Search results for: data fitting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25272

Search results for: data fitting

25032 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 459
25031 Personality, Coping, Quality of Life, and Distress in Persons with Hearing Loss: A Cross-Sectional Study of Patients Referred to an Audiological Service

Authors: Oyvind Nordvik, Peder O. L. Heggdal, Jonas Brannstrom, Flemming Vassbotn, Anne Kari Aarstad, Hans Jorgen Aarstad

Abstract:

Background: Hearing Loss (HL) is a condition that may affect people in all stages of life, but the prevalence increases with age, mostly because of age-related HL, generally referred to as presbyacusis. As human speech is related to relatively high frequencies, even a limited hearing loss at high frequencies may cause impaired speech intelligibility. Being diagnosed with, treated for and living with a chronic condition such as HL, must for many be a disabling and stressful condition that put ones coping resources to test. Stress is a natural part of life and most people will experience stressful events or periods. Chronic diseases, such as HL, are risk factor for distress in individuals, causing anxiety and lowered mood. How an individual cope with HL may be closely connected to the level of distress he or she is experiencing and to personality, which can be defined as those characteristics of a person that account for consistent patterns of feelings, thinking, and behavior. Thus, as to distress in life, such as illness or disease, available coping strategies may be more important than the challenge itself. The same line of arguments applies to level of experienced health-related quality of life (HRQoL). Aim: The aim of this study was to investigate the relationship between distress, HRQoL, reported hearing loss, personality and coping in patients with HL. Method: 158 adult (aged 18-78 years) patients with HL, referred for hearing aid (HA) fitting at Haukeland University Hospital in western Norway, participated in the study. Both first-time users, as well as patients referred for HA renewals were included. First-time users had been pre-examined by an ENT-specialist. The questionnaires were answered before the actual HA fitting procedure. The pure-tone average (PTA; frequencies 0.5, 1, 2, and 4 kHz) was determined for each ear. The Eysenck personality inventory, neuroticism and lie scales, the Theoretically Originated Measure of the Cognitive Activation Theory of Stress (TOMCATS) measuring active coping, hopelessness and helplessness, as well as distress (General Health Questionnaire (GHQ) - 12 items) and the EORTC Quality of Life Questionnaire general part were answered. In addition, we used a revised and shortened version of the Abbreviated Profile of Hearing Aid Benefit (APHAB) as a measure of patient-reported hearing loss. Results: Significant correlations were determined between APHAB (weak), HRQoL scores (strong), distress scores (strong) on the one side and personality and choice of coping scores on the other side. As measured by stepwise regression analyses, the distress and HRQoL scores were scored secondary to the obtained personality and coping scores. The APHAB scores were as determined by regression analyses scored secondary to PTA (best ear), level of neuroticism and lie score. Conclusion: We found that reported employed coping style, distress/HRQoL and personality are closely connected to each other in this patient group. Patient-reported HL was associated to hearing level and personality. There is need for further investigations on these questions, and how these associations may influence the clinical context.

Keywords: coping, distress, hearing loss, personality

Procedia PDF Downloads 145
25030 Data Stream Association Rule Mining with Cloud Computing

Authors: B. Suraj Aravind, M. H. M. Krishna Prasad

Abstract:

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.

Keywords: data stream, association rule mining, cloud computing, frequent itemsets

Procedia PDF Downloads 499
25029 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine

Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne

Abstract:

The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.

Keywords: pesticide, solid-phase microextraction (SPME) methods, steady state, analytical model

Procedia PDF Downloads 485
25028 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 171
25027 Big Data: Concepts, Technologies and Applications in the Public Sector

Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora

Abstract:

Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.

Keywords: big data, big data analytics, Hadoop, cloud

Procedia PDF Downloads 309
25026 Short-Term Energy Efficiency Decay and Risk Analysis of Ground Source Heat Pump System

Authors: Tu Shuyang, Zhang Xu, Zhou Xiang

Abstract:

The objective of this paper is to investigate the effect of short-term heat exchange decay of ground heat exchanger (GHE) on the ground source heat pump (GSHP) energy efficiency and capacity. A resistance-capacitance (RC) model was developed and adopted to simulate the transient characteristics of the ground thermal condition and heat exchange. The capacity change of the GSHP was linked to the inlet and outlet water temperature by polynomial fitting according to measured parameters given by heat pump manufacturers. Thus, the model, which combined the heat exchange decay with the capacity change, reflected the energy efficiency decay of the whole system. A case of GSHP system was analyzed by the model, and the result showed that there was risk that the GSHP might not meet the load demand because of the efficiency decay in a short-term operation. The conclusion would provide some guidances for GSHP system design to overcome the risk.

