Search results for: london cycle hire scheme
999 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 152998 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating
Authors: Long Wang, Yongjin Feng, Xiaofang Luo
Abstract:
Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor
Procedia PDF Downloads 172997 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model
Authors: Bhenjamin Jordan L. Ona
Abstract:
Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.Keywords: aerosol, CCN, IN, tropical cylone
Procedia PDF Downloads 296996 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation
Authors: Othman Maklouf, Abdunnaser Tresh
Abstract:
Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.Keywords: GPS, IMU, Kalman filter, materials engineering
Procedia PDF Downloads 422995 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst
Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka
Abstract:
Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.Keywords: eco-friendly leaching, optimization, metal recovery, leaching
Procedia PDF Downloads 68994 Lesson Learnt from Solar Photovoltaic Power Generation in Thailand with Global Self-Consumption Experience
Authors: Tongpong Sriboon, Prapita Thanarak, Chaitawatch Khunrangabsang
Abstract:
Nowadays, the usage of power generated from photovoltaic system has been promoted significantly in Thailand. The targeted result which is to increase the Solar Power Generation in 2036 to 6000 megawatts (MW) was planned by Alternative Energy Development Plan (AEDP 2015) and Power Development Plan (PDP 2015). The solar rooftop 200 MW was promoted and supported under the Feed-in Tariff scheme (FiT) in two phases; phase I in 2012 and phase II in 2015. However, the number of people interested in supporting the projects reduced due to many reasons which range from the first process to the last that is to sell electricity back to Electricity Authority. This paper will review this situation especially in total electricity generated from solar rooftop system during the day that has been sold back to the grid utility in different capacity FiT rates. With many stakeholders involved, the regulations and criteria were established to maintain the standard of the system. Besides, lots of problems have occurred during the processes including reliability and quality. These problems were shortly followed by other irrevocably issues concerning politics, social, economic etc. In order to effectively develop solar PV power system in Thailand, the problems and solutions were compared to those from six countries including Japan, Australia. America, China, German and Malaysia. This paper particularly focuses on policies and measurement implemented to encourage the rising in solar PV system interest. This review enables one to gain insight into the nature of the changes that have taken place in each and every country mentioned above as well as the underlying reasons behind them. Brief analysis is carried out on identify key challenges and opportunities for solar PV application. This could help create a development path that is suitable with situations to enhance the overall performance of solar PV power generating system in Thailand.Keywords: solar PV rooftop, PV policy, self-consumption, solar PV power generation
Procedia PDF Downloads 313993 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant
Authors: Cigdem Safak Saglam
Abstract:
Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.Keywords: thermal power plant, lignite coal, pretreatment, demineralization, electrodialysis, recycling, ash dampening
Procedia PDF Downloads 482992 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.Keywords: distributed energy resources, network energy system, optimization, microgeneration system
Procedia PDF Downloads 190991 Projection of Climate Change over the Upper Ping River Basin Using Regional Climate Model
Authors: Chakrit Chotamonsak, Eric P. Salathé Jr, Jiemjai Kreasuwan
Abstract:
Dynamical downscaling of the ECHAM5 global climate model is applied at 20-km horizontal resolution using the WRF regional climate model (WRF-ECHAM5), to project changes from 1990–2009 to 2045–2064 of temperature and precipitation over the Upper Ping River Basin. The analysis found that monthly changes in daily temperature and precipitation over the basin for the 2045-2064 compared to the 1990-2009 are revealed over the basin all months, with the largest warmer in December and the smallest warmer in February. The future simulated precipitation is smaller than that of the baseline value in May, July and August, while increasing of precipitation is revealed during pre-monsoon (April) and late monsoon (September and October). This means that the rainy season likely becomes longer and less intensified during the rainy season. During the cool-dry season and hot-dry season, precipitation is substantial increasing over the basin. For the annual cycle of changes in daily temperature and precipitation over the upper Ping River basin, the largest warmer in the mean temperature over the basin is 1.93 °C in December and the smallest is 0.77 °C in February. Increase in nighttime temperature (minimum temperature) is larger than that of daytime temperature (maximum temperature) during the dry season, especially in wintertime (November to February), resulted in decreasing the diurnal temperature range. The annual and seasonal changes in daily temperature and precipitation averaged over the basin. The annual mean rising are 1.43, 1.54 and 1.30 °C for mean temperature, maximum temperature and minimum temperature, respectively. The increasing of maximum temperature is larger than that of minimum temperature in all months during the dry season (November to April).Keywords: climate change, regional climate model, upper Ping River basin, WRF
