Search results for: small scale agriculture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11322

Search results for: small scale agriculture

8682 Flood Risk Management in Low Income Countries: Balancing Risk and Development

Authors: Gavin Quibell, Martin Kleynhans, Margot Soler

Abstract:

The Sendai Framework notes that disaster risk reduction is essential for sustainable development, and Disaster Risk Reduction is included in 3 of the Sustainable Development Goals (SDGs), and 4 of the SDG targets. However, apart from promoting better governance and resourcing of disaster management agencies, little guidance is given how low-income nations can balance investments across the SDGs to achieve sustainable development in an increasingly climate vulnerable world with increasing prevalence of flood and drought disasters. As one of the world’s poorest nations, Malawi must balance investments across all the SDGs. This paper explores how Malawi’s National Guidelines for Community-based Flood Risk Management integrate sustainable development and flood management objectives at different administrative levels. While Malawi periodically suffers from large, widespread flooding, the greatest impacts are felt through the smaller annual floods and flash floods. The Guidelines address this through principles that recognize that while the protection of human life is the most important priority for flood risk management, addressing the impacts of floods on the rural poor and the economy requires different approaches. The National Guidelines are therefore underpinned by the following; 1. In the short-term investments in flood risk management must focus on breaking the poverty – vulnerability cycle; 2. In the long-term investments in the other SDGs will have the greatest flood risk management benefits; 3. If measures are in place to prevent loss of life and protect strategic infrastructure, it is better to protect more people against small and medium size floods than fewer people against larger floods; 4. Flood prevention measures should focus on small (1:5 return period) floods; 5. Flood protection measures should focus on small and medium floods (1:20 return period) while minimizing the risk of failure in larger floods; 6. The impacts of larger floods ( > 1:50) must be addressed through improved preparedness; 7. The impacts of climate change on flood frequencies are best addressed by focusing on growth not overdesign; and 8. Manage floods and droughts conjunctively. The National Guidelines weave these principles into Malawi’s approach to flood risk management through recommendations for planning and implementing flood prevention, protection and preparedness measures at district, traditional authority and village levels.

Keywords: flood risk management in low-income countries, sustainable development, investments in prevention, protection and preparedness, community-based flood risk management, Malawi

Procedia PDF Downloads 241
8681 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 537
8680 The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge

Authors: E. Al-Essa, R. Bello-Mendoza, D. G. Wareham

Abstract:

Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.

Keywords: anaerobic digestion, iron oxide, methanogenesis, nanoparticle

Procedia PDF Downloads 140
8679 Investigation into the Homoepitaxy of AlGaN/GaN Heterostructure via Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

As the production process of self-standing GaN substrates evolves, the commercialization of low dislocation density, large-scale, semi-insulating self-standing GaN substrates is gradually becoming a reality. This advancement has given rise to increased interest in GaN materials' homoepitaxial technology. However, at the homoepitaxial interface, there are considerable concentrations of impurity elements, including C, Si, and O, which generate parasitic leakage channels at the re-growth junction. This phenomenon results in leaked HEMTs that prove difficult to switch off, rendering them effectively non-functional. The emergence of leakage channels can also degrade the high-frequency properties and lower the power devices' breakdown voltage. In this study, the uniform epitaxy of AlGaN/GaN heterojunction with high electron mobility was accomplished through the surface treatment of the GaN substrates prior to growth and the design of the AlN isolation layer structure. By employing a procedure combining gallium atom in-situ cleaning and plasma nitridation, the C and O impurity concentrations at the homoepitaxial interface were diminished to the scale of 10¹⁷ cm-³. Additionally, the 1.5 nm nitrogen-rich AlN isolation layer successfully prevented the diffusion of Si impurities into the GaN channel layer. The result was an AlGaN/GaN heterojunction with an electron mobility of 1552 cm²/Vs and an electron density of 1.1 × 10¹³ cm-² at room temperature, obtained on a Fe-doped semi-insulating GaN substrate.