Keywords: capacity, energy efficiency, GSHP, heat exchange

Procedia PDF Downloads 349
25025 Semantic Data Schema Recognition

Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia

Abstract:

The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.

Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns

Procedia PDF Downloads 417
25024 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 338
25023 Access Control System for Big Data Application

Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud

Abstract:

Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.

Keywords: access control, security, Big Data, domain

Procedia PDF Downloads 132
25022 Anharmonic Behavior in BaTiO3: Investigation by Raman Spectroscopy

Authors: M. D. Fontana, I. Bejaoui Ouni, D. Chapron, H. Aroui

Abstract:

BaTiO3 (BT) is a well known ferroelectric material which has been thoroughly studied during several decades since it undergoes successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions on cooling. It has several ferroelectric properties that allow it to be a good material for electronic applications such as the design of ferroelectric memories and pyroelectric elements. In the present work, we report the analysis of temperature dependence of Raman frequency and damping of the A1 modes polarized along the FE c axis as well as the optical phonons E corresponding to the ionic motions in the plane normal to c. Measurements were carried out at different temperatures ranging from 298 to 408 K (tetragonal phase) within different scattering configurations. Spectroscopic parameters of BT have determined using a high resolution Raman spectrometer and a fitting program. All the first order frequency modes exhibit a quasi linear decrease as function of the temperature, except for the A1[TO1], E[TO2] and E[TO4] lines which reveal a parabolic dependence illustrating an anharmonic process. The phonon frequency downshifts and damping evolutions are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials.

Keywords: BaTiO3, Raman spectroscopy, frequency, damping, anharmonic potential

Procedia PDF Downloads 299
25021 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 56
25020 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
25019 Corporate Governance Disclosures by South African Auditing Firms

Authors: Rozanne Janet Smith

Abstract:

This article examined the corporate governance disclosures of the large and medium-sized auditing firms in South Africa. It is important that auditing firms disclose their practice of good corporate governance to the public, as they serve the public interest. The auditing profession has been criticized due to many corporate scandals in recent years. This has undermined the reputation of the profession, with experts and the public questioning whether auditing firms have corporate governance structures in place, and whether they are taking public interest into consideration. In South Africa there is no corporate governance code specifically for audit firms. Auditing firms are encouraged by IRBA to issue a transparency report in which they disclose corporate governance structures and application, but this is not compulsory in South Africa. Moreover, the information issued in these transparency reports is limited and often only focuses on audit quality, and not governance. Through a literature review it was found that the UK is one of only a few countries who has a corporate governance code for audit firms. As South Africa initially used the UK Cadbury report to develop the King IV Code, it was fitting to use the UK Audit Firm Governance Code as a benchmark to determine if audit firms in South Africa are disclosing relevant corporate governance information in their transparency reports and/or integrated reports. This study contributes to the existing body of knowledge by pursuing the following objective: To determine the improvement in the corporate governance disclosures of large and medium-sized auditing firms in South Africa through comparative research. Available data from 2019 will be used and compared to the disclosures in the 2023/2024 transparency and or integrated reports of the large and medium-sized auditing firms in South Africa. To achieve this objective a constructivist research paradigm was applied. Qualitative secondary information was gathered for the analysis. A content analysis was selected to collect the qualitative data by analyzing the integrated reports and/or transparency reports of large and medium-sized auditing firms with 20 or more partners and to determine what is disclosed on their corporate governance practices. These transparency reports and integrated reports were then read and analyzed in depth and compared to the principles stated in the UK Code. Since there are only nine medium-sized and large auditing firms in South Africa, the researcher was able to conduct the content analysis by reading each report in depth. The following six principles which are found in the UK Code were assessed for disclosure. (1) Leadership, (2) Values, (3) INED, (4) Operations, (5) Reporting, and (6) Dialogue. The results reveal that the auditing firms are not disclosing the corporate governance principles and practices to the necessary extent. Although there has been some improvement, the disclosure is not to the extent which it should be. There is still a need for a South African audit firm governance code.

Keywords: auditing firms, corporate governance, South Africa, disclosure

Procedia PDF Downloads 22
25018 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems

Authors: Riadh Zorgati, Thomas Triboulet

Abstract:

In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.

Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix

Procedia PDF Downloads 133
25017 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM

Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract:

Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.

Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine

Procedia PDF Downloads 259
25016 The Economic Limitations of Defining Data Ownership Rights

Authors: Kacper Tomasz Kröber-Mulawa

Abstract:

This paper will address the topic of data ownership from an economic perspective, and examples of economic limitations of data property rights will be provided, which have been identified using methods and approaches of economic analysis of law. To properly build a background for the economic focus, in the beginning a short perspective of data and data ownership in the EU’s legal system will be provided. It will include a short introduction to its political and social importance and highlight relevant viewpoints. This will stress the importance of a Single Market for data but also far-reaching regulations of data governance and privacy (including the distinction of personal and non-personal data, data held by public bodies and private businesses). The main discussion of this paper will build upon the briefly referred to legal basis as well as methods and approaches of economic analysis of law.

Keywords: antitrust, data, data ownership, digital economy, property rights

Procedia PDF Downloads 80
25015 Protecting the Cloud Computing Data Through the Data Backups

Authors: Abdullah Alsaeed

Abstract:

Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms.

Keywords: data backup, data recovery, cloud computing, business continuity, disaster recovery, cost-effective, data encryption.

Procedia PDF Downloads 86
25014 The Study of Sensory Breadth Experiences in an Online Try-On Environment

Authors: Tseng-Lung Huang

Abstract:

Sensory breadth experiences, such as visualization, a sense of self-location, and haptic experiences, are critical in an online try-on environment. This research adopts an emotional appeal perspective, including concrete and abstract effects, to clarify the relationship between sensory experience and consumer's behavior intention in an online try-on context. This study employed an augmented reality interactive technology (ARIT) in an online clothes-fitting context and applied snowball sampling using e-mail to invite online consumers, first to use ARIT for trying on online apparel and then to complete a questionnaire. One hundred sixty-eight valid questionnaires were collected, and partial least squares (PLS) path modeling was used to test our hypotheses. The results showed that sensory breadth, by arousing concrete effect, induces impulse buying intention and willingness to pay a price premium of online shopping. Parasocial presence, as an abstract effect, diminishes the effect of concrete effects on willingness to pay a price premium.

Keywords: sensory breadth, impulsive behavior, price premium, emotional appeal, online try-on context

Procedia PDF Downloads 547
25013 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: data estimation, link data, machine learning, road network

Procedia PDF Downloads 510
25012 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies

Authors: Monica Lia

Abstract:

This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.

Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes

Procedia PDF Downloads 428
25011 A Multinomial Logistic Regression Analysis of Factors Influencing Couples' Fertility Preferences in Kenya

Authors: Naomi W. Maina

Abstract:

Fertility preference is a subject of great significance in developing countries. Studies reveal that the preferences of fertility are actually significant in determining the society’s fertility levels because the fertility behavior of the future has a high likelihood of falling under the effect of currently observed fertility inclinations. The objective of this study was to establish the factors associated with fertility preference amongst couples in Kenya by fitting a multinomial logistic regression model against 5,265 couple data obtained from Kenya demographic health survey 2014. Results revealed that the type of place of residence, the region of residence, age and spousal age gap significantly influence desire for additional children among couples in Kenya. There was the notable high likelihood of couples living in rural settlements having similar fertility preference compared to those living in urban settlements. Moreover, geographical disparities such as in northern Kenya revealed significant differences in a couples desire to have additional children compared to Nairobi. The odds of a couple’s desire for additional children were further observed to vary dependent on either the wife or husbands age and to a large extent the spousal age gap. Evidenced from the study, was the fact that as spousal age gap increases, the desire for more children amongst couples decreases. Insights derived from this study would be attractive to demographers, health practitioners, policymakers, and non-governmental organizations implementing fertility related interventions in Kenya among other stakeholders. Moreover, with the adoption of devolution, there is a clear need for adoption of population policies that are County specific as opposed to a national population policy as is the current practice in Kenya. Additionally, researchers or students who have little understanding in the application of multinomial logistic regression, both theoretical understanding and practical analysis in SPSS as well as application on real datasets, will find this article useful.

