Search results for: Casson fluids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 467

Search results for: Casson fluids

227 Study of Behavior Tribological Cutting Tools Based on Coating

Authors: A. Achour L. Chekour, A. Mekroud

Abstract:

Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.

Keywords: friction, wear, tool, cutting

Procedia PDF Downloads 330
226 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery

Authors: Peña A. Roland R., Lozano P. Jean P.

Abstract:

The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.

Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow

Procedia PDF Downloads 123
225 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine

Procedia PDF Downloads 208
224 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 315
223 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating

Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful

Abstract:

A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.

Keywords: biomaterial, flame coating, antibacterial activity, stainless steel

Procedia PDF Downloads 96
222 Malaria and Environmental Sanitation

Authors: Soorya Vennila

Abstract:

A comprehensive study of malaria in 165 villages (hamlets) in Harur block, Dharmapuri district, has revealed the fact that there are distinct episodes of malaria due to An. culicifacies, the vector, causes persistent transmission in the revenue village called Vedakatamaduvu. A total of 300 household adult samples are randomly selected to study both quantitatively and qualitatively the vulnerability of malaria. On the basis of the response, the problem uncommon with groups was identified as the outdoor routine, particularly open defecation, with which the samples needed to be stratified into two major groups; users of toilets 21 and those who practice open defecation 279. Open defecation, as the habit-based vulnerability, is measured with the Pearson correlation coefficient to estimate the relationship between malaria and open defecation. It is also verified from the literature that plant fluids provide mosquitoes not only with energy but also with nutrition, to the extent that they can develop fertile eggs. In the endemic areas, the bushy Presopis Juliflora, which naturally serves as a feeding and resting spot for mosquitoes, serves as a cover to practice open defecation as well. Eventually, those who get resort to Presopis for open defecation have a higher chance of getting exposed to mosquito bites and being infected with malaria. The study concludes that the combination of bushy Prosopis Juliflora and open defecation leaves the place perpetually vulnerable to malaria.

Keywords: Malaria, open defecation, endemic, presopis juliflora

Procedia PDF Downloads 100
221 Heat Transfer Analysis of Corrugated Plate Heat Exchanger

Authors: Ketankumar Gandabhai Patel, Jalpit Balvantkumar Prajapati

Abstract:

Plate type heat exchangers has many thin plates that are slightly apart and have very large surface areas and fluid flow passages that are good for heat transfer. This can be a more effective heat exchanger than the tube or shell heat exchanger due to advances in brazing and gasket technology that have made this plate exchanger more practical. Plate type heat exchangers are most widely used in food processing industries and dairy industries. Mostly fouling occurs in plate type heat exchanger due to deposits create an insulating layer over the surface of the heat exchanger, that decreases the heat transfer between fluids and increases the pressure drop. The pressure drop increases as a result of the narrowing of the flow area, which increases the gap velocity. Therefore, the thermal performance of the heat exchanger decreases with time, resulting in an undersized heat exchanger and causing the process efficiency to be reduced. Heat exchangers are often over sized by 70 to 80%, of which 30 % to 50% is assigned to fouling. The fouling can be reduced by varying some geometric parameters and flow parameters. Based on the study, a correlation will estimate for Nusselt number as a function of Reynolds number, Prandtl number and chevron angle.

Keywords: heat transfer coefficient, single phase flow, mass flow rate, pressure drop

Procedia PDF Downloads 310
220 Development of a Device for Detecting Fluids in the Esophagus

Authors: F. J. Puertas, M. Castro, A. Tebar, P. J. Fito, R. Gadea, J. M. Monzó, R. J. Colom

Abstract:

There is a great diversity of diseases that affect the integrity of the walls of the esophagus, generally of a digestive nature. Among them, gastroesophageal reflux is a common disease in the general population, affecting the patient's quality of life; however, there are still unmet diagnostic and therapeutic issues. The consequences of untreated or asymptomatic acid reflux on the esophageal mucosa are not only pain, heartburn, and acid regurgitation but also an increased risk of esophageal cancer. Currently, the diagnostic methods to detect problems in the esophageal tract are invasive and annoying, as 24-hour impedance-pH monitoring forces the patient to be uncomfortable for hours to be able to make a correct diagnosis. In this work, the development of a sensor able to measure in depth is proposed, allowing the detection of liquids circulating in the esophageal tract. The multisensor detection system is based on radiofrequency photospectrometry. At an experimental level, consumers representative of the population in terms of sex and age have been used, placing the sensors between the trachea and the diaphragm analyzing the measurements in vacuum, water, orange juice and saline medium. The results obtained have allowed us to detect the appearance of different liquid media in the esophagus, segregating them based on their ionic content.

Keywords: bioimpedance, dielectric spectroscopy, gastroesophageal reflux, GERD

Procedia PDF Downloads 101
219 Field Deployment of Corrosion Inhibitor Developed for Sour Oil and Gas Carbon Steel Pipelines

Authors: Jeremy Moloney

Abstract:

A major oil and gas operator in western Canada producing approximately 50,000 BOE per day of sour fluids was experiencing increased water production along with decreased oil production over several years. The higher water volumes being produced meant an increase in the operator’s incumbent corrosion inhibitor (CI) chemical requirements but with reduced oil production revenues. Thus, a cost-effective corrosion inhibitor solution was sought to deliver enhanced corrosion mitigation of the carbon steel pipeline infrastructure but at reduced chemical injection dose rates. This paper presents the laboratory work conducted on the development of a corrosion inhibitor under the operator’s simulated sour operating conditions and then subsequent field testing of the product. The new CI not only provided extremely good levels of general and localized corrosion inhibition and outperformed the incumbent CI under the laboratory test conditions but did so at vastly lower concentrations. In turn, the novel CI product facilitated field chemical injection rates to be optimized and reduced by 40% compared with the incumbent whilst maintaining superior corrosion protection resulting in significant cost savings and associated sustainability benefits for the operator.

Keywords: carbon steel, sour gas, hydrogen sulphide, localized corrosion, pitting, corrosion inhibitor

Procedia PDF Downloads 83
218 Viscoelastic Behaviour of Hyaluronic Acid Copolymers

Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu

Abstract:

The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.

Keywords: copolymer, viscoelasticity, gelation, 3D network

Procedia PDF Downloads 285
217 Investigation of Dry Ice Mixed Novel Hybrid Lubri-Coolant in Sustainable Machining of Ti-6AL-4V Alloy: A Comparison of Experimental and Modelling

Authors: Muhammad Jamil, Ning He, Aqib Mashood Khan, Munish Kumar Gupta

Abstract:

Ti-6Al-4V has numerous applications in the medical, automobile, and aerospace industries due to corrosion resistivity, structural stability, and chemical inertness to most fluids at room temperature. These peculiar characteristics are beneficial for their application and present formidable challenges during machining. Machining of Ti-6Al-4V produces an elevated cutting temperature above 1000oC at dry conditions. This accelerates tool wear and reduces product quality. Therefore, there is always a need to employ sustainable/effective coolant/lubricant when machining such alloy. In this study, Finite Element Modeling (FEM) and experimental analysis when cutting Ti-6Al-4V under a distinctly developed dry ice mixed hybrid lubri-coolant are presented. This study aims to model the milling process of Ti-6Al-4V under a proposed novel hybrid lubri-coolant using different cutting speeds and feed per tooth DEFORM® software package was used to conduct the FEM and the numerical model was experimentally validated. A comparison of experimental and simulation results showed a maximum error of no more than 6% for all experimental conditions. In a nutshell, it can be said that the proposed model is effective in predicting the machining temperature precisely.