Keywords: MBE, AlGaN/GaN, homogenerous epitaxy, HEMT

Procedia PDF Downloads 68
8678 Auditory and Language Skills Development after Cochlear Implantation in Children with Multiple Disabilities

Authors: Tamer Mesallam, Medhat Yousef, Ayna Almasaad

Abstract:

BACKGROUND: Cochlear implantation (CI) in children with additional disabilities can be a fundamental and supportive intervention. Although, there may be some positive impacts of CI on children with multiple disabilities such as better outcomes of communication skills, development, and quality of life, the families of those children complain from the post-implant habilitation efforts that considered as a burden. OBJECTIVE: To investigate the outcomes of CI children with different co-disabilities through using the Meaningful Auditory Integration Scale (MAIS) and the Meaningful Use of Speech Scale (MUSS) as outcome measurement tools. METHODS: The study sample comprised 25 hearing-impaired children with co-disability who received cochlear implantation. Age and gender-matched control group of 25 cochlear-implanted children without any other disability has been also included. The participants' auditory skills and speech outcomes were assessed using MAIS and MUSS tests. RESULTS: There was a statistically significant difference in the different outcomes measure between the two groups. However, the outcomes of some multiple disabilities subgroups were comparable to the control group. Around 40% of the participants with co-disabilities experienced advancement in their methods of communication from behavior to oral mode. CONCLUSION: Cochlear-implanted children with multiple disabilities showed variable degrees of auditory and speech outcomes. The degree of benefits depends on the type of the co-disability. Long-term follow-up is recommended for those children.

Keywords: children with disabilities, Cochlear implants, hearing impairment, language development

Procedia PDF Downloads 119
8677 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences

Authors: T. Hari Prasath, P. Ithaya Rani

Abstract:

In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.

Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization

Procedia PDF Downloads 278
8676 Plastic Deformation Behavior of a Pre-Bored Pile Filler Material Due to Lateral Cyclic Loading in Sandy Soil

Authors: A. Y. Purnama, N. Yasufuku

Abstract:

The bridge structure is a building that has to be maintained, especially for the elastomeric bearing. The girder of the bridge needs to be lifted upward to maintain this elastomeric bearing, that needs high cost. Nowadays, integral abutment bridges are becoming popular. The integral abutment bridge is less costly because the elastomeric bearings are eliminated, which reduces the construction cost and maintenance costs. However, when this elastomeric bearing removed, the girder movement due to environmental thermal forces directly support by pile foundation, and it needs to be considered in the design. In case of pile foundation in a stiff soil, in the top area of the pile cannot move freely due to the fixed condition by soil stiffness. Pre-bored pile system can be used to increase the flexibility of pile foundation using a pre-bored hole that filled with elastic materials, but the behavior of soil-pile interaction and soil response due to this system is still rarely explained. In this paper, an experimental study using small-scale laboratory model test conducted in a half size model. Single flexible pile model embedded in sandy soil with the pre-bored ring, which filled with the filler material. The testing box made from an acrylic glass panel as observation area of the pile shaft to monitor the displacement of the pile during the lateral loading. The failure behavior of the soil inside the pre-bored ring and around the pile shaft was investigated to determine the point of pile rotation and the movement of this point due to the pre-bored ring system along the pile shaft. Digital images were used to capture the deformations of the soil and pile foundation during the loading from the acrylic glass on the side of the testing box. The results were presented in the form of lateral load resistance charts against the pile shaft displacement. The failure pattern result also established due to the cyclic lateral loading. The movement of the rotational point was measured due to the pre-bored system filled with appropriate filler material. Based on the findings, design considerations for pre-bored pile system due to cyclic lateral loading can be introduced.

