Search results for: autoregressive distributed lag
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2122

Search results for: autoregressive distributed lag

1882 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems

Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo

Abstract:

Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.

Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation

Procedia PDF Downloads 93
1881 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model

Authors: Carlos Caro, Ernest Blade, Nestor Rojas

Abstract:

This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.

Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model

Procedia PDF Downloads 522
1880 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling

Procedia PDF Downloads 256
1879 BlueVision: A Visual Tool for Exploring a Blockchain Network

Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin

Abstract:

Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.

Keywords: blockchain, visualization, consensus, distributed network

Procedia PDF Downloads 62
1878 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates

Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera

Abstract:

Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.

Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR

Procedia PDF Downloads 212
1877 Optimal Planning and Design of Hybrid Energy System for Taxila University

Authors: Habib Ur Rahman Habib

Abstract:

Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.

Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization

Procedia PDF Downloads 460
1876 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 386
1875 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control

Authors: A. Mansouri, F. Krim

Abstract:

This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.

Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation

Procedia PDF Downloads 379
1874 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 109
1873 Open Source Knowledge Management Approach to Manage and Disseminate Distributed Content in a Global Enterprise

Authors: Rahul Thakur, Onkar Chandel

Abstract:

Red Hat is the world leader in providing open source software and solutions. A global enterprise, like Red Hat, has unique issues of connecting employees with content because of distributed offices, multiple teams spread across geographies, multiple languages, and different cultures. Employees, of a global company, create content that is distributed across departments, teams, regions, and countries. This makes finding the best content difficult since owners keep iterating on the existing content. When employees are unable to find the content, they end up creating it once again and in the process duplicating existing material and effort. Also, employees may not find the relevant content and spend time reviewing obsolete duplicate, or irrelevant content. On an average, a person spends 15 minutes/day in failed searches that might result in missed business opportunities, employee frustration, and substandard deliverables. Red Hat Knowledge Management Office (KMO) applied 'open source strategy' to solve the above problems. Under the Open Source Strategy, decisions are taken collectively. The strategy aims at accomplishing common goals with the help of communities. The objectives of this initiative were to save employees' time, get them authentic content, improve their content search experience, avoid duplicate content creation, provide context based search, improve analytics, improve content management workflows, automate content classification, and automate content upload. This session will describe open source strategy, its applicability in content management, challenges, recommended solutions, and outcome.

Keywords: content classification, content management, knowledge management, open source

Procedia PDF Downloads 210
1872 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: control, configuration, DCS, power plant, bus

Procedia PDF Downloads 491
1871 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment

Authors: Danladi Ali

Abstract:

In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signal

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model

Procedia PDF Downloads 382
1870 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model

Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji

Abstract:

An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.

Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models

Procedia PDF Downloads 114
1869 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 141
1868 Analysis of the Fair Distribution of Urban Facilities in Kabul City by Population Modeling

Authors: Ansari Mohammad Reza, Hiroko Ono

Abstract:

In this study, we investigated how much of the urban facilities are fairly distributing in the city of Kabul based on the factor of population. To find the answer to this question we simulated a fair model for the distribution of investigated facilities in the city which is proposed based on the consideration of two factors; the number of users for each facility and the average distance of reach of each facility. Then the model was evaluated to make sure about its efficiency. And finally, the two—the existing pattern and the simulation model—were compared to find the degree of bias in the existing pattern of distribution of facilities in the city. The result of the study clearly clarified that the facilities are not fairly distributed in Kabul city based on the factor of population. Our analysis also revealed that the education services and the parks are the most and the worst fair distributed facilities in this regard.

