Search results for: parameter interactions
3084 Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology
Authors: Xiang Wang
Abstract:
In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure.Keywords: acoustic emission technology, concrete beam, parameter analysis, wave analysis, positioning
Procedia PDF Downloads 1413083 Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes
Authors: R. Faiez, M. Mashhoudi, F. Najafi
Abstract:
Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow.Keywords: computer simulation, fluid flow, interface shape, thermos-capillary effect
Procedia PDF Downloads 2453082 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study
Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu
Abstract:
Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm
Procedia PDF Downloads 1373081 Fuzzy-Sliding Controller Design for Induction Motor Control
Authors: M. Bouferhane, A. Boukhebza, L. Hatab
Abstract:
In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control
Procedia PDF Downloads 4893080 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions
Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju
Abstract:
Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.Keywords: distributed generation, electrical distribution systems, fault resistance
Procedia PDF Downloads 5153079 Drug-Drug Plasma Protein Binding Interactions of Ivacaftor
Authors: Elena K. Schneider, Johnny X. Huang, Vincenzo Carbone, Mark Baker, Mohammad A. K. Azad, Matthew A. Cooper, Jian Li, Tony Velkov
Abstract:
Ivacaftor is a novel CF trans-membrane conductance regulator (CFTR) potentiator that improves the pulmonary function for cystic fibrosis patients bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs that compete for the same plasma protein binding sites and impact the free drug concentration. This in turn could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1-acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site selective probes. Due to their high plasma protein binding affinities, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole and loratadine. The significance of these drug-drug interactions is interpreted in terms of the pharmacodynamic/pharmacokinetic parameters and molecular docking simulations. The translational outcomes of the data are presented as recommendations for a staggered treatment regimen for future clinical trials which aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor.Keywords: human α-1-acid glycoprotein, binding affinity, human serum albumin, ivacaftor, cystic fibrosis
Procedia PDF Downloads 3083078 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning
Authors: Michael A. Sprayberry, Vincent C. Paquit
Abstract:
Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization
Procedia PDF Downloads 903077 Densities and Volumetric Properties of {Difurylmethane + [(C5 – C8) N-Alkane or an Amide]} Binary Systems at 293.15, 298.15 and 303.15 K: Modelling Excess Molar Volumes by Prigogine-Flory-Patterson Theory
Authors: Belcher Fulele, W. A. A. Ddamba
Abstract:
Study of solvent systems contributes to the understanding of intermolecular interactions that occur in binary mixtures. These interactions involves among others strong dipole-dipole interactions and weak van de Waals interactions which are of significant application in pharmaceuticals, solvent extractions, design of reactors and solvent handling and storage processes. Binary mixtures of solvents can thus be used as a model to interpret thermodynamic behavior that occur in a real solution mixture. Densities of pure DFM, n-alkanes (n-pentane, n-hexane, n-heptane and n-octane) and amides (N-methylformamide, N-ethylformamide, N,N-dimethylformamide and N,N-dimethylacetamide) as well as their [DFM + ((C5-C8) n-alkane or amide)] binary mixtures over the entire composition range, have been reported at temperature 293.15, 298.15 and 303.15 K and atmospheric pressure. These data has been used to derive the thermodynamic properties: the excess molar volume of solution, apparent molar volumes, excess partial molar volumes, limiting excess partial molar volumes, limiting partial molar volumes of each component of a binary mixture. The results are discussed in terms of possible intermolecular interactions and structural effects that occur in the binary mixtures. The variation of excess molar volume with DFM composition for the [DFM + (C5-C7) n-alkane] binary mixture exhibit a sigmoidal behavior while for the [DFM + n-octane] binary system, positive deviation of excess molar volume function was observed over the entire composition range. For each of the [DFM + (C5-C8) n-alkane] binary mixture, the excess molar volume exhibited a fall with increase in temperature. The excess molar volume for each of [DFM + (NMF or NEF or DMF or DMA)] binary system was negative over the entire DFM composition at each of the three temperatures investigated. The negative deviations in excess molar volume values follow the order: DMA > DMF > NEF > NMF. Increase in temperature has a greater effect on component self-association than it has on complex formation between molecules of components in [DFM + (NMF or NEF or DMF or DMA)] binary mixture which shifts complex formation equilibrium towards complex to give a drop in excess molar volume with increase in temperature. The Prigogine-Flory-Patterson model has been applied at 298.15 K and reveals that the free volume is the most important contributing term to the excess experimental molar volume data for [DFM + (n-pentane or n-octane)] binary system. For [DFM + (NMF or DMF or DMA)] binary mixture, the interactional term and characteristic pressure term contributions are the most important contributing terms in describing the sign of experimental excess molar volume. The mixture systems contributed to the understanding of interactions of polar solvents with proteins (amides) with non-polar solvents (alkanes) in biological systems.Keywords: alkanes, amides, excess thermodynamic parameters, Prigogine-Flory-Patterson model