Procedia PDF Downloads 383990 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data
Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar
Abstract:
It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.Keywords: accuracy, exponential smoothing, forecasting, initial value
Procedia PDF Downloads 177989 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study
Authors: Amit Kumar
Abstract:
Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality
Procedia PDF Downloads 280988 Modeling of Glycine Transporters in Mammalian Using the Probability Approach
Authors: K. S. Zaytsev, Y. R. Nartsissov
Abstract:
Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning
Procedia PDF Downloads 119987 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst
Authors: D. Mowla, N. Rasti, P. Keshavarz
Abstract:
Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.Keywords: biodiesel, renewable fuel, transesterification, waste cooking oil
Procedia PDF Downloads 238986 Performance Evaluation of Conical Solar Concentrator System with Different Flow Rate
Authors: Gwi Hyun Lee, Mun Soo Na
Abstract:
Solar energy has many advantages of infinite and clean source, and also it can be used for reduction of greenhouse gases and environment pollution. Concentrated solar system is a very useful to achieve reasonably high thermal efficiency. Different types of solar concentrating systems have been developed such as parabolic trough and parabolic dish. Conical solar concentrator is one of the most reliable and promising renewable energy systems for higher temperature applications. The objectives of this study were to investigate the influence of flow rate affecting the thermal efficiency of a conical solar collector, which has a double tube absorber placed at focal axis for collecting solar radiation. A conical solar concentrator consists of a conical reflector, which reflects direct solar radiation into an absorber. A double tube absorber was placed at the center of focal axis for collecting the solar radiation reflected from a conical reflector. A dual tracking system consists of a linear actuator and slew drive with driving cycle of 6 seconds. Water was used as circulating fluid, which flows from inlet to outlet of an absorber for collecting solar radiation. Three identical conical solar concentrator systems were installed side by side at the same place for the accurate performance analysis under the same environmental conditions. Performance evaluations were carried out with different volumetric flow rate of 2, 4 and 6 L/min to find the influence of flow rate affecting on thermal efficiency. The results indicated that average thermal efficiency was 73.24%, 81.96%, and 79.78% for each flow rate of 2 L/min, 4 L/min, and 6 L/min. It shows that the flow rate of circulating water has a significant effect on the thermal efficiency of the conical solar concentrator. It is concluded that an optimum flow rate of conical solar concentrator is 6 L/min.Keywords: conical solar concentrator, performance evaluation, solar energy, solar energy system
Procedia PDF Downloads 279985 Solving LWE by Pregressive Pumps and Its Optimization
Authors: Leizhang Wang, Baocang Wang
Abstract:
General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free
Procedia PDF Downloads 60984 Comparative Assessment of hCG with Estrogen in Increasing Pregnancy Rate in Mixed Parity Buffaloes
Authors: Sanan Raza, Tariq Abbas, Ahmad Yar Qamar, Muhammad Younus, Hamayun Khan, Mujahid Zafar
Abstract:
Water Buffaloes contribute significantly in Asian agriculture. The objective of this study was to evaluate the efficacy of two synchronization protocols in enhancing pregnancy rate in 105 mixed parity buffaloes particularly in summer season. Buffaloes are seasonal breeders showing more fertility from October to January in subtropical environment of Pakistan. In current study 105 lactating buffaloes of mixed parity were used having normal estrous cycle, age ranging 5-9 years, weighing between 400-650 kg, BCS 4 ± 0.5 (1-5) and lactation varied from first to 5th. Experimental animals were divided into three groups based on corpus leteummorphometry. Morphometry of C.L was done using rectal population and ultrasonography. All animals were injected 25mg of PGi.m. (Cloprostenol). In Group-1 (n=35) hCG was administered at follicular size of 10mm having scanned after detection of heat. Similarly Group-2 (n=35) received 25 mg EB i.m (Estradiol Benzoate) after confirmation of follicular size of 10mm with ultrasound. Likewise, buffaloes of Group-3 (n=35) were administered normal saline respectively using as control. All buffaloes of three groups were inseminated after 12h of hCG, EB, and normal saline administration respectively. Pregnancy was assessed by ultrasound at 18th and 45th day post insemination. Pregnancy rates at 18th day were 38.2%, 34.5%, and 27.3% for G1, G2, and G3 respectively indicating that hCG and EB administered groups have no difference in results except control group having lower conception rate than both groups respectively. Similarly on 42nd day, these were 40.4%, 32.7% for G1 and G2 which are significantly higher than G3= 26.6 (control Group). Also, hCG and EB treated buffaloes have more probability of pregnancy than control group. Based on the findings of current study, it seems reasonable that the use of hCG and EB has been associated with improving pregnancy rates in non-breeding season of buffaloes.Keywords: buffalo, hCG, EB, pregnancy rate, follicle, insemination
