Search results for: geometric morphometric analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27264

Search results for: geometric morphometric analysis

27024 Growth Pattern and Condition Factor of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon, Lagos State, Nigeria

Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba

Abstract:

The growth pattern of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon Lagos State was investigated. One hundred (100) samples of each species were collected from fishermen at the landing site. They were transported to the Fisheries Laboratory of National Institute of Oceanography for identification, sexing morphometric measurement. The results showed that 58.0% and 56.0 % of the O.niloticus and S.galilaeus were female respectively while 42.0% and 44.0% were male respectively. The length-weight relationship of O.niloticus showed a strong regression coefficient (r = 0.944) (p<0.05) for the combined sex, (r =0.901) (p<0.05) for female and (r=0.985) (p<.05) for male with b-value of 2.5, 3.1 and 2.8 respectively. The S.galilaeus also showed a regression coefficient of r=0.970; p<0.05 for the combined sex, r=0.953; p<0.05 for the female and r= 0.979; p<0.05 for the male with b-value of 3.4, 3.1 and 3.6 respectively. O.niloticus showed an isometric growth pattern both in male and female. The condition factor in O.niloticus are 1.93 and 1.95 for male and female respectively while that of S.galilaeus is 1.95 for both sexes. Positive allometric was observed in both species except the male O.niloticus that showed negative allometric growth pattern. From the results of this study, the growth pattern of the two species indicated a good healthy environment.

Keywords: Epe Lagoon, length-weight relationship, Oreochromis niloticus, Sarotherodon galilaeus

Procedia PDF Downloads 119
27023 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 113
27022 Analyzing the Ancient Islamic Architectural Theories: Role of Geometric Proportionality as a Principle of Islamic Design

Authors: Vamsi G.

Abstract:

Majority of the modern-day structures have less aesthetical value with minimum requirements set by foreign tribes. Numerous elements of traditional architecture can be incorporated into modern designs using appropriate principles to improve and enhance the functionality, aesthetics, and usability of any space. This paper reviews the diminishing ancient values of the traditional Islamic architecture. By introducing them into the modern-day structures like commercial, residential and recreational spaces in at least the Islamic states, the functionality of those spaces can be improved. For this, aspects like space planning, aesthetics, scale, hierarchy, value, and patterns are to be experimented with modern day structures. Case studies of few ancient Islamic architectural marvels are done to elaborate the whole. A brief analysis of materials and execution strategies are also a part of this paper. The analysis is formulated and is ready to design or redesign spaces using traditional Islamic principles and Elements of design to improve the quality of the architecture of modern day structures by studying the ancient Islamic architectural theories. For this, sources from the history and evolution of this architecture have been studied. Also, elements and principles of design from case studies of various mosques, forts, tombs, and palaces have been tabulated. All this data accumulated, will help revive the elements decorated by ancient principles in functional and aesthetical ways. By this, one of the most astonishing architectural styles can be conserved, reinstalled into modern day buildings and remembered.

Keywords: ancient architecture, architectural history, Islamic architecture, principles and elements

Procedia PDF Downloads 185
27021 The Effect of Wet Cooling Pad Thickness and Geometric Configuration to Enhance Evaporative Cooler Saturation Efficiency: A Review

Authors: Biruk Abate

Abstract:

Evaporative cooling occurs when air with high temperature and reduced humidity passes over a wet porous surface and a higher degree of cooling process is achieved for storage of fruits and vegetables due to greater rate of evaporation. The main objective of this reviewed study is to understand the effect of evaporative surface pad thickness and geometric configuration on the saturation efficiency of evaporative cooler and to state some related factors affecting the performance of the system. From this overview, selection of pad thickness and geometrical shape with suitable characteristics of heat and mass transfer and water holding capacity of the pads was reviewed as these parameters are important for saturation efficiency of evaporative cooling. Increasing the cooling pad thickness through increasing the face velocity increases the effectiveness of wet-bulb saturation. Increasing ambient temperature, inlet air speed and ambient air humidity decreases the wet bulb effectiveness and it increases with increasing length of the pad. Increasing the ambient temperature and inlet air velocity decreases the humidity ratio, but increases with increasing ambient air humidity and lengths of the pad. Increasing the temperature-humidity index is possible with increasing ambient temperature, inlet air velocity, ambient air humidity and pad length. Generally, all materials having a higher wetted surface area per unit volume give higher efficiency. Materials with higher thickness increase the wetted surface area for better mix-up of air and water to give higher efficiency for the same shape and this in turn helps to store fruits and vegetables.