Procedia PDF Downloads 3553076 Battery Control with Moving Average Algorithm to Smoothen the Intermittent Output Power of Photovoltaic Solar Power Plants in Off-Grid Configuration
Authors: Muhammad Gillfran Samual, Rinaldy Dalimi, Fauzan Hanif Jufri, Budi Sudiarto, Ismi Rosyiana Fitri
Abstract:
Solar energy is increasingly recognized as an important future energy source due to its abundant availability and renewable nature. However, the intermittent nature of solar energy can cause fluctuations in the electricity produced, making it difficult to guarantee a stable and reliable electricity supply. One solution that can be implemented is to use batteries in a photovoltaic solar power plant system with a Moving Average control algorithm, which can help smooth and reduce fluctuations in solar power output power. The parameter that can be adjusted in the Moving Average algorithm is the window size or the arithmetic average width of the photovoltaic output power over time. This research evaluates the effect of a change of window size parameter in the Moving Average algorithm on the resulting smoothed photovoltaic output power and the technical effects on batteries, i.e., power and energy usage. Based on the evaluation, it is found that the increase of window size parameter will slow down the response of photovoltaic output power to changes in irradiation and increase the smoothing quality of the intermittent photovoltaic output power. In addition, increasing the window size will reduce the maximum power received on the load side, and the amount of energy used by the battery during the power smoothing process will increase, which, in turn, increases the required battery capacity.Keywords: battery, intermittent, moving average, photovoltaic, power smoothing
Procedia PDF Downloads 613075 Analysis of Cross-Correlations in Emerging Markets Using Random Matrix Theory
Authors: Thomas Chinwe Urama, Patrick Oseloka Ezepue, Peters Chimezie Nnanwa
Abstract:
This paper investigates the universal financial dynamics in two dominant stock markets in Sub-Saharan Africa, through an in-depth analysis of the cross-correlation matrix of price returns in Nigerian Stock Market (NSM) and Johannesburg Stock Exchange (JSE), for the period 2009 to 2013. The strength of correlations between stocks is known to be higher in JSE than that of the NSM. Particularly important for modelling Nigerian derivatives in the future, the interactions of other stocks with the oil sector are weak, whereas the banking sector has strong positive interactions with the other sectors in the stock exchange. For the JSE, it is the oil sector and beverages that have greater sectorial correlations, instead of the banks which have the weaker correlation with other sectors in the stock exchange.Keywords: random matrix theory, cross-correlations, emerging markets, option pricing, eigenvalues eigenvectors, inverse participation ratios and implied volatility
Procedia PDF Downloads 2993074 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles
Authors: Tobias Schramm, Günther Prokop
Abstract:
Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation
Procedia PDF Downloads 1153073 Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number
Authors: Hichem Boulechfar, Mahfoud Djezzar
Abstract:
Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter.Keywords: double diffusive, natural convection, porous media, elliptical annulus
Procedia PDF Downloads 2083072 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model
Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed
Abstract:
Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification
Procedia PDF Downloads 2673071 Controlled Chemotherapy Strategy Applied to HIV Model
Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman
Abstract:
Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle
Procedia PDF Downloads 3303070 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm
Authors: Kristian Bautista, Ruben A. Idoy
Abstract:
A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization
Procedia PDF Downloads 2303069 Parameter Estimation of False Dynamic EIV Model with Additive Uncertainty
Authors: Dalvinder Kaur Mangal
Abstract:
For the past decade, noise corrupted output measurements have been a fundamental research problem to be investigated. On the other hand, the estimation of the parameters for linear dynamic systems when also the input is affected by noise is recognized as more difficult problem which only recently has received increasing attention. Representations where errors or measurement noises/disturbances are present on both the inputs and outputs are usually called errors-in-variables (EIV) models. These disturbances may also have additive effects which are also considered in this paper. Parameter estimation of false EIV problem using equation error, output error and iterative prefiltering identification schemes with and without additive uncertainty, when only the output observation is corrupted by noise has been dealt in this paper. The comparative study of these three schemes has also been carried out.Keywords: errors-in-variable (EIV), false EIV, equation error, output error, iterative prefiltering, Gaussian noise
Procedia PDF Downloads 4913068 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet
Authors: Madhu Aneja, Sapna Sharma
Abstract:
Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet
Procedia PDF Downloads 2183067 Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric
Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park
Abstract:
Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.Keywords: modular bridge, optimal transverse shape, parameter, FEM
Procedia PDF Downloads 6503066 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure
Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold
Abstract:
Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure has been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1 m length, 8 mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.Keywords: heat pipe, inclination, optimization, ratio