Keywords: failure behavior, pre-bored pile system, cyclic lateral loading, sandy soil

Procedia PDF Downloads 233
8675 Finite Element Analysis of a Modular Brushless Wound Rotor Synchronous Machine

Authors: H. T. Le Luong, C. Hénaux, F. Messine, G. Bueno-Mariani, S. Mollov, N. Voyer

Abstract:

This paper presents a comparative study of different modular brushless wound rotor synchronous machine (MB-WRSM). The goal of the study is to highlight the structure which offers the best fault tolerant capability and the highest output performances. The fundamental winding factor is calculated by using the method based on EMF phasors as a significant criterion to select the preferred number of phases, stator slots, and poles. With the limited number of poles for a small machine (3.67kW/7000rpm), 15 different machines for preferred phase/slot/pole combinations are analyzed using two-dimensional (2-D) finite element method and compared according to three criteria: torque density, torque ripple and efficiency. The 7phase/7slot/6pole machine is chosen with the best compromise of high torque density, small torque ripple (3.89%) and high nominal efficiency (95%). This machine is then compared with a reference design surface permanent magnet synchronous machine (SPMSM). In conclusion, this paper provides an electromagnetic analysis of a new brushless wound-rotor synchronous machine using multiphase non-overlapping fractional slot double layer winding. The simulation results are discussed and demonstrate that the MB-WRSM presents interesting performance features, with overall performance closely matching that of an equivalent SPMSM.

Keywords: finite element method (FEM), machine performance, modular wound rotor synchronous machine, non-overlapping concentrated winding

Procedia PDF Downloads 290
8674 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts

Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug

Abstract:

Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.

Keywords: simulation, lean, stabilization, welding process

Procedia PDF Downloads 321
8673 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 123
8672 Corporate Social Responsibility and Competitiveness: An Empirical Research Applied to Food and Beverage Industry in Croatia

Authors: Mirjana Dragas, Marli Gonan Bozac, Morena Paulisic

Abstract:

Corporate social responsibility (CSR) is a balance between strategic and financial goals of companies, as well as social needs. The integration of competitive strategy and CSR in food and beverage industry has allowed companies to find new sources of competitive advantage. The paper discusses the fact that socially responsible companies encourage co-operation with socially responsible suppliers in order to strengthen market competitiveness. In addition to the descriptive interpretation of the results obtained by a questionnaire, factor analysis was used, while principal components analysis was applied as a factor extraction method. The research results based on two multiple regression analyses show that: (1) selecting the CSR supplier explains a statistically significant part of the variance of the results on the scale of financial aspects of competitiveness (as much as 44.7% of the explained variance); and (2) selecting the CSR supplier is a significant predictor of non-financial aspects of competitiveness (explains 43.9% of the variance of the results on the scale of non-financial aspects of competitiveness). A successful competitive strategy must ultimately support the growth strategy. This implies an analytical approach to finding factors that influence competitiveness through socially sustainable solutions and satisfactory top management decisions.

Keywords: competitiveness, corporate social responsibility, food and beverage industry, supply chain decision making

Procedia PDF Downloads 360
8671 Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates

Authors: Seokyoon Moon, Yun-Ho Ahn, Heejoong Kim, Sujin Hong, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture.

Keywords: clathrate, gas hydrate, neopentyl alcohol, CO₂, tuning phenomenon

Procedia PDF Downloads 239
8670 Contextual and Personal Factors as Predictor of Academic Resilience among Female Undergraduates in Boko Haram Neighbourhood in North-Eastern Nigeria

Authors: Ndidi Ofole

Abstract:

Ongoing Boko Haram crisis and instability in North-Eastern Nigeria has placed additional stress on academic resilience of female undergraduates who are already challenged by gender discrimination in educational opportunities. Students without resilience lack stress hardiness to cope with academic challenges. There is a limited study on academic resilience targeting this disadvantaged population in Nigeria. Consequently, survey research design was employed to investigate the contextual and personal factors that could predict academic resilience among female undergraduates in Boko Haram Neighbourhood in North-Eastern, Nigeria. Five hundred and thirty female students with age range of 18 to 24 years ( = 19.2; SD=6.9) were randomly drawn from 3 Universities in North-Eastern Nigeria. They responded to five instruments, namely; Academic Resilience scale (r=0.72); Social Support questionnaire (r=0. 64); Social Connectedness questionnaire (r=0.75); Self-Efficacy scale (r=0. 68) and Emotional Regulation questionnaire (r=78). Results showed that there was significant positive relationship between the four independent variables and academic resilience. The variables jointly contributed 5.9% variance in the prediction of academic resilience. In terms of magnitude, social support was most potent while self-efficacy was the least. It concluded that the factors considered in this study are academic resilience facilitators. The outcomes of the study have both theoretical and practical implications.

Keywords: academic resilience, emotional regulation, school connectedness, self-efficacy , social support

Procedia PDF Downloads 209
8669 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment

Authors: Rouzbeh Jafari, Joe Nava

Abstract:

This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.

Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy

Procedia PDF Downloads 110
8668 Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients

Authors: Francesco Pantano, Marta Fogolari, Michele Iuliani, Sonia Simonetti, Silvia Cavaliere, Marco Russano, Fabrizio Citarella, Bruno Vincenzi, Silvia Angeletti, Giuseppe Tonini

Abstract:

Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress.

Keywords: oral microbiota, immune checkpoint inhibitors, non-small cell lung cancer, predictive biomarker

Procedia PDF Downloads 97
8667 Existential Concerns and Related Manifestations of Higher Learning Institution Students in Ethiopia: A Case Study of Aksum University

Authors: Ezgiamn Abraha Hagos

Abstract:

The primary objective of this study was to assess the existential concerns and related manifestations of higher learning students by investigating their perception of meaningful life and evaluating their purpose in life. In addition, this study was aimed at assessing the manifestations of existential pain among the students. Data was procured using Purpose in Life test (PIL), Well-being Manifestation Measure Scale (WBMMS), and focus group discussion. The total numbers of participants was 478, of which 299 were males and the remaining 179 females. They were selected using a simple random sampling technique. Data was analyzed using two ways. SPSS-version 20 was used to analyze the quantitative part, and narrative modes were utilized to analyze the qualitative data. The research finding revealed that students are involved in risk taking behaviors like alcohol ingestion, drug use, Khat (chat) chewing, and unsafe sex. In line with this it is found out that life in campus was perceived as temporary and as a result the sense of hedonism was prevalent at any cost. Of course, the most important thing for the majority of the students was to know about the purpose of life. Regarding WBMMS, there was no statistically significant difference among males and females and with the exception of the sub-scale of happiness; in all the sub-scales the mean is low. At last, assisting adolescents to develop holistically in terms of body, mind, and spirit is recommended.

Keywords: existential concerns, higher learning institutions, Ethiopia, Aksum University

Procedia PDF Downloads 427
8666 The Moment of the Optimal Average Length of the Multivariate Exponentially Weighted Moving Average Control Chart for Equally Correlated Variables

Authors: Edokpa Idemudia Waziri, Salisu S. Umar

Abstract:

The Hotellng’s T^2 is a well-known statistic for detecting a shift in the mean vector of a multivariate normal distribution. Control charts based on T have been widely used in statistical process control for monitoring a multivariate process. Although it is a powerful tool, the T statistic is deficient when the shift to be detected in the mean vector of a multivariate process is small and consistent. The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is one of the control statistics used to overcome the drawback of the Hotellng’s T statistic. In this paper, the probability distribution of the Average Run Length (ARL) of the MEWMA control chart when the quality characteristics exhibit substantial cross correlation and when the process is in-control and out-of-control was derived using the Markov Chain algorithm. The derivation of the probability functions and the moments of the run length distribution were also obtained and they were consistent with some existing results for the in-control and out-of-control situation. By simulation process, the procedure identified a class of ARL for the MEWMA control when the process is in-control and out-of-control. From our study, it was observed that the MEWMA scheme is quite adequate for detecting a small shift and a good way to improve the quality of goods and services in a multivariate situation. It was also observed that as the in-control average run length ARL0¬ or the number of variables (p) increases, the optimum value of the ARL0pt increases asymptotically and as the magnitude of the shift σ increases, the optimal ARLopt decreases. Finally, we use the example from the literature to illustrate our method and demonstrate its efficiency.

