Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3916

# Search results for: optimal smoothing parameter

##### 3916 Markov-Chain-Based Optimal Filtering and Smoothing

Authors: Garry A. Einicke, Langford B. White

Abstract:

This paper describes an optimum filter and smoother for recovering a Markov process message from noisy measurements. The developments follow from an equivalence between a state space model and a hidden Markov chain. The ensuing filter and smoother employ transition probability matrices and approximate probability distribution vectors. The properties of the optimum solutions are retained, namely, the estimates are unbiased and minimize the variance of the output estimation error, provided that the assumed parameter set are correct. Methods for estimating unknown parameters from noisy measurements are discussed. Signal recovery examples are described in which performance benefits are demonstrated at an increased calculation cost.

Keywords: optimal filtering, smoothing, Markov chains

##### 3915 Solving Optimal Control of Semilinear Elliptic Variational Inequalities Obstacle Problems using Smoothing Functions

Abstract:

In this paper, we investigate optimal control problems governed by semilinear elliptic variational inequalities involving constraints on the state, and more precisely, the obstacle problem. We present a relaxed formulation for the problem using smoothing functions. Since we adopt a numerical point of view, we first relax the feasible domain of the problem, then using both mathematical programming methods and penalization methods, we get optimality conditions with smooth Lagrange multipliers. Some numerical experiments using IPOPT algorithm (Interior Point Optimizer) are presented to verify the efficiency of our approach. Downloads 51
##### 3914 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods

Abstract:

The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates. Downloads 282
##### 3913 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller

Abstract:

In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method. Downloads 286
##### 3912 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models

Abstract:

This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach. Downloads 37
##### 3911 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart

Authors: Yupaporn Areepong

Abstract:

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1). Downloads 439
##### 3910 Estimation of Train Operation Using an Exponential Smoothing Method

Abstract:

The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid. Downloads 298
##### 3909 Upon One Smoothing Problem in Project Management

Authors: Dimitri Golenko-Ginzburg

Abstract:

A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm. Downloads 213
##### 3908 Investigation of Optimal Parameter Settings in Super Duplex Stainless Steel Welding Welding

Abstract:

Super steel materials play vital role in construction and fabrication of structural, piping and pipeline components. They enable to minimize the life cycle costs in assuring the integrity of onshore and offshore operating systems. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications play a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, the factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process play a vital role on the final joint performance. Hence, an experimental investigation has been performed using engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of verification experiment. Downloads 318
##### 3907 Using “Eckel” Model to Measure Income Smoothing Practices: The Case of French Companies

Authors: Feddaoui Amina

Abstract:

Income smoothing represents an attempt on the part of the company's management to reduce variations in earnings through the manipulation of the accounting principles. In this study, we aimed to measure income smoothing practices in a sample of 30 French joint stock companies during the period (2007-2009), we used Dummy variables method and “ECKEL” model to measure income smoothing practices and Binomial test accourding to SPSS program, to confirm or refute our hypothesis. This study concluded that there are no significant statistical indicators of income smoothing practices in the sample studied of French companies during the period (2007-2009), so the income series in the same sample studied of is characterized by stability and non-volatility without any intervention of management through accounting manipulation. However, this type of accounting manipulation should be taken into account and efforts should be made by control bodies to apply Eckel model and generalize its use at the global level.

Keywords: income, smoothing, 'Eckel', French companies

##### 3906 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets. Downloads 307
##### 3905 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model

Authors: Autcha Araveeporn

Abstract:

This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method. Downloads 272
##### 3904 Dividends Smoothing in an Era of Unclaimed Dividends: A Panel Data Analysis in Nigeria

Authors: Apedzan Emmanuel Kighir

Abstract:

This research investigates dividends smoothing among non-financial companies trading on the Nigerian Stock Exchange in an era of unclaimed dividends from 2004 to 2013. There has been a raging controversy among Regulatory Authorities, Company Executives, Registrars of Companies, Shareholders and the general public regarding the increasing incidence of unclaimed dividends in Nigeria. The objective of this study is to find out if corporate earnings management through dividends smoothing is implicated in unclaimed dividends among Nigerian non-financial firms. The research used panel data and employed Generalized Method of Moment as method of analysis. The research finds evidence of dividends-smoothing in this era of unclaimed dividends in Nigeria. The research concludes that dividends-smoothing is a trigger and red flag for unclaimed dividends, an output of earnings management. If earnings management and hence unclaimed dividends in Nigeria is allowed to continue, it will lead to great consequences to the investors and corporate policy of government. It is believed that the research will assist investors and government in making informed decisions regarding dividends policy in Nigeria. Downloads 200
##### 3903 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing

Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama

Abstract:

We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power. Downloads 359
##### 3902 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified. Downloads 400
##### 3901 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology

Authors: Joseph C. Chen, Venkata Karthik Jakka

Abstract:

The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes. Downloads 77
##### 3900 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased. Downloads 106
##### 3899 The Moment of the Optimal Average Length of the Multivariate Exponentially Weighted Moving Average Control Chart for Equally Correlated Variables