Keywords: friction coefficient, heat transfer, finite element modeling (FEM), milling Ti-6Al-4V

Procedia PDF Downloads 56
216 Efficient HVAC System in Green Building Design

Authors: Omid Khabiri, Maryam Ghavami

Abstract:

Buildings designed and built as high performance, sustainable or green are the vanguard in a movement to make buildings more energy efficient and less environmentally harmful. Although Heating, Ventilating, and Air Conditioning (HVAC) systems offer many opportunities for recovery and re-use of thermal energy; however, the amount of energy used annually by these systems typically ranges from 40 to 60 percent of the overall energy consumption in a building, depending on the building design, function, condition, climate, and the use of renewable energy strategies. HVAC systems may also damage the environment by unnecessary use of non-renewable energy sources, which contribute to environmental pollution, and by creating noise and discharge of contaminated water and air containing chemicals, lubricating oils, refrigerants, heat transfer fluids, and particulate (gases matter). In fact, HVAC systems will significantly impact how “green” a building is, where an efficient HVAC system design can result in considerable energy, emissions and cost savings as well as providing increased user thermal comfort. This paper presents the basic concepts of green building design and discusses the role of efficient HVAC system and practical strategies for ensuring high performance sustainable buildings in design and operation.

Keywords: green building, hvac system, design strategies, high-performance equipment, efficient technologies

Procedia PDF Downloads 575
215 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering

Procedia PDF Downloads 298
214 Software Tool Design for Heavy Oil Upgrading by Hydrogen Donor Addition in a Hydrodynamic Cavitation Process

Authors: Munoz A. Tatiana, Solano R. Brandon, Montes C. Juan, Cierco G. Javier

Abstract:

The hydrodynamic cavitation is a process in which the energy that the fluids have in the phase changes is used. From this energy, local temperatures greater than 5000 °C are obtained where thermal cracking of the fluid molecules takes place. The process applied to heavy oil affects variables such as viscosity, density, and composition, which constitutes an important improvement in the quality of crude oil. In this study, the need to design a software through mathematical integration models of mixing, cavitation, kinetics, and reactor, allows modeling changes in density, viscosity, and composition of a heavy oil crude, when the fluid passes through a hydrodynamic cavitation reactor. In order to evaluate the viability of this technique in the industry, a heavy oil of 18° API gravity, was simulated using naphtha as a hydrogen donor at concentrations of 1, 2 and 5% vol, where the simulation results showed an API gravity increase to 0.77, 1.21 and 1.93° respectively and a reduction viscosity by 9.9, 12.9 and 15.8%. The obtained results allow to have a favorable panorama on this technological development, an appropriate visualization on the generation of innovative knowledge of this technique and the technical-economic opportunity that benefits the development of the hydrocarbon sector related to heavy crude oil that includes the largest world oil production.

Keywords: hydrodynamic cavitation, thermal cracking, hydrogen donor, heavy oil upgrading, simulator

Procedia PDF Downloads 148
213 Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process

Authors: Nuhu Dalhat Mu’azu, Abdullahi Usman, A. Bukhari, Muhammad Hussain Essa, Salihu Lukman

Abstract:

Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively.

Keywords: clay, bentonite, soil remediation, mixed contaminants, heavy metals, and electrokinetic-adsorption

Procedia PDF Downloads 428
212 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach

Authors: Dhawal Ladani

Abstract:

Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.

Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube

Procedia PDF Downloads 305
211 Use of Vapor Corrosion Inhibitor for Tank Bottom Protection

Authors: Muhammad Arsalan Khan Sherwani

Abstract:

The use of Volatile Corrosion Inhibitors (VCI) to protect Aboveground Storage Tank (AST) bottom plates against soil-side corrosion is one of the emerging corrosion prevention methods, specifically for tanks constructed on oily sand pad. Oily sand pad and the presence of air gaps underneath the bottom plates lead to severe corrosion and high metal thickness loss. In such cases, the cathodic protection cannot be fully considered as effective due to Cathodic Protection (CP) current shielding. These situations sometimes result in serious failures on multiple fronts, such as; containment losses, system shutdowns, extensive repairs, environmental impact and safety concerns in case of flammable fluids. Recently, East West Pipeline Department (EWPD) of Saudi Aramco has deployed this technology to one of the crude oil storage tanks, which showed high metal thickness loss during its out of service inspection. Soil-side corrosion rustled in major repairs of bottom plates and ultimately caused enormous unplanned activities in term of time as well as cost. This paper mainly focuses on the methodology of VCI installation, corrosion monitoring system and the expected results of protection.

