph theory, online social platforms, yahoo mailing groups

Procedia PDF Downloads 239
1341 Irregular Meal Pattern: What Is the Impact on Weight

Authors: Maha Alhussain, Moira A Taylor, Ian A. Macdonald

Abstract:

Background: It is well established that dietary composition has effects on metabolism and therefore impacts on health; however other aspects of diet, such as meal pattern, could also be important in both obesity management and promoting health. The present study investigated the effect of irregular meal frequency on anthropometric measurements and energy expenditure (EE) in healthy women. Design: 11 healthy weight women (18–40 years) were studied in a randomized crossover trial with two phases of 2 weeks each. In Phase 1, participants consumed either a regular meal pattern (6 meals/day) or an irregular meal pattern (varying from 3 to 9 meals/day). In Phase 2, participants followed the alternative meal pattern to that followed in Phase 1, after a 2-weeks washout period. In the two phases, identical foods were provided to a participant in amounts designed to keep body weight constant. Participants came to the laboratory after an overnight fast at the start and end of each phase. EE was measured in fasting state by indirect calorimetry. Postprandial EE was measured during the 3 h period after consumption of a milkshake, test drink. Results: There were no significant changes in body weight and anthropometric measurements after both meal pattern interventions. There was also no significant difference in mean daily energy intake between the regular and irregular meal pattern (2043 ±31 and 2099 ±33 respectively). EE in the fasting state showed no significant differences cross the experiment visits. There was a significant difference in Postprandial EE (measured for 3 h) by visit (P=0.04). Postprandial EE after the regular meal pattern was significantly higher than at baseline (P=0.002) or than after the irregular meal pattern (P= 0.04). Conclusion: Eating regularly for 14-day period significantly increases Postprandial EE which may contribute to weight loss and obesity management.

Keywords: energy expenditure, energy intake, meal pattern, weight loss

Procedia PDF Downloads 412
1340 The Malfatti’s Problem in Reuleaux Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s Problem is to ask for fitting 3 circles into a right triangle such that they are tangent to each other, and each circle is also tangent to a pair of the triangle’s side. This problem has been extended to any triangle (called general Malfatti’s Problem). Furthermore, the problem has been extended to have 1+2+…+n circles, we call it extended general Malfatti’s problem, these circles whose tangency graph, using the center of circles as vertices and the edge connect two circles center if these two circles tangent to each other, has the structure as Pascal’s triangle, and the exterior circles of these circles tangent to three sides of the triangle. In the extended general Malfatti’s problem, there are closed-form solutions for n=1, 2, and the problem becomes complex when n is greater than 2. In solving extended general Malfatti’s problem (n>2), we initially give values to the radii of all circles. From the tangency graph and current radii, we can compute angle value between two vectors. These vectors are from the center of the circle to the tangency points with surrounding elements, and these surrounding elements can be the boundary of the triangle or other circles. For each circle C, there are vectors from its center c to its tangency point with its neighbors (count clockwise) pi, i=0, 1,2,..,n. We add all angles between cpi to cp(i+1) mod (n+1), i=0,1,..,n, call it sumangle(C) for circle C. Using sumangle(C), we can reduce/enlarge the radii for all circles in next iteration, until sumangle(C) is equal to 2πfor all circles. With a similar idea, this paper proposed an algorithm to find the radii of circles whose tangency has the structure of Pascal’s triangle, and the exterior circles of these circles are tangent to the unit Realeaux Triangle.

Keywords: Malfatti’s problem, geometric constraint solver, computer-aided geometric design, circle packing, data visualization

Procedia PDF Downloads 130
1339 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 119
1338 Cost-Effectiveness of a Certified Service or Hearing Dog Compared to a Regular Companion Dog

Authors: Lundqvist M., Alwin J., Levin L-A.