Keywords: average run length, markov chain, multivariate exponentially weighted moving average, optimal smoothing parameter

Procedia PDF Downloads 422
8665 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump

Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun

Abstract:

A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.

Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation

Procedia PDF Downloads 304
8664 Development and Validation of High-Performance Liquid Chromatography Method for the Determination and Pharmacokinetic Study of Linagliptin in Rat Plasma

Authors: Hoda Mahgoub, Abeer Hanafy

Abstract:

Linagliptin (LNG) belongs to dipeptidyl-peptidase-4 (DPP-4) inhibitor class. DPP-4 inhibitors represent a new therapeutic approach for the treatment of type 2 diabetes in adults. The aim of this work was to develop and validate an accurate and reproducible HPLC method for the determination of LNG with high sensitivity in rat plasma. The method involved separation of both LNG and pindolol (internal standard) at ambient temperature on a Zorbax Eclipse XDB C18 column and a mobile phase composed of 75% methanol: 25% formic acid 0.1% pH 4.1 at a flow rate of 1.0 mL.min-1. UV detection was performed at 254nm. The method was validated in compliance with ICH guidelines and found to be linear in the range of 5–1000ng.mL-1. The limit of quantification (LOQ) was found to be 5ng.mL-1 based on 100µL of plasma. The variations for intra- and inter-assay precision were less than 10%, and the accuracy values were ranged between 93.3% and 102.5%. The extraction recovery (R%) was more than 83%. The method involved a single extraction step of a very small plasma volume (100µL). The assay was successfully applied to an in-vivo pharmacokinetic study of LNG in rats that were administered a single oral dose of 10mg.kg-1 LNG. The maximum concentration (Cmax) was found to be 927.5 ± 23.9ng.mL-1. The area under the plasma concentration-time curve (AUC0-72) was 18285.02 ± 605.76h.ng.mL-1. In conclusion, the good accuracy and low LOQ of the bioanalytical HPLC method were suitable for monitoring the full pharmacokinetic profile of LNG in rats. The main advantages of the method were the sensitivity, small sample volume, single-step extraction procedure and the short time of analysis.

Keywords: HPLC, linagliptin, pharmacokinetic study, rat plasma

Procedia PDF Downloads 241
8663 Performance Evaluation of a Small Microturbine Cogeneration Functional Model

Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag

Abstract:

The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.

Keywords: cogeneration, microturbine, performance, thermodynamic analysis

Procedia PDF Downloads 169
8662 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method

Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai

Abstract:

In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.

Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon

Procedia PDF Downloads 161
8661 The Exploitation of the MOSES Project Outcomes on Supply Chain Optimisation

Authors: Reza Karimpour

Abstract:

Ports play a decisive role in the EU's external and internal trade, as about 74% of imports and exports and 37% of exchanges go through ports. Although ports, especially Deep Sea Shipping (DSS) ports, are integral nodes within multimodal logistic flows, Short Sea Shipping (SSS) and inland waterways are not so well integrated. The automated vessels and supply chain optimisations for sustainable shortsea shipping (MOSES) project aims to enhance the short sea shipping component of the European supply chain by addressing the vulnerabilities and strains related to the operation of large containerships. The MOSES concept can be shortly described as a large containership (mother-vessel) approaching a DSS port (or a large container terminal). Upon her arrival, a combined intelligent mega-system consisting of the MOSES Autonomous tugboat swarm for manoeuvring and the MOSES adapted AutoMoor system. Then, container handling processes are ready to start moving containers to their destination via hinterland connections (trucks and/or rail) or to be shipped to destinations near small ports (on the mainland or island). For the first case, containers are stored in a dedicated port area (Storage area), waiting to be moved via trucks and/or rail. For the second case, containers are stacked by existing port equipment near-dedicated berths of the DSS port. They then are loaded on the MOSES Innovative Feeder Vessel, equipped with the MOSES Robotic Container-Handling System that provides (semi-) autonomous (un) feeding of the feeder. The Robotic Container-Handling System is remotely monitored through a Shore Control Centre. When the MOSES innovative Feeder vessel approaches the small port, where her docking is achieved without tugboats, she automatically unloads the containers using the Robotic Container-Handling System on the quay or directly on trucks. As a result, ports with minimal or no available infrastructure may be effectively integrated with the container supply chain. Then, the MOSES innovative feeder vessel continues her voyage to the next small port, or she returns to the DSS port. MOSES exploitation activity mainly aims to exploit research outcomes beyond the project, facilitate utilisation of the pilot results by others, and continue the pilot service after the project ends. By the mid-lifetime of the project, the exploitation plan introduces the reader to the MOSES project and its key exploitable results. It provides a plan for delivering the MOSES innovations to the market as part of the overall exploitation plan.

Keywords: automated vessels, exploitation, shortsea shipping, supply chain

Procedia PDF Downloads 110
8660 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen

Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su

Abstract:

Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.

Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen

Procedia PDF Downloads 309
8659 Effect of Organizational Competitive Climate on Organizational Prosocial Behavior: Workplace Envy as a Mediator

Authors: Armaghan Eslami, Nasrin Arshadi

Abstract:

Scarce resources are the inseparable part of organization life. This fact that only small number of the employees can have these resources such as promotion, raise, and recognition can cause competition among employees, which create competitive climate. As well as any other competition, small number wins the reward, and a great number loses, one of the possible emotional reactions to this loss is negative emotions like malicious envy. In this case, the envious person may try to harm the envied person by reducing the prosocial behavior. Prosocial behavior is a behavior that aimed to benefit others. The main propose of this action is to maintain and increase well-being and well-fare of others. Therefore, one of the easiest ways for harming envied one is to suppress prosocial behavior. Prosocial behavior has positive and important implication for organizational efficiency. Our results supported our model and suggested that competitive climate has a significant effect on increasing workplace envy and on the other hand envy has significant negative impact on prosocial behavior. Our result also indicated that envy is the mediator in the relation between competitive climate and prosocial behavior. Organizational competitive climate can cause employees respond envy with negative emotion and hostile and damaging behavior toward envied person. Competition can lead employees to look out for proof of their self-worthiness; and, furthermore, they measure their self-worth, value and respect by the superiority that they gain in competitions. As a result, loss in competitions can harm employee’s self-definition and they try to protect themselves by devaluating envied other and being ‘less friendly’ to them. Some employees may find it inappropriate to engage in the harming behavior, but they may believe there is nothing against withholding the prosocial behavior.

Keywords: competitive climate, mediator, prosocial behavior, workplace envy

Procedia PDF Downloads 362
8658 The Preceptorship Experience and Clinical Competence of Final Year Nursing Students

Authors: Susan Ka Yee Chow

Abstract:

Effective clinical preceptorship is affecting students’ competence and fostering their growth in applying theoretical knowledge and skills in clinical settings. Any difference between the expected and actual learning experience will reduce nursing students’ interest in clinical practices and having a negative consequence with their clinical performance. This cross-sectional study is an attempt to compare the differences between preferred and actual preceptorship experience of final year nursing students, and to examine the relationship between the actual preceptorship experience and perceived clinical competence of the students in a tertiary institution. Participants of the study were final year bachelor nursing students of a self-financing tertiary institution in Hong Kong. The instruments used to measure the effectiveness of clinical preceptorship was developed by the participating institution. The scale consisted of five items in a 5-point likert scale. The questions including goals development, critical thinking, learning objectives, asking questions and providing feedback to students. The “Clinical Competence Questionnaire” by Liou & Cheng (2014) was used to examine students’ perceived clinical competences. The scale consisted of 47 items categorized into four domains, namely nursing professional behaviours; skill competence: general performance; skill competence: core nursing skills and skill competence: advanced nursing skills. There were 193 questionnaires returned with a response rate of 89%. The paired t-test was used to compare the differences between preferred and actual preceptorship experiences of students. The results showed significant differences (p<0.001) for the five questions. The mean for the preferred scores is higher than the actual scores resulting statistically significance. The maximum mean difference was accepted goal and the highest mean different was giving feedback. The Pearson Correlation Coefficient was used to examine the relationship. The results showed moderate correlations between nursing professional behaviours with asking questions and providing feedback. Providing useful feedback to students is having moderate correlations with all domains of the Clinical Competence Questionnaire (r=0.269 – 0.345). It is concluded that nursing students do not have a positive perception of the clinical preceptorship. Their perceptions are significantly different from their expected preceptorship. If students were given more opportunities to ask questions in a pedagogical atmosphere, their perceived clinical competence and learning outcomes could be improved as a result.

Keywords: clinical preceptor, clinical competence, clinical practicum, nursing students

Procedia PDF Downloads 127
8657 A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection

Authors: Waddah Abdelbagi Talha, Mohammed Abdullah Elmaleeh, John Ojur Dennis

Abstract:

This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined.

Keywords: resonant frequency, sensitivity, Wheatstone bridge, UNO-microcontroller

Procedia PDF Downloads 127
8656 Mental Well-Being and Quality of Life: A Comparative Study of Male Leather Tannery and Non-Tannery Workers of Kanpur City, India

Authors: Gyan Kashyap, Shri Kant Singh

Abstract:

Improved mental health can be articulated as a good physical health and quality of life. Mental health plays an important role in survival of any one’s life. In today’s time people living with stress in life due to their personal matters, health problems, unemployment, work environment, living environment, substance use, life style and many more important reasons. Many studies confirmed that the significant proportion of mental health people increasing in India. This study is focused on mental well-being of male leather tannery workers in Kanpur city, India. Environment at work place as well as living environment plays an important health risk factors among leather tannery workers. Leather tannery workers are more susceptible to many chemicals and physical hazards, just because they are liable to be affected by their exposure to lots of hazardous materials and processes during tanning work in very hazardous work environment. The aim of this study to determine the level of mental health disorder and quality of life among male leather tannery and non-tannery workers in Kanpur city, India. This study utilized the primary data from the cross- sectional household study which was conducted from January to June, 2015 on tannery and non-tannery workers as a part of PhD program from the Jajmau area of Kanpur city, India. The sample of 286 tannery and 295 non-tannery workers has been collected from the study area. We have collected information from the workers of age group 15-70 those who were working at the time of survey for at least one year. This study utilized the general health questionnaire (GHQ-12) and work related stress scale to test the mental wellbeing of male tannery and non-tannery workers. By using GHQ-12 and work related stress scale, Polychoric factor analysis method has been used for best threshold and scoring. Some of important question like ‘How would you rate your overall quality of life’ on Likert scale to measure the quality of life, their earnings, education, family size, living condition, household assets, media exposure, health expenditure, treatment seeking behavior and food habits etc. Results from the study revealed that around one third of tannery workers had severe mental health problems then non-tannery workers. Mental health problem shown the statistically significant association with wealth quintile, 56 percent tannery workers had severe mental health problem those belong to medium wealth quintile. And 42 percent tannery workers had moderate mental health problem among those from the low wealth quintile. Work related stress scale found the statistically significant results for tannery workers. Large proportion of tannery and non-tannery workers reported they are unable to meet their basic needs from their earnings and living in worst condition. Important result from the study, tannery workers who were involved in beam house work in tannery (58%) had severe mental health problem. This study found the statistically significant association with tannery work and mental health problem among tannery workers.