Keywords: Vapor Corrosion Inhibitor, Soil Side Corrosion, External Corrosion, Above Grade Storage Tank

Procedia PDF Downloads 71
210 Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube

Authors: Muhammad Abdullah, Asma Rashid Butt, Nauman Raza

Abstract:

Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs.

Keywords: viscous fluid, magnetic particles, fractional calculus, laplace transformation

Procedia PDF Downloads 204
209 The Application of Cellulose-Based Halloysite-Carbon Adsorbent to Remove Chloroxylenol from Water

Authors: Laura Frydel

Abstract:

Chloroxylenol is a common ingredient in disinfectants. Due to the use of this compound in large amounts, it is more and more often detected in rivers, sewage, and also in human body fluids. In recent years, there have been concerns about the potentially harmful effects of chloroxylenol on human health and the environment. This paper presents the synthesis, a brief characterization and the use of a halloysite-carbon adsorbent for the removal of chloroxylenol from water. The template in the halloysite-carbon adsorbent was acid treated bleached halloysite, and the carbon precursor was cellulose dissolved in zinc (II) chloride, which was dissolved in 37% hydrochloric acid. The FTIR spectra before and after the adsorption process allowed to determine the presence of functional groups, bonds in the halloysite-carbon composite, and the binding mechanism of the adsorbent and adsorbate. The morphology of the bleached halloysite sample and the sample of the halloysite-carbon adsorbent were characterized by scanning electron microscopy (SEM) with surface analysis by X-ray dispersion spectrometry (EDS). The specific surface area, total pore volume and mesopore and micropore volume were determined using the ASAP 2020 volumetric adsorption analyzer. Total carbon and total organic carbon were determined for the halloysite-carbon adsorbent. The halloysite-carbon adsorbent was used to remove chloroxylenol from water. The degree of removal of chloroxylenol from water using the halloysite-carbon adsorbent was about 90%. Adsorption studies show that the halloysite-carbon composite can be used as an effective adsorbent for removing chloroxylenol from water.

Keywords: adsorption, cellulose, chloroxylenol, halloysite

Procedia PDF Downloads 189
208 High Pressure Multiphase Flow Experiments: The Impact of Pressure on Flow Patterns Using an X-Ray Tomography Visualisation System

Authors: Sandy Black, Calum McLaughlin, Alessandro Pranzitelli, Marc Laing

Abstract:

Multiphase flow structures of two-phase multicomponent fluids were experimentally investigated in a large diameter high-pressure pipeline up to 130 bar at TÜV SÜD’s National Engineering Laboratory Advanced Multiphase Facility. One of the main objectives of the experimental test campaign was to evaluate the impact of pressure on multiphase flow patterns as much of the existing information is based on low-pressure measurements. The experiments were performed in a horizontal and vertical orientation in both 4-inch and 6-inch pipework using nitrogen, ExxsolTM D140 oil, and a 6% aqueous solution of NaCl at incremental pressures from 10 bar to 130 bar. To visualise the detailed structure of the flow of the entire cross-section of the pipe, a fast response X-ray tomography system was used. A wide range of superficial velocities from 0.6 m/s to 24.0 m/s for gas and 0.04 m/s and 6.48 m/s for liquid was examined to evaluate different flow regimes. The results illustrated the suppression of instabilities between the gas and the liquid at the measurement location and that intermittent or slug flow was observed less frequently as the pressure was increased. CFD modellings of low and high-pressure simulations were able to successfully predict the likelihood of intermittent flow; however, further tuning is necessary to predict the slugging frequency. The dataset generated is unique as limited datasets exist above 100 bar and is of considerable value to multiphase flow specialists and numerical modellers.