Abstract:

Background: Assistance dogs are dogs trained to assist persons with functional impairment or chronic diseases. The assistance dog concept includes different types: guide dogs, hearing dogs, and service dogs. The service dog can further be divided into subgroups of physical services dogs, diabetes alert dogs, and seizure alert dogs. To examine the long-term effects of health care interventions, both in terms of resource use and health outcomes, cost-effectiveness analyses can be conducted. This analysis can provide important input to decision-makers when setting priorities. Little is known when it comes to the cost-effectiveness of assistance dogs. The study aimed to assess the cost-effectiveness of certified service or hearing dogs in comparison to regular companion dogs. Methods: The main data source for the analysis was the “service and hearing dog project”. It was a longitudinal interventional study with a pre-post design that incorporated fifty-five owners and their dogs. Data on all relevant costs affected by the use of a service dog such as; municipal services, health care costs, costs of sick leave, and costs of informal care were collected. Health-related quality of life was measured with the standardized instrument EQ-5D-3L. A decision-analytic Markov model was constructed to conduct the cost-effectiveness analysis. Outcomes were estimated over a 10-year time horizon. The incremental cost-effectiveness ratio expressed as cost per gained quality-adjusted life year was the primary outcome. The analysis employed a societal perspective. Results: The result of the cost-effectiveness analysis showed that compared to a regular companion dog, a certified dog is cost-effective with both lower total costs [-32,000 USD] and more quality-adjusted life-years [0.17]. Also, we will present subgroup results analyzing the cost-effectiveness of physicals service dogs and diabetes alert dogs. Conclusions: The study shows that a certified dog is cost-effective in comparison with a regular companion dog for individuals with functional impairments or chronic diseases. Analyses of uncertainty imply that further studies are needed.

Keywords: service dogs, hearing dogs, health economics, Markov model, quality-adjusted, life years

Procedia PDF Downloads 149
1337 Prevalence and Occupational Factors Associated with Low Back Pain among the Female Garment Workers: A Cross-Sectional Study in Bangladesh

Authors: Fazle Rabbi, Mashuda Khanom Tithi, Tasnim Mirza, Sanjida Rowshan Anannya, Ahmed Hossain

Abstract:

Background: Low Back Pain (LBP) is one of the common health problems among the garment workers that causes workers absenteeism from the work. The purpose of the study is to identify the association between occupational factors and LBP among the female garment workers in Bangladesh. Materials and Methods: A cross-sectional study was conducted with 487 female garment workers from three compliant garment factories of Bangladesh. Face-to-face interview on four different LBP measures along with questions on socio-demographic, occupational, and physical factors were used to collect the data. Result: The prevalence rates for LBP lasts for at least one day during the last six months, chronic pain, intense pain, and seeking medical care for LBP were found 63.04%, 38.60%, 13.76%, and 18.89%, respectively among the female garments workers. The multivariate logistic regression analysis indicates that duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) are positively associated with LBP. Besides, age, BMI, family income, marital status and number of children are also found positively associated with the LBP measures. Conclusion: The prevalence of LBP among female garment workers in Bangladesh is found high. The duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) play a significant role in developing LBP among the female workers. Factories need to consider training programs on the appropriate technique of weight bearing. It is also important to conduct regular screening programs to identify LBP, especially with married, overweight/obese and older age group to reduce the occurrence of LBP.

Keywords: Bangladesh, garment workers, low back pain, occupational health

Procedia PDF Downloads 196
1336 Mycoflora and Aflatoxin Contamination of Kokoro: A Nigerian Maize Snack

Authors: D. A. Onifade

Abstract:

Kokoro is maize snack which is very popular among poor masses in Nigeria who consume it along with gari(a cassava product) as lunch on a regular basis. In this study, fungal contaminants of kokoro were characterized and its aflatoxin content determined. A total of 30 fungal isolates were obtained from kokoro samples and they belong to 3 different species. Aspergillus flavus had the highest frequency of occurrence of 73.33% while Penicillium species had the lowest (6.66%). Different concentration of aflatoxin B1 was detected in some of the kokoro samples analyzed. Sample D had the highest concentration of 7.25 parts per billion (ppb). The lowest concentration detected was 0.06 ppb in sample P. No aflatoxin G1 and G2 was detected in all the kokoro samples with exception of sample P which contained 2.54 ppb aflatoxin G1.According to international standards some of the kokoro samples are not suitable for human consumption because of high-level aflatoxin which was above the recommended level. Therefore, production of kokoro should be standardized and appropriate packaging materials utilized to prevent the growth of aflatoxigenic fungi. This is to safeguard the health of many poor Nigerians who consume it on a regular basis.