Keywords: Degree of cooling, heat and mass transfer, evaporative cooling, porous surface

Procedia PDF Downloads 99
27020 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.

Keywords: beams, local buckling, slender, stiffener, thin walled section

Procedia PDF Downloads 259
27019 Field Theories in Chiral Liquid Crystals: A Theory for Helicoids and Skyrmions

Authors: G. De Matteis, L. Martina, V. Turco

Abstract:

The work is focused on determining and comparing special nonlinear static configurations in cholesteric liquid crystals (CLCs), confined between two parallel plates and in the presence of an external static electric/magnetic field. The solutions are stabilised by topological and non-topological conservation laws since they are described in terms of integrable or partially integrable nonlinear boundary value problems. In cholesteric liquid crystals which are subject to geometric frustration; anchoring conditions at boundaries, i.e., homeotropic conditions, are incompatible with the cholesteric twist. This aspect turns out to be essential in the admissible classes of solutions, allowing also for disclination type singularities. Within the framework of Frank-Oseen theory, we study the static configurations for CLCs. First, we find numerical solutions for isolated axisymmetric states in confined CLCs with weak homeotropic anchoring at the boundaries. These solutions describe 3-dimensional modulations, namely spherulites or cholesteric bubbles, actually observed in these systems, of standard baby skyrmions. Relations with well-known nonlinear integrable systems are found and are used to explore the asymptotic behavior of the solutions. Then we turn our attention to extended periodic static configurations called Helicoids or cholesteric fingers, described by an elliptic sine-Gordon model with appropriate boundary conditions, showing how their period and energies are determined by both the thickness of the cell and the intensity of the external electric/magnetic field. We explicitly show that helicoids with π or 2π of rotations of the molecular director are different in many aspects and are not simply algebraically related. The behaviour of the solutions, their energy and the properties of the associated disclinations are discussed in detail, both analytically and numerically.

Keywords: cholesteric liquid crystals, geometric frustration, helicoids, skyrmions

Procedia PDF Downloads 112
27018 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 89
27017 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties

Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten

Abstract:

The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.

Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions

Procedia PDF Downloads 254
27016 Dexamethasone: Impact on Testicular Activity

Authors: Sadi-Guettaf Hassiba, Hadj-Bekkouche Fatima

Abstract:

Dexamethasone (Dex) is a synthetic glucocorticoid that is used in therapy. However prolonged treatments with high doses are often required. This causes side effects that interfere with the activity of several endocrine systems, including the gonadotropic axis. The aim of our study is to determine the effect of Dex on testicular function in prepubertal Wistar rats. Newborn Wistar rats are submitted to intraperitoneal injection of Dex (1μg of Dex dissolved in NaCl 0.9% / 5g bw) for 20 days and then sacrificed at the age of 40days. A control group received NaCl 0.9%. The rat is weighed daily. The plasmatic levels of testosterone, LH and FSH were measured by radioimmunoassay. A histo-morphometric study was performed on sections of testis. Treated groups showed a significant decrease in body weight (p < 0.05), testis weight (p < 0.05) and plasma levels of testosterone (p < 0.05), of LH (P < .05) and FSH (p> 0.05). There is a reduction of seminiferous tubules average diameter and also of the seminiferous epithelium thickness with an increasing of lumen tubular. The diameter of the Leydig cells and Sertoli cell nucleus is also significantly reduced. Spermatogenesis is blocked at the stage round spermatid unlike witnesses or elongated spermatid stage is found. These results suggest that Dex administered during neonatal life influences testicular activity in the long term.