Keywords: couples' desire, fertility, fertility preference, multinomial regression analysis

Procedia PDF Downloads 181
25010 Opening up Government Datasets for Big Data Analysis to Support Policy Decisions

Authors: K. Hardy, A. Maurushat

Abstract:

Policy makers are increasingly looking to make evidence-based decisions. Evidence-based decisions have historically used rigorous methodologies of empirical studies by research institutes, as well as less reliable immediate survey/polls often with limited sample sizes. As we move into the era of Big Data analytics, policy makers are looking to different methodologies to deliver reliable empirics in real-time. The question is not why did these people do this for the last 10 years, but why are these people doing this now, and if the this is undesirable, and how can we have an impact to promote change immediately. Big data analytics rely heavily on government data that has been released in to the public domain. The open data movement promises greater productivity and more efficient delivery of services; however, Australian government agencies remain reluctant to release their data to the general public. This paper considers the barriers to releasing government data as open data, and how these barriers might be overcome.

Keywords: big data, open data, productivity, data governance

Procedia PDF Downloads 370
25009 A Review on Existing Challenges of Data Mining and Future Research Perspectives

Authors: Hema Bhardwaj, D. Srinivasa Rao

Abstract:

Technology for analysing, processing, and extracting meaningful data from enormous and complicated datasets can be termed as "big data." The technique of big data mining and big data analysis is extremely helpful for business movements such as making decisions, building organisational plans, researching the market efficiently, improving sales, etc., because typical management tools cannot handle such complicated datasets. Special computational and statistical issues, such as measurement errors, noise accumulation, spurious correlation, and storage and scalability limitations, are brought on by big data. These unique problems call for new computational and statistical paradigms. This research paper offers an overview of the literature on big data mining, its process, along with problems and difficulties, with a focus on the unique characteristics of big data. Organizations have several difficulties when undertaking data mining, which has an impact on their decision-making. Every day, terabytes of data are produced, yet only around 1% of that data is really analyzed. The idea of the mining and analysis of data and knowledge discovery techniques that have recently been created with practical application systems is presented in this study. This article's conclusion also includes a list of issues and difficulties for further research in the area. The report discusses the management's main big data and data mining challenges.

Keywords: big data, data mining, data analysis, knowledge discovery techniques, data mining challenges

Procedia PDF Downloads 109
25008 A Systematic Review on Challenges in Big Data Environment

Authors: Rimmy Yadav, Anmol Preet Kaur

Abstract:

Big Data has demonstrated the vast potential in streamlining, deciding, spotting business drifts in different fields, for example, producing, fund, Information Technology. This paper gives a multi-disciplinary diagram of the research issues in enormous information and its procedures, instruments, and system identified with the privacy, data storage management, network and energy utilization, adaptation to non-critical failure and information representations. Other than this, result difficulties and openings accessible in this Big Data platform have made.

Keywords: big data, privacy, data management, network and energy consumption

Procedia PDF Downloads 311
25007 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 520
25006 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication

Authors: Aishwarya Shekhar, Himanshu Sharma

Abstract:

Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.

Keywords: confidentiality, deduplication, data compression, hybridity of cloud

Procedia PDF Downloads 381
25005 An Extended X-Ray Absorption Fine Structure Study of CoTi Thin Films

Authors: Jose Alberto Duarte Moller, Cynthia Deisy Gomez Esparza

Abstract:

The cobalt-titanium system was grown as thin films in an INTERCOVAMEX V3 sputtering system, equipped with four magnetrons assisted by DC pulsed and direct DC. A polished highly oriented (400) silicon wafer was used as substrate and the growing temperature was 500 oC. Xray Absorption Spectroscopy experiments were carried out in the SSRL in the 4-3 beam line. The Extenden X-Ray Absorption Fine Structure spectra have been numerically processed by WINXAS software from the background subtraction until the normalization and FFT adjustment. Analyzing the absorption spectra of cobalt in the CoTi2 phase we can appreciate that they agree in energy with the reference spectra that corresponds to the CoO, which indicates that the valence where upon working is Co2+. The RDF experimental results were then compared with those RDF´s generated theoretically by using FEFF software, from a model compound of CoTi2 phase obtained by XRD. The fitting procedure is a highly iterative process. Fits are also checked in R-space using both the real and imaginary parts of Fourier transform. Finally, the presence of overlapping coordination shells and the correctness of the assumption about the nature of the coordinating atom were checked.

Keywords: XAS, EXAFS, FEFF, CoTi

Procedia PDF Downloads 294
25004 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 444
25003 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights

Authors: Tomy Prihananto, Damar Apri Sudarmadi

Abstract:

Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.

Keywords: Indonesia, protection, personal data, privacy, human rights, encryption

Procedia PDF Downloads 181