Search results for: metallurgical image processing
3301 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 2623300 Irradion: Portable Small Animal Imaging and Irradiation Unit
Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek
Abstract:
In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging
Procedia PDF Downloads 903299 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine
Authors: Adriana Haulica
Abstract:
Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics
Procedia PDF Downloads 703298 Microstructural and Tribological Properties of Thermally Sprayed High Entropy Alloys Coating
Authors: Abhijith N. V., Abhijit Pattnayak, Deepak Kumar
Abstract:
Nowadays, a group of alloys, namely high entropy alloys (HEA), because of their excellent properties. However, the fabrication of HEAs requires multistage techniques, especially mill-ing, sieving, compaction, sintering, inert media, etc. These processes are laborious, costly, time-oriented, and unsuitable for commercial application. This study adopted a single-stage process-based HVOF thermal spray to develop HEA coating on SS304L substrates. The wear behavior of the deposited HEA coating was explored under different milling time durations (5h, 10h, and 15h, respectively). The effect of feedstock preparation, microstructure, surface chemistry, and mechanical and metallurgical properties on wear resistance was also investigated. The microstructure and composition of both coating and feedstock were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Finally, the phase distribution was correlated by X-ray diffraction (XRD ) analysis. The results showed that 15h milled powder coating indicated better tribological than the base substrate and 5h,10h milled powder coating. A chemically stable Body Centered Cubic (BCC) solid solution phase was generated within the 15h milled powder-coated system, which resulted in superior tribological properties.Keywords: high entropy alloys coating, wear mechanism, HVOF coating, microstructure
Procedia PDF Downloads 983297 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes
Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert
Abstract:
The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry
Procedia PDF Downloads 893296 Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring
Authors: Zohra Aziz Ali Manjiyani, Renju Thomas Jacob, Keerthan Kumar
Abstract:
This project develops a hand movement monitoring system, which feeds the data into the computer and gives the 3D image rotation according to the direction of the tilt and hence monitoring the movement of the hand in context to its tilt. Advancement of MEMS Technology has enabled us to get very small and low-cost accelerometer ICs which is based on capacitive principle. Accelerometer based Tilt sensor ADXL335 is used in this paper, based on MEMS technology and the project emphasis on the development of the MEMS-based accelerometer to measure the tilt, interfacing the hardware with the LabVIEW and showing the 3D rotation to the user, which is in his understandable form and tilt data can be saved in the computer. It provides an experience of working on emerging technologies like MEMS and design software like LabVIEW.Keywords: MEMS accelerometer, tilt sensor ADXL335, LabVIEW simulation, 3D animation
Procedia PDF Downloads 5163295 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 5753294 Young People’s Perceptions of Disability: The New Generation’s View of a Public Seen as Vulnerable and Marginalized
Authors: Ulysse Lecomte, Maryline Thenot
Abstract:
For a long time, disabled people lived in isolation within the family environment, with little interaction with the outside world and a high risk of social exclusion. However, in a number of countries, progress has been made thanks to changes in legislation on the social integration of disabled people, a significant change in attitudes, and the development of CSR. But the problem of their social, economic, and professional exclusion persists and has been further exacerbated by the COVID-19 pandemic. This societal phenomenon is sufficiently important to be the subject of management science research. We have therefore focused our work on society's current perception of people with disabilities and their possible integration. Our aim is to find out what levers could be put in place to bring about positive change in the situation. We have chosen to focus on the perception of young people in France, who are the new generation responsible for the future of our society and from whom tomorrow's decisionmakers, future employers, and stakeholders who can influence the living conditions of disabled people will be drawn. Our study sample corresponds to the 18-30 age group, which is the population of young adults likely to have sufficient experience and maturity. The aim of this study is not only to find out how this population currently perceives disability but also to identify the factors influencing this perception and the most effective levers for action to act positively on this phenomenon and thus promote better social integration of people with disabilities in the future. The methodology is based on theoretical and empirical research. The literature review includes a historical