Search results for: marble aggregates
137 Accumulation and Distribution of Soil Organic Carbon in Oxisols, Tshivhase Estate, Limpopo Province
Authors: M. Rose Ntsewa, P. E. Dlamini, V. E. Mbanjwa, R. Chauke
Abstract:
Land-use change from undisturbed forest to tea plantation may lead to accumulation or loss of soil organic carbon (SOC). So far, the factors controlling the vertical distribution of SOC under the long-term establishment of tea plantation remain poorly understood, especially in oxisols. In this study, we quantified the vertical distribution of SOC under tea plantation compared to adjacent undisturbed forest Oxisols sited at different topographic positions and also determined controlling edaphic factors. SOC was greater in the 30-year-old tea plantation compared to undisturbed forest oxisols and declined with depth across all topographic positions. Most of the SOC was found in the downslope position due to erosion and deposition. In the topsoil, SOC was positively correlated with heavy metals; manganese (r=0.62-0.83; P<0.05) and copper (r=0.45-0.69), effective cation exchange capacity (ECEC) (r=0.72) and mean weight diameter (MWD) (r=0.72-0.73), while in the subsoil SOC was positively correlated with copper (r=0.89-0.92) and zinc (r=0.86), ECEC (r=0.56-0.69) and MWD (r=0.48). These relationships suggest that SOC in the tea plantation, oxisols is chemically stabilized via complexation with heavy metals, and physically stabilized by soil aggregates.Keywords: oxisols, tea plantation, topography, undisturbed forest
Procedia PDF Downloads 150136 Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application.Keywords: thermoluminescence, defects, gamma radiation, crystals
Procedia PDF Downloads 330135 Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes
Authors: T. D. Gunneswara Rao, Mudimby Andal
Abstract:
Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability.Keywords: cementing efficiency, compressive strength, low calcium fly ash, workability
Procedia PDF Downloads 484134 Study of Interaction between Recycled Asphalt Pavement (RAP) Material and Virgin Material
Authors: G. Bharath, K. S. Reddy, Vivek Tandon, M. Amaranatha Reddy
Abstract:
This paper presents the details of a study conducted to evaluate the interaction between recycled binder and fresh binder in Recycled Asphalt Pavement (RAP) mixes. When RAP is mixed with virgin aggregates in the presence of fresh binder there will be partial blending in a hot mix asphalt mixture. A recent approach used by some researchers for studying the degree of blending of RAP binder with virgin binder has been adopted in this study. Dense Bituminous Macadam mix of Ministry of Road Transport of India with a nominal maximum aggregate size of 19 mm was studied. Two proportions of RAP-20% and 35% and two types of virgin binders – viscosity grade VG10 and VG30 were considered. Design binder contents were determined for all the four types of mixes (two RAP contents and two virgin binders) as per Marshall mix design procedure. The degree of blending of RAP and virgin binders was evaluated in terms of the complex modulus of the binder. Laboratory test results showed that with an increase in RAP content, the degree of blending decreases. Better blending was observed for softer grade binder (VG10).Keywords: blending, complex modulus, recycled asphalt pavement, virgin binder
Procedia PDF Downloads 432133 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete
Authors: Jiaqi Huang, Lu Jin
Abstract:
Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete
Procedia PDF Downloads 181132 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres
Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee
Abstract:
Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity
Procedia PDF Downloads 207131 Evaluation of the Impact of Scraping Operations during Winter Road Maintenance on Pavement Skid Resistance
Authors: Garance Liaboeuf, Mohamed Bouteldja, Antoine Martinet, Nicolas Grignard, Damien Pilet, Ali Daouadji, Alain Le Bot
Abstract:
A series of in-situ tests is set up to evaluate and quantify the long-term effects of scraping operations using steel plows on the skid resistance of pavements. Three pavements are tested, and a total number of 1.800 snowplow scrapings are applied. The skid resistance of the pavements is measured periodically using two indicators on two scales: an average profile depth (macrotexture) and a longitudinal friction coefficient (microtexture). The results of these tests show a reduction in the average profile depth between 4 % and 10 %, depending on the asphalt composition. This reduction of macrotexture is correlated with the reduction of high points on surfaces due to the removal of portions of the aggregate surfaces. The longitudinal friction coefficient of pavements decreases by 4% to 10%. This reduction in microtexture is related to the polishing of the surface of the aggregate used in the pavements. These variations of skid resistance are not linear. A phenomenon of regeneration of the friction coefficient is observed for pavements composed of sand-lime aggregates after several scraping operations.Keywords: GripTester, macrotexture, microtexture, pavement, skid resistance, snowplow, TM2, winter road maintenance
