Search results for: Hybrid deep learning
7334 A Comparative Study of the Challenges of E-Learning in Nigerian Universities
Authors: J. N. Anene, A. A. Bello, C. C. Anene
Abstract:
The paper carried out a comparative study of the challenges of e-learning in Nigerian universities. The purpose of the study was to determine if there was a significant difference in the challenges faced by students in e-learning in Nigerian Universities. A total of two hundred and twenty-eight students from nine universities constituted the sample for the study. A simple random sampling technique was employed in selecting thirty–two students from one of each university in the six geo-political zones of Nigeria. The questionnaire based on 'yes or no' and column charts constituted the instrument employed in the study. Percentages were used to analyse 'yes or no' while column charts were used to compare responds of the students. The finding of the study revealed that majority of students in all the universities under study claimed that their universities lacked appropriate software, that good quality educational content online was lacking, they also agreed that sustainability of e-learning was not prioritized, that they had no access to appropriate content for ICT-enhanced learning and training and that they had access to affordable and reliable computers. For lecturers, the computer certification should be the first on the list of promotion requirements. The finding of the study revealed that students from seven out of nine universities confirmed that their universities lack of appropriate software whereas the other two claimed that they have appropriate software. Also, out of nine universities, two disagreed to the fact that good quality educational content online lacked, whereas seven agreed that they lacked good quality educational content online. The finding of the study also revealed that most of the respondents in almost all the university under study agreed that sustainability of e-learning was not prioritized. The study recommended among other that the Nigerian Government should make concerted effort to provide the enablement for all lecturers and students to become computer literate. This should be done within a time frame, and at the end of the computer course, certificates should be issued, and no student should graduate in his or her field of study without passing the computer course.Keywords: e-learning, developing countries, computer literacy, ICT
Procedia PDF Downloads 3367333 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach
Authors: Kamalendu Pal
Abstract:
This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation
Procedia PDF Downloads 3677332 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 1487331 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 367330 Strain DistributionProfiles of EDD Steel at Elevated Temperatures
Authors: Eshwara Prasad Koorapati, R. Raman Goud, Swadesh Kumar Singh
Abstract:
In the present work forming limit diagrams and strain distribution profile diagrams for extra deep drawing steel at room and elevated temperatures have been determined experimentally by conducting stretch forming experiments by using designed and fabricated warm stretch forming tooling setup. With the help of forming Limit Diagrams (FLDs) and strain distribution profile diagrams the formability of Extra Deep Drawing steel has been analyzed and co-related with mechanical properties like strain hardening coefficient (n) and normal anisotropy (r−).Mechanical properties of EDD steel from room temperature to 4500 C were determined and discussed the impact of temperature on the properties like work hardening exponent (n) anisotropy (r-) and strength coefficient of the material. Also, the fractured surfaces after stretching have undergone the some metallurgical investigations and attempt has been made to co-relate with the formability of EDD steel sheets. They are co-related and good agreement with FLDs at various temperatures.Keywords: FLD, micro hardness, strain distribution profile, stretch forming
Procedia PDF Downloads 4227329 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2287328 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1307327 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System
Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k
Abstract:
Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving
Procedia PDF Downloads 2547326 Tracking Subjectivity in Political Socialization: University Students' Perceptions of Citizenship Learning Experiences in Chinese Higher Education
Authors: Chong Zhang
Abstract:
There is widespread debate about the nationalistic top-down approach to citizenship education. Employing the notion of cultural citizenship as a useful theoretical lens, citizenship education research tends to focus on the process of subjectivity construction among students’ citizenship learning process. As the Communist Party of China (CPC) plays a dominant role in cultivating citizens through ideological and political education (IaPE) in Chinese universities, the research problem herein focuses on the dynamics and complexity of how Chinese university students construct their subjectivities regarding citizenship learning through IaPE, mediated by the interaction between the state and university teachers. Drawing on questionnaire data from 212 students and interview data from 25 students in one university in China, this paper examines the ways in which students understand and respond to dominant discourses. Its findings reveal there is a deficit of citizenship learning in IaPE, and that students feel ideologically pressurized. From its analysis of social contexts’ influence, the article suggests Chinese higher education students act as either mild changemakers or active self-motivators to enact complex subjectivities, in that they must involve themselves in IaPE for personal academic and career development, yet adopt covert strategies to realise their self-conscious citizenship learning expectations. These strategies take the form of passive and active freedoms, ranging from obediently completing basic curriculum requirements and distancing themselves by studying abroad, to actively searching for learning opportunities from other courses and social media. This paper contributes to the research on citizenship education by recognizing the complexities of how subjectivities are formed in formal university settings.Keywords: university students, citizenship learning, cultural citizenship, subjectivity, Chinese higher education
Procedia PDF Downloads 1257325 Employing Innovative Pedagogy: Collaborative (Online) Learning and Teaching In An International Setting
Authors: Sonja Gögele, Petra Kletzenbauer
Abstract:
International strategies are ranked as one of the core activities in the development plans of Austrian universities. This has led to numerous promising activities in terms of internationalization (i.e. development of international degree programmes, increased staff, and student mobility, and blended international projects). The latest innovative approach are so called Blended Intensive Programmes (BIP), which combine jointly delivered teaching and learning elements of at least three participating ERASMUS universities in a virtual and short-term mobility setup. Students who participate in BIP can maintain their study plans at their home institution and include BIP as a parallel activity. This paper presents the experiences of this programme on the topic of sustainable computing hosted by the University of Applied Sciences FH JOANNEUM. By means of an online survey and face-to-face interviews with all stakeholders (20 students, 8 professors), the empirical study addresses the challenges of hosting an international blended learning programme (i.e. virtual phase and on-site intensive phase) and discusses the impact of such activities in terms of innovative pedagogy (i.e. virtual collaboration, research-based learning).Keywords: internationalization, collaborative learning, blended intensive programme, pedagogy
Procedia PDF Downloads 1327324 Digital Design and Practice of The Problem Based Learning in College of Medicine, Qassim University, Saudi Arabia
Authors: Ahmed Elzainy, Abir El Sadik, Waleed Al Abdulmonem, Ahmad Alamro, Homaidan Al-Homaidan
Abstract:
Problem-based learning (PBL) is an educational modality which stimulates critical and creative thinking. PBL has been practiced in the college of medicine, Qassim University, Saudi Arabia, since the 2002s with offline face to face activities. Therefore, crucial technological changes in paperless work were needed. The aim of the present study was to design and implement the digitalization of the PBL activities and to evaluate its impact on students' and tutors’ performance. This approach promoted the involvement of all stakeholders after their awareness of the techniques of using online tools. IT support, learning resources facilities, and required multimedia were prepared. Students’ and staff perception surveys reflected their satisfaction with these remarkable changes. The students were interested in the new digitalized materials and educational design, which facilitated the conduction of PBL sessions and provided sufficient time for discussion and peer sharing of knowledge. It enhanced the tutors for supervision and tracking students’ activities on the Learning Management System. It could be concluded that introducing of digitalization of the PBL activities promoted the students’ performance, engagement and enabled a better evaluation of PBL materials and getting prompt students as well as staff feedback. These positive findings encouraged the college to implement the digitalization approach in other educational activities, such as Team-Based Learning, as an additional opportunity for further development.Keywords: multimedia in PBL, online PBL, problem-based learning, PBL digitalization
Procedia PDF Downloads 1207323 Towards Appreciating Knowing Body in the Future Schools: Developing Methods for School Teachers to Understand the Role of the Body in Teaching and Learning
Authors: Johanna Aromaa
Abstract:
This paper presents a development project aimed at enhancing student-teachers' awareness of the role of the body in teaching and learning. In this project, theory and practice are brought into dialogue through workshops of body work that utilize art-based and somatic methods. They are carried out in a special course for educating teachers in a Finnish University. Expected results from the project include: 1) the participants become aware of the multiple roles that the body has in educational encounters, and with it, develop a more holistic approach to teaching and learning, 2) the participants gain access to and learn to form bodily knowledge, 3) a working model on enhancing student-teachers' awareness of the role of bodily knowledge in teacher’s work is developed. Innovative methods as well as a radical rethinking of the nature of teaching and learning are needed if we are to appreciate knowing body in the future schools.Keywords: bodily knowledge, the body, somatic methods, teacher education
Procedia PDF Downloads 4377322 Re-Thinking Design/Build Curriculum in a Virtual World
Authors: Bruce Wrightsman
Abstract:
Traditionally, in architectural education, we develop studio projects with learning agendas that try to minimize conflict and reveal clear design objectives. Knowledge is gleaned only tacitly through confronting the reciprocity of site and form, space and light, structure and envelope. This institutional reality can limit student learning to the latent learning opportunities they will have to confront later in practice. One intent of academic design-build projects is to address the learning opportunities which one can discover in the messy grey areas of design. In this immersive experience, students confront the limitations of classroom learning and are exposed to challenges that demand collaborative practice. As a result, design-build has been widely adopted in an attempt to address perceived deficiencies in design education vis a vis the integration of building technology and construction. Hands-on learning is not a new topic, as espoused by John Dewey, who posits a debate between static and active learning in his book Democracy and Education. Dewey espouses the concept that individuals should become participants and not mere observers of what happens around them. Advocates of academic design-build programs suggest a direct link between Dewey’s speculation. These experiences provide irreplaceable life lessons: that real-world decisions have real-life consequences. The goal of the paper is not to confirm or refute the legitimacy and efficacy of online virtual learning. Rather, the paper aims to foster a deeper, honest discourse on the meaning of ‘making’ in architectural education and present projects that confronted the burdens of a global pandemic and developed unique teaching strategies that challenged design thinking as an observational and constructive effort to expand design student’s making skills and foster student agency.Keywords: design/build, making, remote teaching, architectural curriculum
Procedia PDF Downloads 807321 Assessment of Online Web-Based Learning for Enhancing Student Grades in Chemistry
Authors: Ian Marc Gealon Cabugsa, Eleanor Pastrano Corcino, Gina Lapaza Montalan
Abstract:
This study focused on the effect of Online Web-Learning (OWL) in the performance of the freshmen Civil Engineering Students of Ateneo de Davao University in their Chem 12 subject. The grades of the students that were required to use OWL were compared to students without OWL. The result of the study suggests promising result for the use of OWL in increasing the performance rate of students taking up Chem 12. Furthermore, there was a positive correlation between the final grade and OWL grade of the students that had OWL. While the majority of the students find OWL to be helpful in supporting their chemistry knowledge needs, most of them still prefer to learn using the traditional face-to-face instruction.Keywords: chemistry education, enhanced performance, engineering chemistry, online web-based learning
Procedia PDF Downloads 3747320 Evidence from the Ashanti Region in Ghana: A Correlation Between Principal Instructional Leadership and School Performance in Senior High Schools
Authors: Blessing Dwumah Manu, Dawn Wallin
Abstract:
This study aims to explore school principal instructional leadership capabilities (Robinson, 2010) that support school performance in senior high schools in Ghana’s Northern Region. It explores the ways in which leaders (a) use deep leadership content knowledge to (b) solve complex school-based problems while (c) building relational trust with staff, parents, and students as they engage in the following instructional leadership dimensions: establishing goals and expectations; resourcing strategically; ensuring quality teaching; leading teacher learning and development and ensuring an orderly and safe environment (Patuawa et al, 2013). The proposed research utilizes a constructivist approach to explore the experiences of 18 school representatives (including principals, deputy principals, department heads, teachers, parents, and students) through an interview method.Keywords: instructional leadership, leadership content knowledge, solving complex problems, building relational trust and school performance