and etymological approach to disability, a definition of the different concepts of disability, an approach to disability as a vector of social exclusion, and the role of perception and representations in defining the social image of disability. This literature review is followed by an empirical part carried out by means of a questionnaire administered to 110 young people aged 18 to 30. Analysis of our results suggests that, despite a recent improvement, disabled people are still perceived as vulnerable and socially marginalised. The following factors stand out as having a significant influence (positive or negative) on the perception of disability: the individual's familiarity with the 'world of disability', cultural factors, the degree of 'visibility' of the disability and the empathy level of the disabled person him/herself. Others, on the other hand, such as socio-political and economic factors, have little impact on this perception. In addition, it is possible to classify the various levers of action likely to improve the social perception of disability according to their degree of effectiveness. Our study population prioritised training initiatives for the various players and stakeholders (teachers, students, disabled people themselves, companies, sports clubs, etc.). This was followed by communication, ecommunication and media campaigns in favour of disability. Lastly, the sample was judged as 'less effective' positive discrimination actions such as setting a minimum percentage for the representation of disabled people in various fields (studies, employment, politics ...).Keywords: disability, perception, social image, young people, influencing factors, levers for action
Procedia PDF Downloads 323293 Replication of Meaningful Gesture Study for N400 Detection Using a Commercial Brain-Computer Interface
Authors: Thomas Ousterhout
Abstract:
In an effort to test the ability of a commercial grade EEG headset to effectively measure the N400 ERP, a replication study was conducted to see if similar results could be produced as that which used a medical grade EEG. Pictures of meaningful and meaningless hand postures were borrowed from the original author and subjects were required to perform a semantic discrimination task. The N400 was detected indicating semantic processing of the meaningfulness of the hand postures. The results corroborate those of the original author and support the use of some commercial grade EEG headsets for non-critical research applications.Keywords: EEG, ERP, N400, semantics, congruency, gestures, emotiv
Procedia PDF Downloads 2633292 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members
Authors: I. Gkolfinopoulos, N. Chijiwa
Abstract:
To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon
Procedia PDF Downloads 1473291 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1613290 Assessment and Forecasting of the Impact of Negative Environmental Factors on Public Health
Authors: Nurlan Smagulov, Aiman Konkabayeva, Akerke Sadykova, Arailym Serik
Abstract:
Introduction. Adverse environmental factors do not immediately lead to pathological changes in the body. They can exert the growth of pre-pathology characterized by shifts in physiological, biochemical, immunological and other indicators of the body state. These disorders are unstable, reversible and indicative of body reactions. There is an opportunity to objectively judge the internal structure of the adaptive body reactions at the level of individual organs and systems. In order to obtain a stable response of the body to the chronic effects of unfavorable environmental factors of low intensity (compared to production environment factors), a time called the «lag time» is needed. The obtained results without considering this factor distort reality and, for the most part, cannot be a reliable statement of the main conclusions in any work. A technique is needed to reduce methodological errors and combine mathematical logic using statistical methods and a medical point of view, which ultimately will affect the obtained results and avoid a false correlation. Objective. Development of a methodology for assessing and predicting the environmental factors impact on the population health considering the «lag time.» Methods. Research objects: environmental and population morbidity indicators. The database on the environmental state was compiled from the monthly newsletters of Kazhydromet. Data on population morbidity were obtained from regional statistical yearbooks. When processing static data, a time interval (lag) was determined for each «argument-function» pair. That is the required interval, after which the harmful factor effect (argument) will fully manifest itself in the indicators of the organism's state (function). The lag value was determined by cross-correlation functions of arguments (environmental indicators) with functions (morbidity). Correlation coefficients (r) and their reliability (t), Fisher's criterion (F) and the influence share (R2) of the main factor (argument) per indicator (function) were calculated as a percentage. Results. The ecological situation of an industrially developed region has an impact on health indicators, but it has some nuances. Fundamentally opposite