Procedia PDF Downloads 798983 Social Sustainability and Affordability of the Transitional Housing Scheme in Hong Kong
Authors: Tris Kee
Abstract:
This research investigates social sustainability factors in transitional housing projects and their impact on fostering healthy living environments that promote physical activity and social interaction for residents. Social sustainability is integral to individual health and well-being, as emphasized by Goal 11 of the 2030 Agenda for Sustainable Development, which highlights the importance of safe, affordable, and accessible transport systems, green spaces, and public spaces catering to vulnerable populations' needs. Communal spaces in urban environments are essential for fostering social sustainability, as they serve as settings for physical activities and social interactions among diverse socio-economic groups. Factors such as neighborhood social atmosphere, historical context, social disparity, and mobility can influence the relationship between existing and transitional communities. Mental health effects can be measured through housing segregation, mobility and accessibility, and housing tenure. A significant research gap exists in understanding the living environment of transitional housing in Hong Kong and the social sustainability factors affecting residents' mental and physical health. To address this gap, our study employs a mixed-methods approach combining survey questionnaires and interviews to gather both quantitative and qualitative data. This methodology will provide comprehensive insights into residents' experiences and perceptions. Our research's main contribution is identifying key social sustainability factors in transitional housing and their impact on residents' well-being, informing policy-making and the creation of inclusive, healthy living environments. By addressing this research gap, we aim to provide valuable insights for future housing projects, ultimately promoting the development of socially sustainable transitional communities.Keywords: social sustainablity, affordable housing, transitional housing, high density housing
Procedia PDF Downloads 88982 The Effects of Transcranial Direct Current Stimulation on Brain Oxygenation and Pleasure during Exercise
Authors: Alexandre H. Okano, Pedro M. D. Agrícola, Daniel G. Da S. Machado, Luiz I. Do N. Neto, Luiz F. Farias Junior, Paulo H. D. Nascimento, Rickson C. Mesquita, John F. Araujo, Eduardo B. Fontes, Hassan M. Elsangedy, Shinsuke Shimojo, Li M. Li
Abstract:
The prefrontal cortex is involved in the reward system and the insular cortex integrates the afferent inputs arriving from the body’ systems and turns into feelings. Therefore, modulating neuronal activity in these regions may change individuals’ perception in a given situation such as exercise. We tested whether transcranial direct current stimulation (tDCS) change cerebral oxygenation and pleasure during exercise. Fourteen volunteer healthy adult men were assessed into five different sessions. First, subjects underwent to a maximum incremental test on a cycle ergometer. Then, subjects were randomly assigned to a transcranial direct current stimulation (2mA for 15 min) intervention in a cross over design in four different conditions: anode and cathode electrodes on T3 and Fp2 targeting the insular cortex, and Fpz and F4 targeting prefrontal cortex, respectively; and their respective sham. These sessions were followed by 30 min of moderate intensity exercise. Brain oxygenation was measured in prefrontal cortex with a near infrared spectroscopy. Perceived exertion and pleasure were also measured during exercise. The asymmetry in prefrontal cortex oxygenation before the stimulation decreased only when it was applied over this region which did not occur after insular cortex or sham stimulation. Furthermore, pleasure was maintained during exercise only after prefrontal cortex stimulation (P > 0.7), while there was a decrease throughout exercise (P < 0.03) during the other conditions. We conclude that tDCS over the prefrontal cortex changes brain oxygenation in ventromedial prefrontal cortex and maintains perceived pleasure during exercise. Therefore, this technique might be used to enhance effective responses related to exercise.Keywords: affect, brain stimulation, dopamine neuromodulation, pleasure, reward, transcranial direct current stimulation
Procedia PDF Downloads 326981 Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy
Authors: M. Zielinska, B. Daniels, J. Gabel, A. Paletko
Abstract:
A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil.Keywords: diffusion brazing, microstructure, superalloy, tensile strength
Procedia PDF Downloads 364980 Return on Investment of a VFD Drive for Centrifugal Pump
Authors: Benhaddadi M., Déry D.