Procedia PDF Downloads 1077319 The Role of Instruction in Knowledge Construction in Online Learning
Authors: Soo Hyung Kim
Abstract:
Two different learning approaches were suggested: focusing on factual knowledge or focusing on the embedded meaning in the statements. Each way of learning has positive effects on different question categories, where factual knowledge helps more with simple fact questions, and searching for meaning in given information helps learn causal relationship and the embedded meaning. To test this belief, two groups of learners (12 male and 39 female adults aged 18-37) watched a ten-minute long Youtube video about various factual events of American history, their meaning, and the causal relations of the events. The fact group was asked to focus on factual knowledge in the video, and the meaning group was asked to focus on the embedded meaning in the video. After watching the video, both groups took multiple-choice questions, which consisted of 10 questions asking the factual knowledge addressed in the video and 10 questions asking embedded meaning in the video, such as the causal relationship between historical events and the significance of the event. From ANCOVA analysis, it was found that the factual knowledge showed higher performance on the factual questions than the meaning group, although there was no group difference on the questions about the meaning between the two groups. The finding suggests that teacher instruction plays an important role in learners constructing a different type of knowledge in online learning.Keywords: factual knowledge, instruction, meaning-based knowledge, online learning
Procedia PDF Downloads 1347318 Kinaesthetic Method in Apprenticeship Training: Support for Finnish Learning in Vocational Education
Authors: Inkeri Jääskeläinen
Abstract:
The purpose of this study is to shed light on what is it like to study in apprenticeship training using Finnish as second language. This study examines the stories and experiences of apprenticeship students learning and studying Finnish as part of their vocational studies. Also, this pilot study examines the effects of learning to pronounce Finnish through body motions and gestures. Many foreign students choose apprenticeships and start vocational training too early, while their language skills in Finnish are still very weak. Both duties at work and school assignments require reasonably good general language skills (B1.1) and, especially at work, language skills are also a safety issue. At work students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressing environment. Learning and understanding new things is very challenging under these circumstances and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other and so are their ways to learn. Thereafter, one of the most important features of apprenticeship training and second language learning is good understanding of adult learners and their needs. Kinaesthetic methods are an effective way to support adult students’ cognitive skills and make learning more relaxing and fun. Empirical findings show that language learning can indeed be supported physical ways, by body motions and gestures. The method used here, named TFFL (Touch and Feel Foreign Languages), was designed to support adult language learning, to correct or prevent language fossilization and to help the student to manage emotions. Finnish is considered as a difficult language to learn, mostly because it is so different from nearly all other languages. Many learners complain that they are lost or confused and there is a need to find a way to simultaneously learn the language and to handle negative emotion which come from Finnish language and the learning process itself. Due to the nature of Finnish language good pronunciation skills are needed just to understand the way the language work. Movements (body movements etc.) are a natural part of many cultures but not Finnish – In Finland students have traditionally been expected to stay still and that is not a natural way for many foreign students. However, kinaesthetic TFFL method proved out to be a useful way to help some L2 students to feel phonemes, rhythm and intonation, to improve their Finnish and, thereby, also to successfully complete their vocational studies.Keywords: Finnish, fossilization, interference, kinaesthetic method
Procedia PDF Downloads 1077317 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 1687316 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3377315 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis
Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu
Abstract:
Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing
Procedia PDF Downloads 1387314 A Probabilistic View of the Spatial Pooler in Hierarchical Temporal Memory
Authors: Mackenzie Leake, Liyu Xia, Kamil Rocki, Wayne Imaino
Abstract:
In the Hierarchical Temporal Memory (HTM) paradigm the effect of overlap between inputs on the activation of columns in the spatial pooler is studied. Numerical results suggest that similar inputs are represented by similar sets of columns and dissimilar inputs are represented by dissimilar sets of columns. It is shown that the spatial pooler produces these results under certain conditions for the connectivity and proximal thresholds. Following the discussion of the initialization of parameters for the thresholds, corresponding qualitative arguments about the learning dynamics of the spatial pooler are discussed.Keywords: hierarchical temporal memory, HTM, learning algorithms, machine learning, spatial pooler
Procedia PDF Downloads 3457313 Integration of Technology through Instructional Systems Design
Authors: C. Salis, D. Zedda, M. F. Wilson
Abstract:
The IDEA project was conceived for teachers who are interested in enhancing their capacity to effectively implement the use of specific technologies in their teaching practice. Participating teachers are coached and supported as they explore technologies applied to the educational context. They access tools such as the technological platform developed by our team. Among the platform functionalities, teachers access an instructional systems design (ISD) tool (learning designer) that was adapted to the needs of our project. The tool is accessible from computers or mobile devices and used in association with other technologies to create new, meaningful learning environments. The objective of an instructional systems design is to guarantee the quality and effectiveness of education and to enhance learning. This goal involves both teachers who want to become more efficient in transferring knowledge or skills and students as the final recipient of their teaching. The use of Blooms’s taxonomy enables teachers to classify the learning objectives into levels of complexity and specificity, thus making it possible to highlight the kind of knowledge teachers would like their students to reach. The fact that the instructional design features can be visualized through the IDEA platform is a guarantee for those who are looking for specific educational materials to be used in their lessons. Despite the benefits offered, a number of teachers are reluctant to use ISD because the preparatory work of having to thoroughly analyze the teaching/learning objectives, the planning of learning material, assessment activities, etc., is long and felt to be time-consuming. This drawback is minimized using a learning designer, as the tool facilitates to reuse of the didactic contents having a clear view of the processes of analysis, planning, and production of educational or testing materials uploaded on our platform. In this paper, we shall present the feedback of the teachers who used our tool in their didactic.Keywords: educational benefits, educational quality, educational technology, ISD tool
Procedia PDF Downloads 1887312 Investigation of Buddhology Reflected from Wall Paintings in Sri Lanka
Authors: R. G. D Jayawardena
Abstract:
The Buddha was known by great wise men from 6th century B.C up to date as a superhuman being born in the world beyond the omnipotent. The Buddha’s doctrinal descriptions reflect his deep enlightenment about imperial and metaphysical knowledge. Buddhology undertaken for this study is an unexposed subject in metaphysical points. The Buddhist wall painting in Sri Lanka depicts deep metaphysical meaning than its simple perspective of estheticism. Buddhology, in some perspectives, has been interpreted as a complete natural science discovered by the Buddha to teach the way of honorable living in perfect happiness and peace of mind till death. Such interpretations which emphasized are based on textual studies. The Buddhology conducted through literal tradition is depicted in wall paintings in Sri Lanka are in visual art with specific techniques rules. The Buddhology, which is investigated on wall paintings, portrays the Buddha in the form of a superhuman being and as an unparalleled person among the Devas, Brahmas, Yakshas, Maras, and humans. The Buddha concept is known to Sri Lankan Buddhists as a person attained to full awakening of wisdom. In personality, the Buddha is depicted as a supernormal person in the world and a rare birth. In brief, the paper will discuss and illustrate the Buddha’s transcendental position and the reality of what he experienced and its authenticity.Keywords: Buddhology, Metaphysic, Sri Lanka, paintings
Procedia PDF Downloads 2057311 Kinaesthetic Method in Apprenticeship Training: Support for Finnish Learning in Vocational Education and Training
Authors: Inkeri Jaaskelainen
Abstract:
The purpose of this study is to shed light on what it is like to study in apprenticeship training using Finnish as a second language. This study examines the stories and experiences of apprenticeship students learning and studying Finnish as part of their vocational studies. Also, this pilot study examines the effects of learning to pronounce Finnish through body motions and gestures. Many foreign students choose apprenticeships and start vocational training too early, while their language skills in Finnish are still very weak. Both duties at work and school assignments require reasonably good general language skills (B1.1), and, especially at work, language skills are also a safety issue. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other and so are their ways to learn. Thereafter, one of the most important features of apprenticeship training and second language learning is a good understanding of adult learners and their needs. Kinaesthetic methods are an effective way to support adult students’ cognitive skills and make learning more relaxing and fun. Empirical findings show that language learning can indeed be supported in physical ways, by body motions and gestures. The method used here, named TFFL (Touch and Feel Foreign Languages), was designed to support adult language learning, to correct or prevent language fossilization, and to help the student to manage emotions. Finnish is considered as a difficult language to learn, mostly because it is so different from nearly all other languages. Many learners complain that they are lost or confused and there is a need to find a way to simultaneously learn the language and to handle negative emotion that comes from the Finnish language and the learning process itself. Due to the nature of the Finnish language, good pronunciation skills are needed just to understand the way the language work. Movements (body movements etc.) are a natural part of many cultures, but not Finnish. In Finland, students have traditionally been expected to stay still, and that is not a natural way for many foreign students. However, the kinaesthetic TFFL method proved out to be a useful way to help some L2 students to feel phonemes, rhythm, and intonation, to improve their Finnish, and, thereby, also to successfully complete their vocational studies.Keywords: Finnish, fossilization, interference, kinaesthetic method
Procedia PDF Downloads 1407310 Learning-by-Heart vs. Learning by Thinking: Fostering Thinking in Foreign Language Learning A Comparison of Two Approaches
Authors: Danijela Vranješ, Nataša Vukajlović
Abstract:
Turning to learner-centered teaching instead of the teacher-centered approach brought a whole new perspective into the process of teaching and learning and set a new goal for improving the educational process itself. However, recently a tremendous decline in students’ performance on various standardized tests can be observed, above all on the PISA-test. The learner-centeredness on its own is not enough anymore: the students’ ability to think is deteriorating. Especially in foreign language learning, one can encounter a lot of learning by heart: whether it is grammar or vocabulary, teachers often seem to judge the students’ success merely on how well they can recall a specific word, phrase, or grammar rule, but they rarely aim to foster their ability to think. Convinced that foreign language teaching can do both, this research aims to discover how two different approaches to teaching foreign language foster the students’ ability to think as well as to what degree they help students get to the state-determined level of foreign language at the end of the semester as defined in the Common European Framework. For this purpose, two different curricula were developed: one is a traditional, learner-centered foreign language curriculum that aims at teaching the four competences as defined in the Common European Framework and serves as a control variable, whereas the second one has been enriched with various thinking routines and aims at teaching the foreign language as a means to communicate ideas and thoughts rather than reducing it to the four competences. Moreover, two types of tests were created for each approach, each based on the content taught during the semester. One aims to test the students’ competences as defined in the CER, and the other aims to test the ability of students to draw on the knowledge gained and come to their own conclusions based on the content taught during the semester. As it is an ongoing study, the results are yet to be interpreted.Keywords: common european framework of reference, foreign language learning, foreign language teaching, testing and assignment
Procedia PDF Downloads 1077309 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 2387308 Using the Synchronous Online Flipped Learning Approach to Facilitate Student Podcasting
Authors: Yasmeen Coaxum
Abstract:
The year 2020 became synonymous with the words “Emergency Remote Teaching,” which was imposed upon educators during the COVID-19 pandemic. Consequently, teachers were compelled to find new and engaging ways to educate their students outside of the face-to-face classroom setting. Now online instruction has become more of the norm rather than a way to manage educational expectations during a crisis. Therefore, implementing a strategic way to create online environments for students to thrive, create, and fully engage in their learning process is essential. The Synchronous Online Flipped Learning Approach or SOFLA® is a distance learning model that most closely replicates actual classroom teaching. SOFLA® includes structured, interactive, multimodal activities in an eight-step learning cycle with both asynchronous and