Keywords: dexamethasone, FSH, LH, rat, testis, testosterone

Procedia PDF Downloads 231
27015 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract:

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave

Procedia PDF Downloads 328
27014 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology

Authors: Shashank. S. Bagane, H. N. Rajendra Prasad

Abstract:

Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.

Keywords: building information modeling, energy impact, spatial geometry, vastu

Procedia PDF Downloads 131
27013 A Multi-Scale Approach for the Analysis of Fiber-Reinforced Composites

Authors: Azeez Shaik, Amit Salvi, B. P. Gautham

Abstract:

Fiber reinforced polymer resin composite materials are finding wide variety of applications in automotive and aerospace industry because of their high specific stiffness and specific strengths when compared to metals. New class of 2D and 3D textile and woven fabric composites offer excellent fracture toughens as they bridge the cracks formed during fracture. Due to complexity of their fiber architectures and its resulting composite microstructures, optimized design and analysis of these structures is very complicated. A traditional homogenization approach is typically used to analyze structures made up of these materials. This approach usually fails to predict damage initiation as well as damage propagation and ultimate failure of structure made up of woven and textile composites. This study demonstrates a methodology to analyze woven and textile composites by using the multi-level multi-scale modelling approach. In this approach, a geometric repetitive unit cell (RUC) is developed with all its constituents to develop a representative volume element (RVE) with all its constituents and their interaction modeled correctly. The structure is modeled based on the RUC/RVE and analyzed at different length scales with desired levels of fidelity incorporating the damage and failure. The results are passed across (up and down) the scales qualitatively as well as quantitatively from the perspective of material, configuration and architecture.

Keywords: cohesive zone, multi-scale modeling, rate dependency, RUC, woven textiles

Procedia PDF Downloads 343
27012 Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks

Authors: Dibu Dave Mbako, Bin Cheng

Abstract:

This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib.

Keywords: orthotropic steel bridge deck, rib-to-deck connection, hot spot stress, finite element method, stress distribution

Procedia PDF Downloads 195
27011 A Hybrid Watermarking Scheme Using Discrete and Discrete Stationary Wavelet Transformation For Color Images

Authors: Bülent Kantar, Numan Ünaldı

Abstract:

This paper presents a new method which includes robust and invisible digital watermarking on images that is colored. Colored images are used as watermark. Frequency region is used for digital watermarking. Discrete wavelet transform and discrete stationary wavelet transform are used for frequency region transformation. Low, medium and high frequency coefficients are obtained by applying the two-level discrete wavelet transform to the original image. Low frequency coefficients are obtained by applying one level discrete stationary wavelet transform separately to all frequency coefficient of the two-level discrete wavelet transformation of the original image. For every low frequency coefficient obtained from one level discrete stationary wavelet transformation, watermarks are added. Watermarks are added to all frequency coefficients of two-level discrete wavelet transform. Totally, four watermarks are added to original image. In order to get back the watermark, the original and watermarked images are applied with two-level discrete wavelet transform and one level discrete stationary wavelet transform. The watermark is obtained from difference of the discrete stationary wavelet transform of the low frequency coefficients. A total of four watermarks are obtained from all frequency of two-level discrete wavelet transform. Obtained watermark results are compared with real watermark results, and a similarity result is obtained. A watermark is obtained from the highest similarity values. Proposed methods of watermarking are tested against attacks of the geometric and image processing. The results show that proposed watermarking method is robust and invisible. All features of frequencies of two level discrete wavelet transform watermarking are combined to get back the watermark from the watermarked image. Watermarks have been added to the image by converting the binary image. These operations provide us with better results in getting back the watermark from watermarked image by attacking of the geometric and image processing.