Procedia PDF Downloads 70130 Diethylsulfoxide versus Dimethylsulfoxide: Properties and Biomedical Applications
Authors: Shiraz A. Markarian
Abstract:
Our systematic studies of diethylsulfoxide (DESO), the nearest homologue of dimethylsulfoxide (DMSO), reveal new physicochemical features. DESO has already received worthy biomedical applications: in some cases even are more pronounced compare with DMSO. The several important physicochemical characteristics of DESO including aqueous solutions have been verified and first reported: melting point of pure substance, density, dielectric relaxation data, vapor pressure and volumetric properties. Analysis of the complete vibrational spectra also leads to the conclusion that very strong interactions take place between DESO and water, even stronger than those between DMSO and water. The simultaneous existence of strong DESO-H₂O and DESO-DESO interactions suggest the coexistence of many types of structural molecular aggregates, the presence of which plays a significant role also in diluted water solutions. Our recent investigations have shown that aqueous solution of DESO could provide amorphous, glassy systems, thus avoiding ice crystallization, in a wide range of concentrations and even at very low cooling rates. The ability of DESO to act as an effective cryoprotectant on E. coli survival was also studied and compared with other commonly used cryoprotective agents. The results also confirm that DESO, more than DMSO, is able to penetrate living tissues without causing significant damage.Keywords: diethylsulfoxide, dimethylsulfoxide, cryoprotectant, properties
Procedia PDF Downloads 168129 Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon
Authors: Hamza Simsir, Nurettin Eltugral, Selhan Karagöz
Abstract:
Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nano science and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood, was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water.Keywords: Silver nanoparticles, ligand, activated carbon, adsorption
Procedia PDF Downloads 329128 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments
Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi
Abstract:
The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging
Procedia PDF Downloads 277127 Inhibition of Crystallization Lithiasis Phosphate (Struvite) by Extracts Zea mays
Authors: N. Benahmed, A. Cheriti
Abstract:
Kidney stones of infectious origin, in particular, the phosphate amoniaco-magnesian hexahydrate or struvite are one of the risk factors that most often leads of renal insufficiency. Many plants species, described in pharmacopoeias of several countries is used as a remedy for urinary stones, the latter is a disease resulting from the presence of stones in the kidneys or urinary tract. Our research is based on the existing relationship between the effect of extracts of medicinal plant used for the cure of urinary tract diseases in the region of Algeria south-west on urolithiasis especially Ammonium-Magnesium Phosphate Hexahydrate (Struvite). We have selected Zea mays L. (POACEAE) for this study. On the first stage, we have studied the crystallisation of struvite 'in vitro' without inhibitors, after we have compared to crystallization with inhibitors. Most of The organic and aqueous extracts of this plant give an effect on the crystal size of struvite. It is a very significant reduction in the size of the crystals of struvite in the presence of hexane and ethanol extract (12 to 5-6 μm). We’ve observed a decrease in the size of the aggregates in the presence of all the extracts. This reduction is important for the aqueous, acetone and chloroform extract (45 to 10-16μm). Finally, a deep study was conducted on the effective extract of Zea mays L.; for determine the influence of inhibitory phytochemical compounds.Keywords: medicinal plants, struvite, urolithiasis, zea mays
Procedia PDF Downloads 449126 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete
Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević
Abstract:
This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.Keywords: compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis
Procedia PDF Downloads 108125 Cat Stool as an Additive Aggregate to Garden Bricks
Authors: Mary Joy B. Amoguis, Alonah Jane D. Labtic, Hyna Wary Namoca, Aira Jane V. Original
Abstract:
Animal waste has been rapidly increasing due to the growing animal population and the lack of innovative waste management practices. In a country like the Philippines, animal waste is rampant. This study aims to minimize animal waste by producing garden bricks using cat stool as an additive. The research study analyzes different levels of concentration to determine the most efficient combination in terms of compressive strength and durability of cat stool as an additive to garden bricks. The researcher's first collects the cat stool and incinerates the different concentrations. The first concentration is 25% cat stool and 75% cement mixture. The second concentration is 50% cat stool and 50% cement mixture. And the third concentration is 75% cat stool and 25% cement mixture. The researchers analyze the statistical data using one-way ANOVA, and the statistical analysis revealed a significant difference compared to the controlled variable. The research findings show an inversely proportional relationship: the higher the concentration of cat stool additive, the lower the compressive strength of the bricks, and the lower the concentration of cat stool additive, the higher the compressive strength of the bricks.Keywords: cat stool, garden bricks, cement, concentrations, animal wastes, compressive strength, durability, one-way ANOVA, additive, incineration, aggregates, stray cats
Procedia PDF Downloads 64124 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes
Authors: P. Parthiban, J. Karthikeyan
Abstract:
This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.Keywords: Alccofine, compressive strength, RCPT, wood ash pellets
Procedia PDF Downloads 182123 The Cost of Innovation in Software Development Projects
Authors: Mihai Liviu Despa
Abstract:
The paper tackles the topic of determining the cost of innovation in software development projects. Innovation can be achieved either in a planned or unplanned manner. The paper approaches the scenarios were innovation is planned for. As a starting point an innovative software development project is analyzed. The project is depicted step by step as it was implemented, from inception to delivery. Costs that are proprietary to innovation in software development are isolated based on the author’s personal experience in managing the above mentioned project. Innovation costs components identified by the author are then validated using open discussions with software development professionals and projects managers on LinkedIn groups. In order to receive relevant feedback only groups that focus on software development and innovation management are targeted. Additional innovation cost components suggested by software development professionals and projects managers are also considered. Based on the identified cost components an indicator is built. The indicator is meant to formalize the process of determining the cost of innovation in a software development project. The indicator aggregates all the innovation cost components that are identified in the research process. The process of calculating each cost component is also described. Conclusions are formulated and new related research topics are submitted for debate.Keywords: innovation cost, IT project management, software development, innovation management
Procedia PDF Downloads 460122 The Chromitites of the Collo Ultramafic Rocks (NE Algeria): Two Generations Evidenced From Petrological, Mineralogical and Isotopic Studies
Authors: Rabah Laouar, Yahia Boudra, Adel Satouh, Adrian Boyce
Abstract:
The ultramafic rocks of the Collo region crop out as « stratified » masses that cross-cut older metamorphic formation of the basement. These rocks are mainly peridotites and serpentinites. The peridotites are composed of olivine, orthopyroxene, clinopyroxene and spinel (chromite). The chemical composition of these lherzolites show a magnesian character with high MgO contents (34.4 to 37.5%), high Cr (0.14 to 0.27%), Ni (0.14 to 0.26%) and Co (34 to 133 ppm) and low CaO and Al₂O₃ (0.02 to 2.2 and 0.5 to 2.8 % respectively). They represent a residue (restite) of a mantle magmas partial melting. The chromite which represents about 2 to 3% of the rock is a ubiquitous mineral and shows two different generations: primary idiomorphic millimetric crystals and secondary very fine, xenomorphic and interstitial aggregates. The primary chromites are alumino-ferro-magnesian crystals. They show high Al₂O₃ (25.77% to 27.36%) and MgO (10.70% to 13.36%). Cr# (100*Cr/ (Al+Cr)) varies between 45 and 48, and Mg# (100*Mg/Mg+Fe₂+) varies between 49 and 59. On the other hand, the secondary interstitial grains are iron-rich chromites; they show low Al₂O₃ (4.67% to 9.54%) and MgO (4.60% to 4.65%). Cr# is relatively high (77 to 88) whereas Mg# show relatively low values, varying between 22 and 25. Oxygen isotopic composition of both types of chromites is consistent with their derivation from a mantle source (ð¹⁸O vary between +3.9 and +5.2‰), though a contribution of ¹⁶O-rich component to the secondary chromites is not ruled out.Keywords: peridotites, serpentinites, chromite, partial melting, collo, Algeria
Procedia PDF Downloads 89121 A PROMETHEE-BELIEF Approach for Multi-Criteria Decision Making Problems with Incomplete Information
Abstract:
Multi-criteria decision aid methods consider decision problems where numerous alternatives are evaluated on several criteria. These methods are used to deal with perfect information. However, in practice, it is obvious that this information requirement is too much strict. In fact, the imperfect data provided by more or less reliable decision makers usually affect decision results since any decision is closely linked to the quality and availability of information. In this paper, a PROMETHEE-BELIEF approach is proposed to help multi-criteria decisions based on incomplete information. This approach solves problems with incomplete decision matrix and unknown weights within PROMETHEE method. On the base of belief function theory, our approach first determines the distributions of belief masses based on PROMETHEE’s net flows and then calculates weights. Subsequently, it aggregates the distribution masses associated to each criterion using Murphy’s modified combination rule in order to infer a global belief structure. The final action ranking is obtained via pignistic probability transformation. A case study of real-world application concerning the location of a waste treatment center from healthcare activities with infectious risk in the center of Tunisia is studied to illustrate the detailed process of the BELIEF-PROMETHEE approach.Keywords: belief function theory, incomplete information, multiple criteria analysis, PROMETHEE method
Procedia PDF Downloads 166120 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver
Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem
Abstract:
Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization
Procedia PDF Downloads 371119 Inerting and Upcycling of Foundry Fines
Authors: Chahinez Aissaoui, Cecile Diliberto, Jean-Michel Mechling
Abstract:
The manufacture of metal foundry products requires the use of sand moulds, which are destroyed, and new ones made each time metal is poured. However, recycled sand requires a regeneration process that produces a polluted fine mineral phase. Particularly rich in heavy metals and organic residues, this foundry co-product is disposed of in hazardous waste landfills and requires an expensive stabilisation process. This paper presents the results of research that valorises this fine fraction of foundry sand by inerting it in a cement phase. The fines are taken from the bag filter suction systems of a foundry. The sample is in the form of filler, with a fraction of less than 140µm, the D50 is 43µm. The Blaine fineness is 3120 cm²/g, and the fines are composed mainly of SiO₂, Al₂O₃ and Fe₂O₃. The loss on ignition at 1000°C of this material is 20%. The chosen inerting technique is to manufacture cement pastes which, once hardened, will be crushed for use as artificial aggregates in new concrete formulations. Different percentages of volume substitutions of Portland cement were tested: 30, 50 and 65%. The substitution rates were chosen to obtain the highest possible recycling rate while satisfying the European discharge limits (these values are assessed by leaching). They were also optimised by adding water-reducing admixtures to increase the compressive strengths of the mixes.Keywords: leaching, upcycling, waste, residuals
Procedia PDF Downloads 68118 Sustainable Material Selection for Buildings: Analytic Network Process Method and Life Cycle Assessment Approach
Authors: Samira Mahmoudkelayeh, Katayoun Taghizade, Mitra Pourvaziri, Elnaz Asadian
Abstract:
Over the recent decades, depletion of resources and environmental concerns made researchers and practitioners present sustainable approaches. Since construction process consumes a great deal of both renewable and non-renewable resources, it is of great significance regarding environmental impacts. Choosing sustainable construction materials is a remarkable strategy presented in many researches and has a significant effect on building’s environmental footprint. This paper represents an assessment framework for selecting best sustainable materials for exterior enclosure in the city of Tehran based on sustainability principles (eco-friendly, cost effective and socio-cultural viable solutions). To perform a comprehensive analysis of environmental impacts, life cycle assessment, a cradle to grave approach is used. A questionnaire survey of construction experts has been conducted to determine the relative importance of criteria. Analytic Network Process (ANP) is applied as a multi-criteria decision-making method to choose sustainable material which consider interdependencies of criteria and sub-criteria. Finally, it prioritizes and aggregates relevant criteria into ultimate assessed score.Keywords: sustainable materials, building, analytic network process, life cycle assessment
Procedia PDF Downloads 241117 Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder
Authors: Joel Santhosh, N. Bhavani Shankar Rao
Abstract:
Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength.Keywords: paving block, fly ash, glass powder, strength, abrasion resistance, durability
Procedia PDF Downloads 297116 Gypsum Composites with CDW as Raw Material
Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola
Abstract:
On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum
Procedia PDF Downloads 510115 An Investigation on Fresh and Hardened Properties of Concrete While Using Polyethylene Terephthalate (PET) as Aggregate
Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, M. Salamah Meherier
Abstract:
This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.Keywords: polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties
Procedia PDF Downloads 439114 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast-Furnace Slag
Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi
Abstract:
Ceramic waste aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a supplementary cementitious material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.Keywords: ceramic waste aggregate, chloride diffusion, GGBS, pore size distribution
Procedia PDF Downloads 344113 Mechanical Properties and Durability of Concretes Manufactured Using Pre-Coated Recycled Fine Aggregate
Authors: An Cheng, Hui-Mi Hsu, Sao-Jeng Chao, Wei-Ting Lin
Abstract:
This study investigated the mechanical properties and durability of concrete produced using recycled fine aggregate (RFA) pre-coated with fly ash, slag, and a polymer solution (PVA). We investigated the physical and microscopic properties of fresh concrete while adjusting several of the fabrication parameters, such as the constituent makeup and thickness of RFA pre-coatings. The study is divided into two parts. The first part involves mortar testing in which the RFA used for coating had a water/cement ratio of 0.5 and fly ash, slag, and PVA viscosity of 5~6cps, 21~26cps, 25~30cps, or 44~50cps. In these tests, 100% of the natural fine aggregate was replaced by RCA. The second part of the study involved the mixing of concrete with 25% FRA, which was respectively coated with fly ash, slag, or PVA at a viscosity of 44~50cps. In these tests, the water/cement ratio was either .4 or 0.6. The major findings in this study are summarized as follows: Coating RFA coated with fly ash and PVA was shown to increase flow in the fresh concrete; however, the coating of FRA with slag resulted in a slight decrease in flow. Coating FRA with slag was shown to improve the compressive and splitting strength to a greater degree than that achieved by coating FRA with fly ash and PVA. The mechanical properties of concrete mixed with slag were shown to increase with the thickness of the coating. Coating FRA with slag was also shown to enhance the durability of the concrete, regardless of the water/cement ratio.Keywords: recycled fine aggregates, pre-coated, fly ash, slag, pre-coated thickness
Procedia PDF Downloads 324112 Experimental Study on Granulated Steel Slag as an Alternative to River Sand
Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth
Abstract:
River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.Keywords: steel slag, river sand, granulated slag, environmental
Procedia PDF Downloads 244111 Durability of a Cementitious Matrix Based on Treated Sediments
Authors: Mahfoud Benzerzour, Mouhamadou Amar, Amine Safhi, Nor-Edine Abriak
Abstract:
Significant volumes of sediment are annually dredged in France and all over the world. These materials may, in fact, be used beneficially as supplementary cementitious material. This paper studies the durability of a new cement matrix based on marine dredged sediment of Dunkirk-Harbor (north of France). Several techniques are used to characterize the raw sediment such as physical properties, chemical analyses, and mineralogy. The XRD analysis revealed quartz, calcite, kaolinite as main mineral phases. In order to eliminate organic matter and activate some of those minerals, the sediment is calcined at a temperature of 850°C for 1h. Moreover, four blended mortars were formulated by mixing a portland cement (CEM I 52,5 N) and the calcined sediment as partial cement substitute (0%, 10%, 20% and 30%). Reference mortars, based on the blended cement, were then prepared. This re-use cannot be substantiating and efficient without a durability study. In this purpose, the following tests, mercury porosity, accessible water porosity, chloride permeability, freezing and thawing, external sulfate attack, alkali aggregates reaction, compressive and bending strength tests were conducted on those mortars. The results of most of those tests evidenced the fact that the mortar that contains 10% of the treated sediment is efficient and durable as the reference mortar itself. That would infer that the presence of these calcined sediment improves mortar general behavior.Keywords: sediment, characterization, calcination, substitution, durability
Procedia PDF Downloads 257110 Usage of Palm Oil Industrial Wastes as Construction Materials
Authors: Mohammad Momeenul Islam, U. Johnson Alengaram, Mohd Zamin Jumaat, Iftekhair Ibnul Bashar
Abstract:
Palm oil industry produces millions of tonnes of industrial wastes and these wastes create huge storage and environmental problems. In order to solve these problems various research works have been performed for past decades. The commonly available wastes are Oil palm shells (OPS) and Palm oil fuel ash (POFA). These materials have already acquired well recognition as alternate of conventional construction materials. OPS has been used as coarse aggregate and compressive strength was found up to 56 MPa for 56-day. It is said that 30 grade Oil Palm shell concrete (OPSC) is possible without adding any cementitious materials. The maximum modulus of elasticity for OPSC was found 18.6 GPa. The Oil palm shell concrete (OPSC) are used in country areas and nearby areas where the palm oil factories are located for houses, road-kerbs, drain blocks, etc. In case of superstructure like beams and slab are also produced by utilizing OPS. Many experimental works have been performed to establish POFA as a substituting binding material in replace of Ordinary Portland cement (OPC). Throughout the research it has been showed that up to 20% of cement by mass can be replaced by POFA. POFA is one of the most enriched pozzolanic materials. The main purpose of this review is to discuss the usage and opportunity of the palm oil industrial wastes as construction materials following the previous experimental research work.Keywords: construction materials, oil palm shells (OPS), palm oil fuel ash (POFA), aggregates