results were obtained in the mathematical data processing, considering the «lag time». Namely, an expressed correlation was revealed after two databases (ecology-morbidity) shifted. For example, the lag period was 4 years for dust concentration, general morbidity, and 3 years – for childhood morbidity. These periods accounted for the maximum values of the correlation coefficients and the largest percentage of the influencing factor. Similar results were observed in relation to the concentration of soot, dioxide, etc. The comprehensive statistical processing using multiple correlation-regression variance analysis confirms the correctness of the above statement. This method provided the integrated approach to predicting the degree of pollution of the main environmental components to identify the most dangerous combinations of concentrations of leading negative environmental factors. Conclusion. The method of assessing the «environment-public health» system (considering the «lag time») is qualitatively different from the traditional (without considering the «lag time»). The results significantly differ and are more amenable to a logical explanation of the obtained dependencies. The method allows presenting the quantitative and qualitative dependence in a different way within the «environment-public health» system.Keywords: ecology, morbidity, population, lag time
Procedia PDF Downloads 813289 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids
Authors: Ayalew Yimam Ali
Abstract:
The Y-shaped microchannel system is used to mix up low or high viscosities of different fluids, and the laminar flow with high-viscous water-glycerol fluids makes the mixing at the entrance Y-junction region a challenging issue. Acoustic streaming (AS) is time-average, a steady second-order flow phenomenon that could produce rolling motion in the microchannel by oscillating low-frequency range acoustic transducer by inducing acoustic wave in the flow field is the promising strategy to enhance diffusion mass transfer and mixing performance in laminar flow phenomena. In this study, the 3D trapezoidal Structure has been manufactured with advanced CNC machine cutting tools to produce the molds of trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm spine sharp-edge tip depth from PMMA glass (Polymethylmethacrylate) and the microchannel has been fabricated using PDMS (Polydimethylsiloxane) which could be grown-up longitudinally in Y-junction microchannel mixing region top surface to visualized 3D rolling steady acoustic streaming and mixing performance evaluation using high-viscous miscible fluids. The 3D acoustic streaming flow patterns and mixing enhancement were investigated using the micro-particle image velocimetry (μPIV) technique with different spine depth lengths, channel widths, high volume flow rates, oscillation frequencies, and amplitude. The velocity and vorticity flow fields show that a pair of 3D counter-rotating streaming vortices were created around the trapezoidal spine structure and observing high vorticity maps up to 8 times more than the case without acoustic streaming in Y-junction with the high-viscosity water-glycerol mixture fluids. The mixing experiments were performed by using fluorescent green dye solution with de-ionized water on one inlet side, de-ionized water-glycerol with different mass-weight percentage ratios on the other inlet side of the Y-channel and evaluated its performance with the degree of mixing at different amplitudes, flow rates, frequencies, and spine sharp-tip edge angles using the grayscale value of pixel intensity with MATLAB Software. The degree of mixing (M) characterized was found to significantly improved to 0.96.8% with acoustic streaming from 67.42% without acoustic streaming, in the case of 0.0986 μl/min flow rate, 12kHz frequency and 40V oscillation amplitude at y = 2.26 mm. The results suggested the creation of a new 3D steady streaming rolling motion with a high volume flow rate around the entrance junction mixing region, which promotes the mixing of two similar high-viscosity fluids inside the microchannel, which is unable to mix by the laminar flow with low viscous conditions.Keywords: nano fabrication, 3D acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement
Procedia PDF Downloads 333288 Topological Quantum Diffeomorphisms in Field Theory and the Spectrum of the Space-Time
Authors: Francisco Bulnes
Abstract:
Through the Fukaya conjecture and the wrapped Floer cohomology, the correspondences between paths in a loop space and states of a wrapping space of states in a Hamiltonian space (the ramification of field in this case is the connection to the operator that goes from TM to T*M) are demonstrated where these last states are corresponding to bosonic extensions of a spectrum of the space-time or direct image of the functor Spec, on space-time. This establishes a distinguished diffeomorphism defined by the mapping from the corresponding loops space to wrapping category of the Floer cohomology complex which furthermore relates in certain proportion D-branes (certain D-modules) with strings. This also gives to place to certain conjecture that establishes equivalences between moduli spaces that can be consigned in a moduli identity taking as space-time the Hitchin moduli space on G, whose dual can be expressed by a factor of a bosonic moduli spaces.Keywords: Floer cohomology, Fukaya conjecture, Lagrangian submanifolds, quantum topological diffeomorphism