Keywords: kokoro, maize snack, aflatoxin, contamination, mould, Nigeria

Procedia PDF Downloads 324
1335 TessPy – Spatial Tessellation Made Easy

Authors: Jonas Hamann, Siavash Saki, Tobias Hagen

Abstract:

Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.

Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies

Procedia PDF Downloads 126
1334 A New Bound on the Average Information Ratio of Perfect Secret-Sharing Schemes for Access Structures Based on Bipartite Graphs of Larger Girth

Authors: Hui-Chuan Lu

Abstract:

In a perfect secret-sharing scheme, a dealer distributes a secret among a set of participants in such a way that only qualified subsets of participants can recover the secret and the joint share of the participants in any unqualified subset is statistically independent of the secret. The access structure of the scheme refers to the collection of all qualified subsets. In a graph-based access structures, each vertex of a graph G represents a participant and each edge of G represents a minimal qualified subset. The average information ratio of a perfect secret-sharing scheme realizing a given access structure is the ratio of the average length of the shares given to the participants to the length of the secret. The infimum of the average information ratio of all possible perfect secret-sharing schemes realizing an access structure is called the optimal average information ratio of that access structure. We study the optimal average information ratio of the access structures based on bipartite graphs. Based on some previous results, we give a bound on the optimal average information ratio for all bipartite graphs of girth at least six. This bound is the best possible for some classes of bipartite graphs using our approach.

Keywords: secret-sharing scheme, average information ratio, star covering, deduction, core cluster

Procedia PDF Downloads 360
1333 Nonhomogeneous Linear Fractional Differential Equations Will Bessel Functions of the First Kind Giving Hypergeometric Functions Solutions

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

Fractional derivatives have become very important in several areas of Engineering, however, the solutions of simple differential equations are not known. Here we are considering the simplest first order nonhomogeneous differential equations with Bessel regular functions of the first kind, in this way the solutions have been found which are hypergeometric solutions for any fractional derivative of order α, where α is rational number α=m/p, between zero and one. The way to find this result is by using Laplace transform and the Caputo definitions of fractional derivatives. This method is for values longer than one. However for α entire number the hypergeometric functions are Kumer type, no integer values of alpha, the hypergeometric function is more complicated is type ₂F₃(a,b,c, t2/2). The argument of the hypergeometric changes sign when we go from the regular Bessel functions to the modified Bessel functions of the first kind, however it integer seems that using precise values of α and considering no integers values of α, a solution can be obtained in terms of two hypergeometric functions. Further research is required for future papers in order to obtain the general solution for any rational value of α.

Keywords: Caputo, fractional calculation, hypergeometric, linear differential equations

Procedia PDF Downloads 196
1332 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
1331 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps

Procedia PDF Downloads 124
1330 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J

Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa

Abstract:

A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.

Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index

Procedia PDF Downloads 133
1329 Hegemonic Salaryman Masculinity: Case Study of Transitional Male Gender Roles in Today's Japan

Authors: D. Norton

Abstract:

This qualitative study focuses on the lived experience and displacement of young white-collar masculinities in Japan. In recent years, the salaryman lifestyle has undergone significant disruption - increased competition for regular employment, rise in non-regular structurings of labour across public/private sectors, and shifting role expectations within the home. Despite this, related scholarship hints at a continued reinforcement of the traditional male gender role - that the salaryman remains a key benchmark of Japanese masculine identity. For those in structural proximity to these more ‘normative’ performativities, interest lies their engagement with such narratives - how they make sense of their masculinity in response to stated changes. In light of the historical emphasis on labour and breadwinning logics, notions of respective security or precarity generated as a result remain unclear. Similarly, concern extends to developments within the private sphere - by what means young white-collar men construct ideas of singlehood and companionship according to traditional gender ideologies or more contemporary, flexible readings. The influence of these still-emergent status distinctions on the logics of the social group in question is yet to be explored in depth by gender scholars. This project, therefore, focuses on a salaryman archetype as hegemonic - its transformation amidst these changes and socialising mechanisms that continue to legitimate unequal gender hierarchies. For data collection, a series of ethnographic interviews were held over a period of 12 months with university-educated, white-collar male employees from both Osaka and the Greater Tokyo Area. Findings suggest a modern salaryman ideal reflecting both continuities and shifts within white-collar employment. Whilst receptive to more contemporary workplace practices, the narratives of those interviewed remain imbued with logics supporting patterns of internal hegemony. Regular/non-regular distinction emerged as the foremost variable for both material and discursive patterns of white-collar stratification, with variants of displacement for each social group. Despite the heightened valorisation of stable employment, regular workers articulated various concerns over a model of corporate masculinity seen to be incompatible with recent socioeconomic developments. Likewise, non-regular employees face detachment owing to a still-inflexible perception of their working masculinity as marginalized amidst economic precarity. In seeking to negotiate respective challenges, those interviewed demonstrated an engagement with various concurrent social changes that would often either accommodate, reinforce, or expand upon traditional role behaviours. Few of these narratives offered any notable transgression of said ideal, however, suggesting that within the spectre of white-collar employment in Japan for the near future, any substantive transformation of corporate masculinity remains dependant upon economic developments, less so the agency of those involved.

Keywords: gender ideologies, hegemonic masculinity, Japan, white-collar employment

Procedia PDF Downloads 122
1328 Completion of the Modified World Health Organization (WHO) Partograph during Labour in Public Health Institutions of Addis Ababa, Ethiopia

Authors: Engida Yisma, Berhanu Dessalegn, Ayalew Astatkie, Nebreed Fesseha

Abstract:

Background: The World Health Organization (WHO) recommends using the partograph to follow labour and delivery, with the objective to improve health care and reduce maternal and foetal morbidity and death. Methods: A retrospective document review was undertaken to assess the completion of the modified WHO partograph during labour in public health institutions of Addis Ababa, Ethiopia. A total of 420 of the modified WHO partographs used to monitor mothers in labour from five public health institutions that provide maternity care were reviewed. A structured checklist was used to gather the required data. The collected data were analyzed using SPSS version 16.0. Frequency distributions, cross-tabulations and a graph were used to describe the results of the study. Results: All facilities were using the modified WHO partograph. The correct completion of the partograph was very low. From 420 partographs reviewed across all the five health facilities, foetal heart rate was recorded into the recommended standard in 129(30.7%) of the partographs, while 138 (32.9%) of cervical dilatation and 87 (20.70%) of uterine contractions were recorded to the recommended standard. The study did not document descent of the presenting part in 353 (84%). Moulding in 364 (86.7%) of the partographs reviewed was not recorded. Documentation of state of the liquor was 113(26.9%), while the maternal blood pressure was recorded to standard only in 78(18.6%) of the partographs reviewed. Conclusions: This study showed a poor completion of the modified WHO partographs during labour in public health institutions of Addis Ababa, Ethiopia. The findings may reflect poor management of labour and indicate the need for pre-service and periodic on-job training of health workers on the proper completion of the partograph. Regular supportive supervision, provision of guidelines and mandatory health facility policy are also needed in support of a collaborative effort to reduce maternal and perinatal deaths.

Keywords: modified WHO partograph, completion, public health institutions, Addis Ababa, Ethiopia

Procedia PDF Downloads 346