Procedia PDF Downloads 355109 Formulation of Aggregates Based on Dredged Sand and Sediments
Authors: Nor-Edine Abriak, Ilyas Ennahal, Abdeljalil Zri, Mahfoud Benzerzour
Abstract:
Nord Pas de Calais is one of the French regions that records a large volume of dredged sediment in harbors and waterways. To ensure navigation within ports and waterways, harbor and river managers are forced to find solutions to remove sediment that contamination levels exceed levels established by regulations. Therefore, this non- submersible sediment must be managed on land and will be subject to the waste regulation. In this paper, some examples of concrete achievements and experiments of reusing dredged sediment in civil engineering and sector will be illustrated. These achievements are alternative solutions to sediment landfilling and guarantee the reuse of this material in a logic of circular economy and ecological transition. It permits to preserve the natural resources increasingly scarce and resolve issues related to the accumulation of sediments in the harbor basins, rivers, dams, and lakes, etc. Examples of beneficial use of dredged material illustrated in this paper are the result of different projects reusing harbor and waterways sediments in several applications. These projects were funded under the national SEDIMATERIAUX approach. Thus the technical and environmental feasibility of the reuse of dredged sediment is demonstrated and verified; the dredged sediment reusing would meet multiple challenges of sustainable development in relation to environmental, economic, social and societal.Keywords: circular economy, sediment, SEDIMATERIAUX, waterways
Procedia PDF Downloads 156108 Screening for Non-hallucinogenic Neuroplastogens as Drug Candidates for the Treatment of Anxiety, Depression, and Posttraumatic Stress Disorder
Authors: Jillian M. Hagel, Joseph E. Tucker, Peter J. Facchini
Abstract:
With the aim of establishing a holistic approach for the treatment of central nervous system (CNS) disorders, we are pursuing a drug development program rapidly progressing through discovery and characterization phases. The drug candidates identified in this program are referred to as neuroplastogens owing to their ability to mediate neuroplasticity, which can be beneficial to patients suffering from anxiety, depression, or posttraumatic stress disorder. These and other related neuropsychiatric conditions are associated with the onset of neuronal atrophy, which is defined as a reduction in the number and/or productivity of neurons. The stimulation of neuroplasticity results in an increase in the connectivity between neurons and promotes the restoration of healthy brain function. We have synthesized a substantial catalogue of proprietary indolethylamine derivatives based on the general structures of serotonin (5-hydroxytryptamine) and psychedelic molecules such as N,N-dimethyltryptamine (DMT) and psilocin (4-hydroxy-DMT) that function as neuroplastogens. A primary objective in our screening protocol is the identification of derivatives associated with a significant reduction in hallucination, which will allow administration of the drug at a dose that induces neuroplasticity and triggers other efficacious outcomes in the treatment of targeted CNS disorders but which does not cause a psychedelic response in the patient. Both neuroplasticity and hallucination are associated with engagement of the 5HT2A receptor, requiring drug candidates differentially coupled to these two outcomes at a molecular level. We use novel and proprietary artificial intelligence algorithms to predict the mode of binding to the 5HT2A receptor, which has been shown to correlate with the hallucinogenic response. Hallucination is tested using the mouse head-twitch response model, whereas mouse marble-burying and sucrose preference assays are used to evaluate anxiolytic and anti-depressive potential. Neuroplasticity is assays using dendritic outgrowth assays and cell-based ELISA analysis. Pharmacokinetics and additional receptor-binding analyses also contribute the selection of lead candidates. A summary of the program is presented.Keywords: neuroplastogen, non-hallucinogenic, drug development, anxiety, depression, PTSD, indolethylamine derivatives, psychedelic-inspired, 5-HT2A receptor, computational chemistry, head-twitch response behavioural model, neurite outgrowth assay
Procedia PDF Downloads 138