Keywords: computational fluid dynamics, high pressure, multiphase, X-ray tomography

Procedia PDF Downloads 142
207 Characterizing the Diffused Double Layer Properties of Clay Minerals

Authors: N. Saranya

Abstract:

The difference in characteristic behavior of clay minerals for different electrolyte solution is dictated by the corresponding variation occurring at its diffused double layer thickness (DDL). The diffused double layer of clay mineral has two distinct regions; the inner region is termed as ‘Stern layer’ where ions are strongly attached to the clay surface. In the outer region, the ions are not strongly bonded with the clay surface, and this region is termed as ‘diffuse layer’. Within the diffuse layer, there is a plane that forms a boundary between the moving ions and the ions attached to the clay surface, which is termed as slipping or shear plane, and the potential of this plane is defined as zeta potential (ζ). Therefore, the variation in diffused double layer properties of clay mineral for different electrolyte solutions can be modeled if the corresponding variation in surface charge, surface potential, and zeta potential are computed. In view of this, the present study has attempted to characterize the diffused double layer properties of three different clay minerals interacting with different pore fluids by measuring the corresponding variation in surface charge, surface potential, and zeta potential. Further, the obtained variation in the diffused double layer property is compared with the Gouy-Chapman model, which is the widely accepted theoretical model to characterize the diffused double layer properties of clay minerals.

Keywords: DDL, surface charge, surface potential, zeta potential

Procedia PDF Downloads 165
206 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution

Authors: Tarek Sedki

Abstract:

Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.

Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins

Procedia PDF Downloads 139
205 Investigation of Bubble Growth During Nucleate Boiling Using CFD

Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu

Abstract:

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity

Procedia PDF Downloads 383
204 Biosensor Technologies in Neurotransmitters Detection

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha

Abstract:

Catecholamines are vital neurotransmitters that mediate a variety of central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, optical techniques for the detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid-modified enzymatic sensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence as well as electrochemical sensing strategy for catecholamines detection.

Keywords: biosensors, catecholamines, fluorescence, enzymes

Procedia PDF Downloads 109
203 Behavior of Droplets in Microfluidic System with T-Junction

Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud

Abstract:

Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.

Keywords: microfluidic system, micro droplets generation, t-junction, fluids engineering

Procedia PDF Downloads 341
202 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media

Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh

Abstract:

In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.

Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid

Procedia PDF Downloads 182
201 Study on an Integrated Real-Time Sensor in Droplet-Based Microfluidics

Authors: Tien-Li Chang, Huang-Chi Huang, Zhao-Chi Chen, Wun-Yi Chen

Abstract:

The droplet-based microfluidic are used as micro-reactors for chemical and biological assays. Hence, the precise addition of reagents into the droplets is essential for this function in the scope of lab-on-a-chip applications. To obtain the characteristics (size, velocity, pressure, and frequency of production) of droplets, this study describes an integrated on-chip method of real-time signal detection. By controlling and manipulating the fluids, the flow behavior can be obtained in the droplet-based microfluidics. The detection method is used a type of infrared sensor. Through the varieties of droplets in the microfluidic devices, the real-time conditions of velocity and pressure are gained from the sensors. Here the microfluidic devices are fabricated by polydimethylsiloxane (PDMS). To measure the droplets, the signal acquisition of sensor and LabVIEW program control must be established in the microchannel devices. The devices can generate the different size droplets where the flow rate of oil phase is fixed 30 μl/hr and the flow rates of water phase range are from 20 μl/hr to 80 μl/hr. The experimental results demonstrate that the sensors are able to measure the time difference of droplets under the different velocity at the voltage from 0 V to 2 V. Consequently, the droplets are measured the fastest speed of 1.6 mm/s and related flow behaviors that can be helpful to develop and integrate the practical microfluidic applications.