Authors: Edokpa Idemudia Waziri, Salisu S. Umar

Abstract:

The Hotellng’s T^2 is a well-known statistic for detecting a shift in the mean vector of a multivariate normal distribution. Control charts based on T have been widely used in statistical process control for monitoring a multivariate process. Although it is a powerful tool, the T statistic is deficient when the shift to be detected in the mean vector of a multivariate process is small and consistent. The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is one of the control statistics used to overcome the drawback of the Hotellng’s T statistic. In this paper, the probability distribution of the Average Run Length (ARL) of the MEWMA control chart when the quality characteristics exhibit substantial cross correlation and when the process is in-control and out-of-control was derived using the Markov Chain algorithm. The derivation of the probability functions and the moments of the run length distribution were also obtained and they were consistent with some existing results for the in-control and out-of-control situation. By simulation process, the procedure identified a class of ARL for the MEWMA control when the process is in-control and out-of-control. From our study, it was observed that the MEWMA scheme is quite adequate for detecting a small shift and a good way to improve the quality of goods and services in a multivariate situation. It was also observed that as the in-control average run length ARL0¬ or the number of variables (p) increases, the optimum value of the ARL0pt increases asymptotically and as the magnitude of the shift σ increases, the optimal ARLopt decreases. Finally, we use the example from the literature to illustrate our method and demonstrate its efficiency. Downloads 300
##### 3898 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Abstract:

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made. Downloads 85
##### 3897 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Abstract:

A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method. Downloads 252
##### 3896 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

##### 3895 Condition Optimization for Trypsin and Chymotrypsin Activities in Economic Animals

Abstract:

For animals, trypsin and chymotrypsin are the 2 proteases that play the important role in protein digestion and involving in growth rate. In many animals, these two enzymes are indicated as growth parameter by feed. Although enzyme assay at optimal condition is significant for its accuracy activity determination. There is less report of trypsin and chymotrypsin. Therefore, in this study, optimization of pH and temperature for trypsin (T) and chymotrypsin (C) in economic species; i.e. Nile tilapia (Oreochromis niloticus), sand goby (Oxyeleotoris marmoratus), giant freshwater prawn (Macrobachium rosenberchii) and native chicken (Gallus gallus) were investigated. Each enzyme of each species was assaying for its specific activity with variation of pH in range of 2-12 and temperature in range of 30-80 °C. It revealed that, for Nile tilapia, T had optimal condition at pH 9 and temperature 50-80 °C, whereas C had optimal condition at pH 8 and temperature 60 °C. For sand goby, T had optimal condition at pH 7 and temperature of 50 °C, while C had optimal condition at pH 11 and temperature of 70-75 °C. For juvenile freshwater prawn, T had optimal condition at pH 10-11 and temperature of 60-65 °C, C had optimal condition at pH 8 and temperature of 70°C. For starter native chicken, T has optimal condition at pH 7 and temperature of 70 °C, whereas C had o optimal condition at pH 8 and temperature of 60°C. This information of optimal conditions will be high valuable in further for, actual enzyme measurement of T and C activities that benefit for growth and feed analysis. Downloads 175
##### 3894 Statistical and Land Planning Study of Tourist Arrivals in Greece during 2005-2016

Authors: Dimitra Alexiou

Abstract:

During the last 10 years, in spite of the economic crisis, the number of tourists arriving in Greece has increased, particularly during the tourist season from April to October. In this paper, the number of annual tourist arrivals is studied to explore their preferences with regard to the month of travel, the selected destinations, as well the amount of money spent. The collected data are processed with statistical methods, yielding numerical and graphical results. From the computation of statistical parameters and the forecasting with exponential smoothing, useful conclusions are arrived at that can be used by the Greek tourism authorities, as well as by tourist organizations, for planning purposes for the coming years. The results of this paper and the computed forecast can also be used for decision making by private tourist enterprises that are investing in Greece. With regard to the statistical methods, the method of Simple Exponential Smoothing of time series of data is employed. The search for a best forecast for 2017 and 2018 provides the value of the smoothing coefficient. For all statistical computations and graphics Microsoft Excel is used. Downloads 150
##### 3893 Quantile Smoothing Splines: Application on Productivity of Enterprises

Authors: Semra Turkan

Abstract:

In this paper, we have examined the factors that affect the productivity of Turkey’s Top 500 Industrial Enterprises in 2014. The labor productivity of enterprises is taken as an indicator of productivity of industrial enterprises. When the relationships between some financial ratios and labor productivity, it is seen that there is a nonparametric relationship between labor productivity and return on sales. In addition, the distribution of labor productivity of enterprises is right-skewed. If the dependent distribution is skewed, the quantile regression is more suitable for this data. Hence, the nonparametric relationship between labor productivity and return on sales by quantile smoothing splines. Downloads 170
##### 3892 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions. Downloads 220
##### 3891 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development. Downloads 177
##### 3890 Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric

Abstract:

Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree. Downloads 466
##### 3889 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: MMR, TWR, OC, DOE, ANOVA, minitab