Procedia PDF Downloads 3093287 Carbon Capture: Growth and Development of Membranes in Gas Sequestration
Authors: Sreevalli Bokka
Abstract:
Various technologies are emerging to capture or reduce carbon intensity from a gas stream, such as industrial effluent air and atmosphere. Of these technologies, filter membranes are emerging as a key player in carbon sequestering. The key advantages of these membranes are their high surface area and porosity. Fabricating a filter membrane that has high selectivity for carbon sequestration is challenging as material properties and processing parameters affect the membrane properties. In this study, the growth of the filter membranes and the critical material properties that impact carbon sequestration are presented.Keywords: membranes, filtration, separations, polymers, carbon capture
Procedia PDF Downloads 693286 Impulsivity Leads to Compromise Effect
Authors: Sana Maidullah, Ankita Sharma
Abstract:
The present study takes naturalistic decision-making approach to examine the role of personality in information processing in consumer decision making. In the technological era, most of the information comes in form of HTML or similar language via the internet; processing of this situation could be ambiguous, laborious and painful. The present study explores the role of impulsivity in creating an extreme effect on consumer decision making. Specifically, the study explores the role of impulsivity in extreme effect, i.e., extremeness avoidance (compromise effect) and extremeness seeking; the role of demographic variables, i.e. age and gender, in the relation between impulsivity and extreme effect. The study was conducted with the help of a questionnaire and two experiments. The experiment was designed in the form of two shopping websites with two product types: Hotel choice and Mobile choice. Both experimental interfaces were created with the Xampp software, the frontend of interfaces was HTML CSS JAVASCRIPT and backend was PHP MySQL. The mobile experiment was designed to measure the extreme effect and hotel experiment was designed to measure extreme effect with alignability of attributes. To observe the possibilities of the combined effect of individual difference and context effects, the manipulation of price, a number of alignable attributes and number of the non-alignable attributes is done. The study was conducted on 100 undergraduate and post-graduate engineering students within the age range of 18-35. The familiarity and level of use of internet and shopping website were assessed and controlled in the analysis. The analysis was done by using a t-test, ANOVA and regression analysis. The results indicated that the impulsivity leads to compromise effect and at the same time it also increases the relationship between alignability of attribute among choices and the compromise effect. The demographic variables were found to play a significant role in the relationship. The subcomponents of impulsivity were significantly influencing compromise effect, but the cognitive impulsivity was significant for women, and motor impulsivity was significant for males only. The impulsivity was significantly positively predicted by age, though there were no significant gender differences in impulsivity. The results clearly indicate the importance of individual factors in decision making. The present study, with precise and direct results, provides a significant suggestion for market analyst and business providers.Keywords: impulsivity, extreme effect, personality, alignability, consumer decision making
Procedia PDF Downloads 1893285 Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle
Authors: Jeyeon Kim
Abstract:
This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system.Keywords: unmanned aerial vehicle, automatic battery charging, positioning
Procedia PDF Downloads 3633284 Research of Concentratibility of Low Quality Bauxite Raw Materials
Authors: Nadezhda Nikolaeva, Tatyana Alexandrova, Alexandr Alexandrov
Abstract:
Processing of high-silicon bauxite on the base of the traditional clinkering method is related to high power consumption and capital investments, which makes production of alumina from those ores non-competitive in terms of basic economic showings. For these reasons, development of technological solutions enabling to process bauxites with various chemical and mineralogical structures efficiently with low level of thermal power consumption is important. Flow sheet of the studies on washability of ores from the Timanskoe and the Severo-Onezhskoe deposits is on the base of the flotation method.Keywords: low-quality bauxite, resource-saving technology, optimization, aluminum, conditioning of composition, separation characteristics
Procedia PDF Downloads 2903283 Childhood Sensory Sensitivity: A Potential Precursor to Borderline Personality Disorder
Authors: Valerie Porr, Sydney A. DeCaro
Abstract:
TARA for borderline personality disorder (BPD), an education and advocacy organization, helps families to compassionately and effectively deal with troubling BPD behaviors. Our psychoeducational programs focus on understanding underlying neurobiological features of BPD and evidence-based methodology integrating dialectical behavior therapy (DBT) and mentalization based therapy (MBT,) clarifying the inherent misunderstanding of BPD behaviors and improving family communication. TARA4BPD conducts online surveys, workshops, and topical webinars. For over 25 years, we have collected data from BPD helpline callers. This data drew our attention to particular childhood idiosyncrasies that seem to characterize many of the children who later met the criteria for BPD. The idiosyncrasies we observed, heightened sensory sensitivity and hypervigilance, were included in Adolf Stern’s 1938 definition of “Borderline.” This aspect of BPD has not been prioritized by personality disorder researchers, presently focused on emotion processing and social cognition in BPD. Parents described sleep reversal problems in infants who, early on, seem to exhibit dysregulation in circadian rhythm. Families describe children as supersensitive to sensory sensations, such as specific sounds, heightened sense of smell, taste, textures of foods, and an inability to tolerate various fabrics textures (i.e., seams in socks). They also exhibit high sensitivity to particular words and voice tones. Many have alexithymia and dyslexia. These children are either hypo- or hypersensitive to sensory sensations, including pain. Many suffer from fibromyalgia. BPD reactions to pain have been studied (C. Schmahl) and confirm the existence of hyper and hypo-reactions to pain stimuli in people with BPD. To date, there is little or no data regarding what comprises a normative range of sensitivity in infants and children. Many parents reported that their children were tested or treated for sensory processing disorder (SPD), learning disorders, and ADHD. SPD is not included in the DSM and is treated by occupational therapists. The overwhelming anecdotal data from thousands of parents of children who later met criteria for BPD led TARA4BPD to develop a sensitivity survey to develop evidence of the possible role of early sensory perception problems as a pre-cursor to BPD, hopefully initiating new directions in BPD research. At present, the research community seems unaware of the role supersensory sensitivity might play as an early indicator of BPD. Parents' observations of childhood sensitivity obtained through family interviews and results of an extensive online survey on sensory responses across various ages of development will be presented. People with BPD suffer from a sense of isolation and otherness that often results in later interpersonal difficulties. Early identification of supersensitive children while brain circuits are developing might decrease the development of social interaction deficits such as rejection sensitivity, self-referential processes, and negative bias, hallmarks of BPD, ultimately minimizing the maladaptive methods of coping with distress that characterizes BPD. Family experiences are an untapped resource for BPD research. It is hoped that this data will give family observations the critical credibility to inform future treatment and research directions.Keywords: alexithymia, dyslexia, hypersensitivity, sensory processing disorder
Procedia PDF Downloads 2013282 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice
Authors: T. Ewetumo, K. D. Adedayo, Festus Ben
Abstract:
Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation
Procedia PDF Downloads 3573281 Intellectual Property Rights Applicability in the Sport Industry
Authors: Poopak Dehshahri
Abstract:
The applicability of intellectual property rights in the sports industry from the present paper’s perspective includes athletic skills, which are comprised of two parts: athletic movements and athletic methods. Also, the applicability pertaining to the athletes᾽ personality, such as the Name, the Image, the Voice, the Signature and their Shirt Number, are deemed as related to the sports natural persons. Radio and TV broadcasting rights of the sports events, the signs and symbols of the athletic institutions including the sign and symbol, trademark (brand name), the name and the place of residence of the sports clubs, the Sports events and the special sports, special slogan of the sports clubs or sports competitions and the sports clothing design are Included under the athletic institutions᾽ applicability of intellectual property rights.Keywords: sport industry, intellectual property, sport skills, right to fame, radio and television broadcasting right, sport sign
Procedia PDF Downloads 673280 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling
Procedia PDF Downloads 883279 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study
Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua
Abstract:
This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis
Procedia PDF Downloads 613278 Development and Nutritional Evaluation of Sorghum Flour-Based Crackers Enriched with Bioactive Tomato Processing Residue
Authors: Liana Claudia Salanță, Anca Corina Fărcaș
Abstract:
Valorization of agro-industrial by-products offers significant economic and environmental advantages. This study investigates the transformation of tomato processing residues into value-added products, contributing to waste reduction and promoting a circular, sustainable economy. Specifically, the development of sorghum flour-based crackers enriched with tomato waste powder targets the dietary requirements of individuals with celiac disease and diabetes, evaluating their nutritional and sensory properties. Tomato residues were obtained from Roma-Spania tomatoes and processed into powder through drying and grinding. The bioactive compounds, including carotenoids, lycopene, and polyphenols, were quantified using established analytical methods. Formulation of the crackers involved optimizing the incorporation of tomato powder into sorghum flour. Subsequently, their nutritional and sensory attributes were assessed. The tomato waste powder demonstrated considerable bioactive potential, with total carotenoid content measured at 66 mg/100g, lycopene at 52.61 mg/100g, and total polyphenols at 463.60 mg GAE/100g. Additionally, the crackers with a 30% powder addition exhibited the highest concentration of polyphenols. Consequently, this sample also demonstrated a high antioxidant activity of 15.04% inhibition of DPPH radicals. Nutritionally, the crackers showed a 30% increase in fiber content and a 25% increase in protein content compared to standard gluten-free products. Sensory evaluation indicated positive consumer acceptance, with an average score of 8 out of 10 for taste and 7.5 out of 10 for color, attributed to the natural pigments from tomato waste. This innovative approach highlights the potential of tomato by-products in creating nutritionally enhanced gluten-free foods. Future research should explore the long-term stability of these bioactive compounds in finished products and evaluate the scalability of this process for industrial applications. Integrating such sustainable practices can significantly contribute to waste reduction and the development of functional foods.Keywords: tomato waste, circular economy, bioactive compounds, sustainability, health benefits
Procedia PDF Downloads 353277 High Temperature Volume Combustion Synthesis of Ti3Al with Low Porosities
Authors: Nese Ozturk Korpe, Muhammed H. Karas
Abstract:
Reaction synthesis, or combustion synthesis, is a processing technique in which the thermal activation energy of formation of a compound is sustained by its exothermic heat of reaction. The aim of the present study was to investigate the effect of high initial pressing pressures (420 MPa, 630 MPa, and 850 MPa) on porosity of Ti3Al which produced by volume combustion synthesis. Microstructure examinations were performed by optical microscope (OM) and scanning electron microscope (SEM). Phase analyses were performed with X-ray diffraction device (XRD). A significant decrease in porosity was obtained due to an increase in the initial pressing pressure.Keywords: Titanium Aluminide, Volume Combustion Synthesis, Intermetallic, Porosity
Procedia PDF Downloads 1713276 Understanding and Improving Neural Network Weight Initialization
Authors: Diego Aguirre, Olac Fuentes
Abstract:
In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.Keywords: deep learning, image classification, supervised learning, weight initialization
Procedia PDF Downloads 1353275 PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct
Authors: Marlon M. Hernández Cely, Victor E. C. Baptistella, Oscar M. H. Rodríguez
Abstract:
Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated.Keywords: PIV, annular duct, laminar, turbulence, velocity profile
Procedia PDF Downloads 3513274 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation
Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori
Abstract:
The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.Keywords: clustering, edges, feature points, landmark selection, X-means
Procedia PDF Downloads 2813273 Structure-Phase States of Al-Si Alloy After Electron-Beam Treatment and Multicycle Fatigue
Authors: Krestina V. Alsaraeva, Victor E. Gromov, Sergey V. Konovalov, Anna A. Atroshkina
Abstract:
Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increase in fatigue life of the material has been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed.Keywords: Al-19.4Si alloy, high intensive electron beam, multicycle fatigue, structure
Procedia PDF Downloads 5543272 Simulation 2D of Flare Steel Tubes
Authors: B. Daheche, M. T. Hannachi, H. Djebaili
Abstract:
In this approach, we tried to describe the flare test tubes welded by high frequency induction HF, and its experimental application. The test is carried out ENTTPP (National company of pipe mill and processing of flat products). Usually, the final products (tube) undergo a series of destructive testing (CD) in order to see the efficiency of welding. This test performed on sections of pipe with a length defined in the notice is made under a determined effort (pressure), which depends on its share of other parameters namely mechanical (fracture resistance) and geometry (thickness tube, outside diameter), the variation of this effort is well researched and recorded.Keywords: flare, destructive testing, pressure, drafts tube, tube finished
Procedia PDF Downloads 317