Keywords: watermarking, DWT, DSWT, copy right protection, RGB

Procedia PDF Downloads 509
27010 Risk Assessments of Longest Dry Spells Phenomenon in Northern Tunisia

Authors: Majid Mathlouthi, Fethi Lebdi

Abstract:

Throughout the world, the extent and magnitude of droughts have economic, social and environmental consequences. Today climate change has become more and more felt; most likely they increase the frequency and duration of droughts. An analysis by event of dry event, from series of observations of the daily rainfall is carried out. A daily precipitation threshold value has been set. A catchment localized in Northern Tunisia where the average rainfall is about 600 mm has been studied. Rainfall events are defined as an uninterrupted series of rainfall days understanding at least a day having received a precipitation superior or equal to a fixed threshold. The dry events are constituted of a series of dry days framed by two successive rainfall events. A rainfall event is a vector of coordinates the duration, the rainfall depth per event and the duration of the dry event. The depth and duration are found to be correlated. So we use conditional probabilities to analyse the depth per event. The negative binomial distribution fits well the dry event. The duration of the rainfall event follows a geometric distribution. The length of the climatically cycle adjusts to the Incomplete Gamma. Results of this analysis was used to study of the effects of climate change on water resources and crops and to calibrate precipitation models with little rainfall records. In response to long droughts in the basin, the drought management system is based on three phases during each of the three phases; different measurements are applied and executed. The first is before drought, preparedness and early warning; the second is drought management, mitigation in the event of drought; and the last subsequent drought, when the drought is over.

Keywords: dry spell, precipitation threshold, climate vulnerability, adaptation measures

Procedia PDF Downloads 55
27009 Concepts of Modern Design: A Study of Art and Architecture Synergies in Early 20ᵗʰ Century Europe

Authors: Stanley Russell

Abstract:

Until the end of the 19th century, European painting dealt almost exclusively with the realistic representation of objects and landscapes, as can be seen in the work of realist artists like Gustav Courbet. Architects of the day typically made reference to and recreated historical precedents in their designs. The curriculum of the first architecture school in Europe, The Ecole des Beaux Artes, based on the study of classical buildings, had a profound effect on the profession. Painting exhibited an increasing level of abstraction from the late 19th century, with impressionism, and the trend continued into the early 20th century when Cubism had an explosive effect sending shock waves through the art world that also extended into the realm of architectural design. Architect /painter Le Corbusier with “Purism” was one of the first to integrate abstract painting and building design theory in works that were equally shocking to the architecture world. The interrelationship of the arts, including architecture, was institutionalized in the Bauhaus curriculum that sought to find commonality between diverse art disciplines. Renowned painter and Bauhaus instructor Vassily Kandinsky was one of the first artists to make a semi-scientific analysis of the elements in “non-objective” painting while also drawing parallels between painting and architecture in his book Point and Line to plane. Russian constructivists made abstract compositions with simple geometric forms, and like the De Stijl group of the Netherlands, they also experimented with full-scale constructions and spatial explorations. Based on the study of historical accounts and original artworks, of Impressionism, Cubism, the Bauhaus, De Stijl, and Russian Constructivism, this paper begins with a thorough explanation of the art theory and several key works from these important art movements of the late 19th and early 20th century. Similarly, based on written histories and first-hand experience of built and drawn works, the author continues with an analysis of the theories and architectural works generated by the same groups, all of which actively pursued continuity between their art and architectural concepts. With images of specific works, the author shows how the trend toward abstraction and geometric purity in painting coincided with a similar trend in architecture that favored simple unornamented geometries. Using examples like the Villa Savoye, The Schroeder House, the Dessau Bauhaus, and unbuilt designs by Russian architect Chernikov, the author gives detailed examples of how the intersection of trends in Art and Architecture led to a unique and fruitful period of creative synergy when the same concepts that were used by artists to generate paintings were also used by architects in the making of objects, space, and buildings. In Conclusion, this article examines the extremely pivotal period in art and architecture history from the late 19th to early 20th century when the confluence of art and architectural theory led to many painted, drawn, and built works that continue to inspire architects and artists to this day.