Keywords: GHQ-12, mental well-being, factor analysis, quality of life, tannery workers

Procedia PDF Downloads 387
8655 Grit and Psychological Well-Being Among Elite Wushu Players

Authors: Guneet Inder Jit Kaur, Kuldeep Singh, Sunil G. Purohit

Abstract:

Being a collective phrase for Martial arts that originated from China, Wushu is a form of self-defense and an international (Olympic) sport. Having emerged as a competitive sport, the competitions are generally in two disciplines in Wushu, namely ‘taolu,’ which refers to the forms, and ‘sanda’, which refers to the sparring. Indeed, the competition at the elite level is challenging more mentally than physically. Being masters of their games, excellence at that level is immensely defined by the mental strength characterized by perseverance and passion (grit) along with the psychological wellbeing. Thus, research attempting to understand this relationship is important. The present study was aimed to investigate the relationship between grit and psychological wellbeing among elite Wushu players. The sample of the present study comprised of 35 elite wushu players from India. Out of the 35 players, 16 were females (45.7%), and 19 were males (54.3%), and all had represented at the National and International level. 14 players were from the event of Taolu, and 21 players were from the event of Sanda. The questionnaires used were the short grit scale (Duckworth & Quinn, 2009) and the flourishing scale for psychological wellbeing (Diener et. al., 2009). The statistics included Descriptive (Mean, Standard deviation) and Inferential analysis (correlation). The results highlighted the relationship between the two variables. The insights gained from this study indeed seem immensely helpful in adding to the research of the psychological profile of Elite wushu players and has implications for psychological interventions and mental training for the players.

Keywords: wushu, elite athletes, grit, psychological wellbeing, excellence

Procedia PDF Downloads 114
8654 Quality of Life of Women with Breast Cancer and Its Correlation with Depression and Anxiety

Authors: Maria Malliarou, Efrossini Lyraraki, Pavlos Sarafis, Theodosios Paralikas, Styliani Kotrotsiou, Evangelia Kotrotsiou, Mairy Gouva

Abstract:

Women with breast cancer have to adapt to physical malformations, side effects of chemotherapy, emotional insecurity, and changes in social roles. Inability to recognize the co-morbidity of psychiatric conditions can have an aggravating effect on patient compliance in therapeutic interventions, resulting in treatment delays and an impact on overall survival. The purpose of this study was to identify the quality of life of breast cancer patients undergoing external radiation therapy and to correlate it with depression and anxiety. Patients were asked to respond to an anonymous questionnaire with general demographic and clinical questions, followed by the EORTCQLQ-C30 questionnaire for assessing the quality of life of patients with breast cancer. Hospital Anxiety and Depression Scale (HADS) as well as the Depression, Anxiety and Stress Scale (DASS-21) was also administered. The statistical analysis of the data was done in IBM SPSS. Results indicated that the incidence of anxiety and depression in breast cancer patients is high both in HADS (37.5 % with mild to moderate depression and 62.5 % with significant to severe depression) and DASS - 21 (39.2 % mild to moderate depression and 60.8 % significant to severe) scales. The correlation of anxiety and depression with life quality was negative for HADS (r = -, 810, p = .000) as well as for DASS-21 (r = -, 682, p = .000). The psychological impact of breast cancer on patients is important. Its correlation with the quality of life may lead to better tolerance to treatment and better effectiveness of the therapeutic approach.

Keywords: anxiety, breast cancer, depression, quality of life

Procedia PDF Downloads 267
8653 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn

Authors: S. Chaudhuri, P. A. Bhobe

Abstract:

Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.

Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions

Procedia PDF Downloads 139