Keywords: microfluidic, droplets, sensors, single detection

Procedia PDF Downloads 490
200 A Comparative Study on Supercritical C02 and Water as Working Fluids in a Heterogeneous Geothermal Reservoir

Authors: Musa D. Aliyu, Ouahid Harireche, Colin D. Hills

Abstract:

The incapability of supercritical C02 to transport and dissolve mineral species from the geothermal reservoir to the fracture apertures and other important parameters in heat mining makes it an attractive substance for Heat extraction from hot dry rock. In other words, the thermodynamic efficiency of hot dry rock (HDR) reservoirs also increases if supercritical C02 is circulated at excess temperatures of 3740C without the drawbacks connected with silica dissolution. Studies have shown that circulation of supercritical C02 in homogenous geothermal reservoirs is quite encouraging; in comparison to that of the water. This paper aims at investigating the aforementioned processes in the case of the heterogeneous geothermal reservoir located at the Soultz site (France). The MultiPhysics finite element package COMSOL with an interface of coupling different processes encountered in the geothermal reservoir stimulation is used. A fully coupled numerical model is developed to study the thermal and hydraulic processes in order to predict the long-term operation of the basic reservoir parameters that give optimum energy production. The results reveal that the temperature of the SCC02 at the production outlet is higher than that of water in long-term stimulation; as the temperature is an essential ingredient in rating the energy production. It is also observed that the mass flow rate of the SCC02 is far more favourable compared to that of water.

Keywords: FEM, HDR, heterogeneous reservoir, stimulation, supercritical C02

Procedia PDF Downloads 383
199 Evaluation of Dynamic and Vibrational Analysis of the Double Chambered Cylinder along Thermal Interactions

Authors: Mohammadreza Akbari, Leila Abdollahpour, Sara Akbari, Pooya Soleimani

Abstract:

Transferring thermo at the field of solid materials for instance tube-shaped structures, causing dynamical vibration at them. Majority of thermal and fluid processes are done engineering science at solid materials, for example, thermo-transferred pipes, fluids, chemical and nuclear reactors, include thermal processes, so, they need to consider the moment solid-fundamental structural strength unto these thermal interactions. Fluid and thermo retentive materials in front of external force to it like thermodynamical force, hydrodynamical force and static force continuously according to a function of time vibrated, and this action causes relative displacement of the structural materials elements, as a result, the moment resistance analysis preservation materials in thermal processes, the most important parameters for design are discussed. Including structural substrate holder temperature and fluid of the administrative and industrial center, is a cylindrical tube that for vibration analysis of cylindrical cells with heat and fluid transfer requires the use of vibration differential equations governing the structure of a tubular and thermal differential equations as the vibrating motive force at double-glazed cylinders.

Keywords: heat transfer, elements in cylindrical coordinates, analytical solving the governing equations, structural vibration

Procedia PDF Downloads 345
198 Measurement of Turbulence with PITOT Static Tube in Low Speed Subsonic Wind Tunnel

Authors: Gopikrishnan, Bharathiraja, Boopalan, Jensin Joshua

Abstract:

The Pitot static tube has proven their values and practicability in measuring velocity of fluids for many years. With the aim of extensive usage of such Pitot tube systems, one of the major enabling technologies is to use the design and fabricate a high sensitive pitot tube for the purpose of calibration of the subsonic wind tunnel. Calibration of wind tunnel is carried out by using different instruments to measure variety of parameters. Using too many instruments inside the tunnel may not only affect the fluid flow but also lead to drag or losses. So, it is essential to replace the different system with a single system that would give all the required information. This model of high sensitive Pitot tube has been designed to ease the calibration process. It minimizes the use of different instruments and this single system is capable of calibrating the wind tunnel test section. This Pitot static tube is completely digitalized and so that the velocity data`s can be collected directly from the instrument. Since the turbulence factors are dependent on velocity, the data’s that are collected from the pitot static tube are then processed and the level of turbulence in the fluid flow is calculated. It is also capable of measuring the pressure distribution inside the wind tunnel and the flow angularity of the fluid. Thus, the well-designed high sensitive Pitot static tube is utilized in calibrating the tunnel and also for the measurement of turbulence.

Keywords: pitot static tube, turbulence, wind tunnel, velocity

Procedia PDF Downloads 525