Keywords: Afghanistan, ArcGIS Software, Kabul City, fair distribution, urban facilities

Procedia PDF Downloads 179
1867 Improving Fault Tolerance and Load Balancing in Heterogeneous Grid Computing Using Fractal Transform

Authors: Saad M. Darwish, Adel A. El-Zoghabi, Moustafa F. Ashry

Abstract:

The popularity of the Internet and the availability of powerful computers and high-speed networks as low-cost commodity components are changing the way we use computers today. These technical opportunities have led to the possibility of using geographically distributed and multi-owner resources to solve large-scale problems in science, engineering, and commerce. Recent research on these topics has led to the emergence of a new paradigm known as Grid computing. To achieve the promising potentials of tremendous distributed resources, effective and efficient load balancing algorithms are fundamentally important. Unfortunately, load balancing algorithms in traditional parallel and distributed systems, which usually run on homogeneous and dedicated resources, cannot work well in the new circumstances. In this paper, the concept of a fast fractal transform in heterogeneous grid computing based on R-tree and the domain-range entropy is proposed to improve fault tolerance and load balancing algorithm by improve connectivity, communication delay, network bandwidth, resource availability, and resource unpredictability. A novel two-dimension figure of merit is suggested to describe the network effects on load balance and fault tolerance estimation. Fault tolerance is enhanced by adaptively decrease replication time and message cost while load balance is enhanced by adaptively decrease mean job response time. Experimental results show that the proposed method yields superior performance over other methods.

Keywords: Grid computing, load balancing, fault tolerance, R-tree, heterogeneous systems

Procedia PDF Downloads 490
1866 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior

Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi

Abstract:

The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.

Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states

Procedia PDF Downloads 196
1865 Cloud-Based Dynamic Routing with Feedback in Formal Methods

Authors: Jawid Ahmad Baktash, Mursal Dawodi, Tomokazu Nagata

Abstract:

With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.

Keywords: cloud, dynamic routing, formal method, Pro-B, event-B

Procedia PDF Downloads 423
1864 Determinants of Budget Performance in an Oil-Based Economy

Authors: Adeola Adenikinju, Olusanya E. Olubusoye, Lateef O. Akinpelu, Dilinna L. Nwobi

Abstract:

Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further.

Keywords: ARDL, budget performance, oil price, oil quantity, oil revenue

Procedia PDF Downloads 172
1863 Distribution Planning with Renewable Energy Units Based on Improved Honey Bee Mating Optimization

Authors: Noradin Ghadimi, Nima Amjady, Oveis Abedinia, Roza Poursoleiman

Abstract:

This paper proposed an Improved Honey Bee Mating Optimization (IHBMO) for a planning paradigm for network upgrade. The proposed technique is a new meta-heuristic algorithm which inspired by mating of the honey bee. The paradigm is able to select amongst several choices equi-cost one assuring the optimum in terms of voltage profile, considering various scenarios of DG penetration and load demand. The distributed generation (DG) has created a challenge and an opportunity for developing various novel technologies in power generation. DG prepares a multitude of services to utilities and consumers, containing standby generation, peaks chopping sufficiency, base load generation. The proposed algorithm is applied over the 30 lines, 28 buses power system. The achieved results demonstrate the good efficiency of the DG using the proposed technique in different scenarios.

Keywords: distributed generation, IHBMO, renewable energy units, network upgrade

Procedia PDF Downloads 487
1862 Wind Power Mapping and NPV of Embedded Generation Systems in Nigeria

Authors: Oluseyi O. Ajayi, Ohiose D. Ohijeagbon, Mercy Ogbonnaya, Ameh Attabo

Abstract:

The study assessed the potential and economic viability of stand-alone wind systems for embedded generation, taking into account its benefits to small off-grid rural communities at 40 meteorological sites in Nigeria. A specific electric load profile was developed to accommodate communities consisting of 200 homes, a school and a community health centre. This load profile was incorporated within the distributed generation analysis producing energy in the MW range, while optimally meeting daily load demand for the rural communities. Twenty-four years (1987 to 2010) of wind speed data at a height of 10m utilized for the study were sourced from the Nigeria Meteorological Department, Oshodi. The HOMER® software optimizing tool was engaged for the feasibility study and design. Each site was suited to 3MW wind turbines in sets of five, thus 15MW was designed for each site. This design configuration was adopted in order to easily compare the distributed generation system amongst the sites to determine their relative economic viability in terms of life cycle cost, as well as levelised cost of producing energy. A net present value was estimated in terms of life cycle cost for 25 of the 40 meteorological sites. On the other hand, the remaining sites yielded a net present cost; meaning the installations at these locations were not economically viable when utilizing the present tariff regime for embedded generation in Nigeria.

Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, Nigeria

Procedia PDF Downloads 397
1861 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL

Procedia PDF Downloads 354
1860 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System

Authors: Eronini Iheanyi Umez-Eronini

Abstract:

Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.

Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation

Procedia PDF Downloads 82
1859 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 190
1858 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period

Authors: Xu Wang

Abstract:

This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.

Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty

Procedia PDF Downloads 167
1857 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging

Authors: Daofan Guo, Dong Yang

Abstract:

For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.

Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring

Procedia PDF Downloads 142
1856 Falling and Rising of Solid Particles in Thermally Stratified Fluid

Authors: Govind Sharma, Bahni Ray

Abstract:

Ubiquitous nature of particle settling is governed by the presence of the surrounding fluid medium. Thermally stratified fluid alters the settling phenomenon of particles as well as their interactions. Direct numerical simulation (DNS) is carried out with an open-source library Immersed Boundary Adaptive Mesh Refinement (IBAMR) to quantify the fundamental mechanism based on Distributed Lagrangian Multiplier (DLM). The presence of background density gradient due to thermal stratification replaces the drafting-kissing-tumbling in a homogeneous fluid to drafting-kissing-separation behavior. Simulations are performed with a varying range of particle-fluid density ratios, and it is shown that the stratification effect on particle interactions varies with density ratio. It is observed that the combined role of buoyancy and inertia govern the physical mechanism of particle-particle interaction.

Keywords: direct numerical simulation, distributed lagrangian multiplier, rigidity constraint, sedimentation, stratification

Procedia PDF Downloads 136
1855 Systematic Taxonomy and Phylogenetic of Commercial Fish Species of Family Nemipetridae from Malaysian Waters and Neighboring Seas

Authors: Ayesha Imtiaz, Darlina Md. Naim

Abstract:

Family Nemipteridae is among the most abundantly distributed family in Malaysian fish markets due to its high contribution to landing sites of Malaysia. Using an advanced molecular approach that used two mitochondrial (Cytochrome oxidase c I and Cytochrome oxidase b) and one nuclear gene (Recombination activating gene, RAGI) to expose cryptic diversity and phylogenetic relationships among commercially important species of family Nemipteridae. Our research covered all genera (including 31 species out total 45 species) of family Nemipteridae, distributed in Malaysia. We also found certain type of geographical barriers in the South China sea that reduces dispersal and stops a few species to intermix. Northside of the South China Sea (near Vietnam) does not allow genetic diversity to mix with the Southern side of the South China sea (Sarawak) and reduces dispersal. Straits of Malacca reduce the intermixing genetic diversity of South China Sea and the Indian Ocean.

Keywords: Nemipteridae, RAG I, south east Asia, Malaysia

Procedia PDF Downloads 143
1854 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems

Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun

Abstract:

Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.

Keywords: application management, hardware management, power electronics, building blocks

Procedia PDF Downloads 521
1853 Stability or Instabilty? Triplet Deficit Analysis In Turkey

Authors: Zeynep Karaçor, Volkan Alptekin, Gökhan Akar, Tuba Akar

Abstract:

This paper aims to review the phenomenon of triplet deficit which is called interaction of budget balance that make up the overall balance of the economy, investment savings balance and current accounts balance in terms of Turkey. In this paper, triplet deficit state in Turkish economy has been analyzed with vector autoregressive model and Granger causality test using data covering the period of 1980-2010. According to VAR results, increase in current accounts is perceived on public sector borrowing requirement. These two variables influence each other bilaterally. Therefore, current accounts increase public deficit, whereas public deficit increases current accounts. It is not possible to mention the existence of a short-term Granger causality between variables at issue.

Keywords: internal and external deficit, stability, triplet deficit, Turkey economy

Procedia PDF Downloads 342