Procedia PDF Downloads 3283065 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction
Authors: Arunima Verma, Padmabati Mondal
Abstract:
Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.Keywords: allostery, CADD, MD simulations, MM-PBSA
Procedia PDF Downloads 873064 Designing Expressive Behaviors to Improve Human-Robot Relationships
Authors: Sahil Anand, John Luetke, Nikhil Venkatesh, Dorothy Wong
Abstract:
Trust plays an important role in building and sustaining long-term relationships between people. In this paper, we present a robot that communicates using nonverbal behaviors such as facial expressions and body movements. Our study reports on an experiment in which participants were asked to team up with the robot to perform specific tasks. We varied the expressivity of the robot and measured the effects on trust, quality of interactions as well as on the praising and punishing behavior of the participant towards the robot. We found that participants developed a stronger affinity towards the expressive robot, but did not show any significant differences in the level of trust. When the same robot made mistakes, participants unconsciously punished it with lesser intensity compared to the neutral robot. The results emphasize the role of expressive behaviors on participant’s perception of the robot and also on the quality of interactions between humans and robots.Keywords: human-robot interaction, nonverbal communication, relationships, social robot, trust
Procedia PDF Downloads 3703063 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 4943062 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)
Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa
Abstract:
The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect
Procedia PDF Downloads 3203061 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.
Authors: Qasim M. Kriri
Abstract:
Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.Keywords: parameter linear programming, objective function, sensitivity analysis, optimize profit
Procedia PDF Downloads 2053060 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic
Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović
Abstract:
This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.Keywords: fuzzy logic, metal machining, process modeling, surface roughness
Procedia PDF Downloads 1593059 Parameter Identification Analysis in the Design of Rock Fill Dams
Authors: G. Shahzadi, A. Soulaimani
Abstract:
This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS
Procedia PDF Downloads 1463058 Presidential Interactions with Faculty Senates: Expectations and Practices
Authors: Michael T. Miller, G. David Gearhart
Abstract:
Shared governance is an important element in higher education decision making. Through the joint decision making process, faculty members are provided an opportunity to help shape the future of an institution while increasing support for decisions that are made. Presidents, those leaders who are legally bound to guide their institutions, must find ways to collaborate effectively with faculty members in making decisions, and the first step in this process is understanding when and how presidents and faculty leaders interact. In the current study, a national sample of college presidents reported their preparation for the presidency, their perceptions of the functions of a faculty senate, and ultimately, the locations for important interactions between presidents and faculty senates. Results indicated that presidents, regardless of their preparation, found official functions to be the most important for communicating, although, those presidents with academic backgrounds were more likely to perceive faculty senates as having a role in all aspects of an institutions management.Keywords: college faculty, college president, faculty senate, leadership
Procedia PDF Downloads 1243057 Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing
Authors: Mateen A. Khan, Elizabeth J. Theil, Dixie J. Goss
Abstract:
Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions.Keywords: IRE-mRNA, IRP1, binding, ionic strength
Procedia PDF Downloads 1263056 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models
Authors: Akinnubi Rufus Temidayo
Abstract:
Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.Keywords: west africa, radiative, climate, resilence, anthropogenic
Procedia PDF Downloads 83055 Effect of Clinical Parameters on Strength of Reattached Tooth Fragment in Anterior Teeth: Systematic Review and Meta-Analysis
Authors: Neeraj Malhotra, Ramya Shenoy
Abstract:
Objective: To assess the effect of clinical parameters (bonding agent, preparation design & storage media) on the strength of reattached anterior tooth fragment. Methodology: This is a systematic review and meta-analysis for articles referred from MEDLINE, PUBMED, and GOOGLE SCHOLAR. The articles on tooth reattachment and clinical factors affecting fracture strength/bond strength/fracture resistance of the reattached tooth fragment in anterior teeth and published in English from 1999 to 2016 were included for final review. Results: Out of 120 shortlisted articles, 28 articles were included for the systematic review and meta-analysis based on 3 clinical parameters i.e. bonding agent, tooth preparation design & storage media. Forest plot & funnel plots were generated based on individual clinical parameter and their effect on strength of reattached anterior tooth fragment. Results based on analysis suggest combination of both conclusive evidence favoring the experimental group as well as in-conclusive evidence for individual parameter. Conclusion: There is limited evidence as there are fewer articles supporting each parameter in human teeth. Bonding agent had showed better outcome in selected studies.Keywords: bonding agent, bond strength, fracture strength, preparation design, reattachment, storage media
Procedia PDF Downloads 178