Keywords: modern art, architecture, design methodologies, modern architecture

Procedia PDF Downloads 101
27008 Health Monitoring of Primates in a Conservation Unit in Brazil

Authors: Elisângela de Albuquerque Sobreira Borovoski, Ricardo Willian Borovoski

Abstract:

Microbiological infections acquired by animals pose a risk to public health. In public health, monitoring the health of primates is linked to the risk of transmission of zoonoses through scratches, bites and contact with biological samples. The project was approved by the Ethics Committee on the Use of Animals Protocol No. 170/2019. It was authorized by ICMBio Protocol No. 52117-1. The study was carried out in the period 2019-2022 in the municipality of Anápolis. Iron and galvanized wire traps were used and the animals were anesthetized with 4.4mg/kg zolethyl intramuscularly and saliva was collected through swabs. Fifty-three capuchin monkeys were captured from the Onofre Quinan Environmental Park in Anápolis-Goiás for health monitoring purposes. In the laboratory, the samples were deposited on the agar surface and seeded by exhaustion to obtain isolated colonies. These colonies were analyzed according to morphocolonial characteristics. Morphometric characterization and biochemical tests for bacterial identification were performed. A total of 861 bacterial samples were isolated, nine of which were strict anaerobic bacteria of the genus Peptostreptococcus. Previous and constant knowledge of the prevalence of pathogenic agents in biological samples is essential to be prepared to act in pandemic situations.

Keywords: Brazil, microbiology, monkeys, public health

Procedia PDF Downloads 51
27007 Gene Expression Analysis for Corals / Zooxanthellae under High Seawater Temperature Stress

Authors: Haruka Ito, Toru Maruyama, Michihiro Ito, Chuya Shinzato, Hiroyuki Fujimura, Yoshikatsu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Clarifying symbiotic relationships is one of the most important theme for understanding the marine eco-system. Coral reef has been regarded as an important environmental resource. Coral holobiont composed by coral, symbiotic microalgae zooxanthellae, and bacteria have complexed relationship. Zooxanthellae mainly supply organic matter to the host corals through their photosynthetic activity. The symbiotic relationship is indispensable for corals but may easily collapses due to the rise of seawater temperature. However, the molecular mechanism how seawater temperature influences their relationships still remain unclear. In this study, the transcriptomic analysis has applied to elucidate the coral-zooxanthellae relationships under high seawater temperature stress. To observe reactions of corals and zooxanthellae against the rise of seawater temperature, meta-gene expression in coral have been analyzed. The branches from six different colonies of a stony coral, Acropora tenuis, were sampled at nine times by 2016 at two locations, Ishikawabaru and South of Sesoko Island, Okinawa, Japan. The mRNAs extracted from the branches including zooxanthellae were sequenced by illumina HiSeq. Gene Set Enrichment Analysis (GSEA) based on hyper geometric distribution was performed. The seawater temperature at 2016 summer was unusually high, which was caused by El Niño event, and the number of zooxanthellae in coral was decreased in August. GSEA derived the several specific genes expressed in A. tenuis under heat stress conditions. The upregulated genes under heat stress highly related with infection immunity. The downregulated genes significantly contained cell cycle related genes. Thu, it is considered that heat stress cause disorder in cell metabolism of A. tenuis, resulting in serious influence to coral holobiont.

Keywords: coral, symbiosis, thermal stress response, transcriptome analysis

Procedia PDF Downloads 250
27006 Maximum Power and Bone Variables in Young Adult Men

Authors: Anthony Khawaja, Jacques Prioux, Ghassan Maalouf, Rawad El Hage

Abstract:

The regular practice of physical activities characterized by significant mechanical stresses stimulates bone formation and improves bone mineral density (BMD) in the most solicited sites. The purpose of this study was to explore the relationships between maximum power and bone variables in a group of young adult men. Identification of new determinants of BMD, bone mineral content (BMC) and hip geometric indices in young adult men, would allow screening and early management of future cases of osteopenia and osteoporosis. Fifty-three young adult men (18 – 35yr) voluntarily participated in this study. Weight and height were measured, and body mass index was calculated. Body composition, BMC and BMD were determined for each individual by Dual-energy X-ray absorptiometry (DXA; GE Healthcare, Madison, WI) at whole body (WB), lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). FN cross-sectional area (CSA), strength index (SI), buckling ratio (BR), FN section modulus (Z), cross-sectional moment of inertia (CSMI) and L1-L4 TBS were also evaluated by DXA. The vertical jump was evaluated using a field test (sargent test). Two main parameters were retained: vertical jump performance (cm) and power (w). The subjects performed three jumps with 2 minutes of recovery between jumps. The highest vertical jump was selected. Maximum power (P max, in watts) was calculated. Maximum power was positively correlated to WB BMD (r = 0.41; p < 0.01), WB BMC (r = 0.65; p < 0.001), L1-L4 BMC (r = 0.54; p < 0.001), FN BMC (r = 0.35; p < 0.01), TH BMC (r = 0.50; p < 0.001), CSMI (r = 0.50; p < 0.001), CSA (r = 0.33; p < 0.05). Vertical jump was positively correlated to WB BMC (r = 0.31; p < 0.05), L1-L4 BMC (r = 0.40; p < 0.01), CSMI (r = 0.29; p < 0.05). The current study suggests that maximum power is a positive determinant of BMD, BMC and hip geometric indices in young adult men. In addition, it shows also that maximum power is a stronger positive determinant of bone variables than vertical jump in this population. Implementing strategies to increase maximum power in young adult men may be useful for preventing osteoporotic fractures later in life.

Keywords: bone variables, maximum power, osteopenia, osteoporosis, vertical jump, young adult men

Procedia PDF Downloads 160
27005 Morphometry of Cervical Spinal Cord in Rabbit Using Design-Based Stereology

Authors: Hamed Chavoshi Pour, Javad Sadeghinejad

Abstract:

The spinal cord is a long structure that starts at the end of the medulla oblongata and is located within the vertebral canal. Physiologically, the spinal cord connects the brain with the peripheral nervous system for sensory and motor activities. The cervical spinal cord is an area of particular interest in medicine and veterinary medicine due to the high prevalence of diseases in this region. This study describes the morphometric features of the cervical spinal cord in rabbits using design-unbiased stereology. The cervical spinal cords of five male rabbits were dissected, and slabs were taken according to systematic uniform random sampling. Each slab was embedded in paraffin and cut into a 6-µm thick section, and stained with cresyl violet 0.1% for stereological estimations. The total spinal cord volume, volume fraction of grey and white matter, and also dorsal and ventral horns were estimated using point counting and Cavalieri's estimator. The total cervical spinal cord volume was 0.98 ± 0.07 cm³. The relative volume of white matter and grey matter was 70.6 ± 1.7% and 29.31 ± 1.67%, respectively. The dorsal horn and ventral horn volume were 13.86 ± 1.36% and 14.9 ± 0.62% of the whole cervical spinal cord. This knowledge of rabbit spinal cord findings may serve as a foundation for a translational model in spinal cord experimental research and provide basic findings for the diagnosis and treatment of spinal cord disorders.

Keywords: stereology, spinal cord, rabbit, cervical

Procedia PDF Downloads 52
27004 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 262
27003 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation

Procedia PDF Downloads 204
27002 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor

Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh

Abstract:

Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.

Keywords: cantilever beam, electrical current measurement, forced excitation, piezoelectric

Procedia PDF Downloads 201
27001 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire

Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.

Abstract:

Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.

Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection

Procedia PDF Downloads 58
27000 Potential Ecological Risk Assessment of Selected Heavy Metals in Sediments of Tidal Flat Marsh, the Case Study: Shuangtai Estuary, China

Authors: Chang-Fa Liu, Yi-Ting Wang, Yuan Liu, Hai-Feng Wei, Lei Fang, Jin Li

Abstract:

Heavy metals in sediments can cause adverse ecological effects while it exceeds a given criteria. The present study investigated sediment environmental quality, pollutant enrichment, ecological risk, and source identification for copper, cadmium, lead, zinc, mercury, and arsenic in the sediments collected from tidal flat marsh of Shuangtai estuary, China. The arithmetic mean integrated pollution index, geometric mean integrated pollution index, fuzzy integrated pollution index, and principal component score were used to characterize sediment environmental quality; fuzzy similarity and geo-accumulation Index were used to evaluate pollutant enrichment; correlation matrix, principal component analysis, and cluster analysis were used to identify source of pollution; environmental risk index and potential ecological risk index were used to assess ecological risk. The environmental qualities of sediment are classified to very low degree of contamination or low contamination. The similar order to element background of soil in the Liaohe plain is region of Sanjiaozhou, Honghaitan, Sandaogou, Xiaohe by pollutant enrichment analysis. The source identification indicates that correlations are significantly among metals except between copper and cadmium. Cadmium, lead, zinc, mercury, and arsenic will be clustered in the same clustering as the first principal component. Copper will be clustered as second principal component. The environmental risk assessment level will be scaled to no risk in the studied area. The order of potential ecological risk is As > Cd > Hg > Cu > Pb > Zn.

Keywords: ecological risk assessment, heavy metals, sediment, marsh, Shuangtai estuary

Procedia PDF Downloads 322
26999 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 303
26998 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 353
26997 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform

Authors: Shih-Wen Hsiao, Yi-Cheng Tsao

Abstract:

In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.

Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple Kinect sensor

Procedia PDF Downloads 345
26996 Morphometric and Radiographic Studies on the Tarsal Bones of Adult Chinkara (Gazella bennettii)

Authors: Salahud Din, Saima Masood, Hafsa Zaneb, Habib-Ur Rehman, Imad Khan, Muqader Shah

Abstract:

The present study was carried out on the gross anatomy, biometery and radiographic analysis of tarsal bones in twenty specimens of adult chinkara (Gazella bennettii). The desired bones were collected from the graveyards present in the locality of the different safari parks and zoos in Pakistan. To observe the edges and articulations between the bones, the radiographic images were acquired in craniocaudals and mediolateral views of the intact limbs. The gross and radiographic studies of the tarsus of adult Chinkara were carried out in University of Veterinary and Animal Sciences, Lahore, Pakistan. The tarsus of chinkara comprised of five bones both grossly and radiographically, settled in three transverse rows: tibial and fibular tarsal in the proximal, central and fourth fused tarsal in the middle row, the first, second and third fused tarsal in the distal row. The fibular tarsal was the largest and longest bone of the hock, situated on the lateral side and had a bulbous tuber calcis 'point of the hock' at the proximal extremity which projects upward and backward. The average maximum height and breadth for fibular tarsal was 5.61 ± 0.23 cm and 2.06 ± 0.13 cm, respectively. The tibial tarsal bones were the 2nd largest bone of the proximal row and lie on the medial side of the tarsus bears trochlea at either end. The average maximum height and breadth for tibial tarsal was 2.79 ± 0.05 cm and 1.74 ± 0.01 cm, respectively. The central and the fourth tarsals were fused to form a large bone which extends across the entire width of the tarsus and articulates with all bones of the tarsus. A nutrient foramen was present in the center of the non auricular area, more prominent on the ventral surface. The average maximum height and breadth for central and fourth fused tarsal was 1.51 ± 0.13 cm and 2.08 ± 0.07 cm, respectively. The first tarsal was a quadrilateral piece of bone placed on the poteriomedial surface of the hock. The greatest length and maximum breadth of the first tarsal was 0.94 ± 0.01 cm and 1.01 ± 0.01 cm, respectively. The second and third fused tarsal bone resembles the central but was smaller and triangular in outline. It was situated between the central above and the large metatarsal bone below. The greatest length and maximum breadth of second and third fused tarsal was 0.98 ± 0.01 cm and 1.49 ± 0.01 cm.

Keywords: chinkara, morphometry, radiography, tarsal bone

Procedia PDF Downloads 142
26995 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 86