synchronous components that foster autonomous and interactive learning among today’s online learners. The results of a pilot study in an Intensive English Program at a university, using SOFLA® methodology to facilitate podcasting in an online learning environment will be shared. Previous findings on student-produced podcasting projects have shown that students felt they improved their pronunciation, vocabulary, and speaking skills. However, few if any studies have been conducted on using a structured online flipped learning approach to facilitate such projects. Therefore, the purpose of this study is to assess the effect of using the SOFLA® framework to enhance optimum engagement in the online environment while using podcasts as the primary tool of instruction. Through data from interviews, questionnaires, and the results of formative and summative assessments, this study also investigates the affective and academic impact this flipped learning method combined with podcasting has on the students in terms of speaking confidence and vocabulary retention, and production. The steps of SOFLA will be illustrated, a video demonstration of the Anchor podcasting app will be shown, and final student projects and questionnaire responses will be shared. The specific context is a 14-week advanced level conversation and listening class. Participants vary in age but are all adult language learners representing a diverse array of countries.Keywords: mall online flipped learning, podcasting, productive vocabulary
Procedia PDF Downloads 1767307 Investigation of Verbal Feedback and Learning Process for Oral Presentation
Authors: Nattawadee Sinpattanawong
Abstract:
Oral presentation has been used mostly in business communication. The business presentation is carrying out through an audio and visual presentation material such as statistical documents, projectors, etc. Common examples of business presentation are intra-organization and sales presentations. The study aims at investigating functions, strategies and contents of assessors’ verbal feedback on presenters’ oral presentations and exploring presenters’ learning process and specific views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. This study is designed as a descriptive qualitative research; four master students and one teacher in English for Business and Industry Presentation Techniques class of public university will be selected. The researcher hopes that any understanding how assessors’ verbal feedback on oral presentations and learning process may illuminate issues for other people. The data from this research may help to expand and facilitate the readers’ understanding of assessors’ verbal feedback on oral presentations and learning process in their own situations. The research instruments include an audio recorder, video recorder and an interview. The students will be interviewing in order to ask for their views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. After finishing data collection, the data will be analyzed and transcribed. The findings of this study are significant because it can provide presenters knowledge to enhance their learning process and provide teachers knowledge about providing verbal feedback on student’s oral presentations on a business context.Keywords: business context, learning process, oral presentation, verbal feedback
Procedia PDF Downloads 1947306 Evaluation of the Self-Efficacy and Learning Experiences of Final year Students of Computer Science of Southwest Nigerian Universities
Authors: Olabamiji J. Onifade, Peter O. Ajayi, Paul O. Jegede
Abstract:
This study aimed at investigating the preparedness of the undergraduate final year students of Computer Science as the next entrants into the workplace. It assessed their self-efficacy in computational tasks and examined the relationship between their self-efficacy and their learning experiences in Southwest Nigerian universities. The study employed a descriptive survey research design. The population of the study comprises all the final year students of Computer Science. A purposive sampling technique was adopted in selecting a representative sample of interest from the final year students of Computer Science. The Students’ Computational Task Self-Efficacy Questionnaire (SCTSEQ) was used to collect data. Mean, standard deviation, frequency, percentages, and linear regression were used for data analysis. The result obtained revealed that the final year students of Computer Science were averagely confident in performing computational tasks, and there is a significant relationship between the learning experiences of the students and their self-efficacy. The study recommends that the curriculum be improved upon to accommodate industry experts as lecturers in some of the courses, make provision for more practical sessions, and the learning experiences of the student be considered an important component in the undergraduate Computer Science curriculum development process.Keywords: computer science, learning experiences, self-efficacy, students
Procedia PDF Downloads 1447305 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 112