Abstract:
Electric motors are the single biggest consumer of electricity, and the consumption will have more than to double by 2050. Meanwhile, the existing technologies offer the potential to reduce the motor energy demand by up to 30 %, whereas the know-how to realise energy savings is not extensively applied. That is why the authors first conducted a detailed analysis of the regulation of the electric motor market in North America To illustrate the colossal energy savings potential permitted by the VFD, the authors have equipped experimental setup, based on centrifugal pump, simultaneously equipped with regulating throttle valves and variable frequency drive VFD. The obtained experimental results for 1.5 HP motor pump are extended to another motor powers, as centrifugal pumps that are different in power may have similar operational characteristics if they are located in a similar kind of process, permitting the simulations for 5 HP and 100 HP motors. According to the obtained results, VFDs tend to be most cost-effective when fitted to larger motor pumps, in addition to higher duty cycle of the motor and relative time operating at lower than full load. The energy saving permitted by the VFD use is huge, and the payback period for drive investment is short. Nonetheless, it’s important to highlight that there is no general rule of thumb that can be used to obtain the impact of the relative time operating at lower than full load. Indeed, in terms of energy-saving differences, 50 % flow regulation is tremendously better than 75 % regulation, but a slightly enhanced relative to 25 %. Two main distinct reasons can explain this somewhat not anticipated results: the characteristics of the process and the drop in efficiency when motor is operating at low speed.Keywords: motor, drive, energy efficiency, centrifugal pump
Procedia PDF Downloads 73979 Student's Difficulties with Classes That Involve Laboratory Education Approach
Authors: Kayondoamunmose Kamafrika
Abstract:
Experimental based Engineering education approach plays a vital role in the development of student’s deep understanding of both social and physical sciences. Experimental based education approach through laboratory class activities prepare students to meet national demand for high-tech skilled individuals in the government and private sector. However, students across the country are faced with difficulties in classes that involve laboratory activities: poor experimental based exposure in their early development of student’s education-life-cycle, lack of student engagement in scientific method practical thinking approach, lack of communication between students and the instructor during class, a large number of students in one classroom, lack of instruments and improper equipment calibration. The purpose of this paper is to help students develop their own scientific knowledge and understanding, develop their methodologies in the design of experiments, collect and analyze data, write laboratory reports, present and explain their findings. Experimental based laboratory activities allow students to learn with high-level understanding as well as engage in the design processes of constructing knowledge through practical means of doing science. Experimental based education systems approach will act as a catalyst in the development of practical-based-educational methodologies in social and physical science and engineering domain of learning; thereby, converting laboratory classes into pilot industries and students into professional experts in finding a solution for complex problems, research, and development of super high- tech systems.Keywords: experimental, engineering, innovation, practicability
Procedia PDF Downloads 188978 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings
Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt
Abstract:
Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy
Procedia PDF Downloads 175977 Blood Flow Simulations to Understand the Role of the Distal Vascular Branches of Carotid Artery in the Stroke Prediction
Authors: Muhsin Kizhisseri, Jorg Schluter, Saleh Gharie
Abstract:
Atherosclerosis is the main reason of stroke, which is one of the deadliest diseases in the world. The carotid artery in the brain is the prominent location for atherosclerotic progression, which hinders the blood flow into the brain. The inclusion of computational fluid dynamics (CFD) into the diagnosis cycle to understand the hemodynamics of the patient-specific carotid artery can give insights into stroke prediction. Realistic outlet boundary conditions are an inevitable part of the numerical simulations, which is one of the major factors in determining the accuracy of the CFD results. The Windkessel model-based outlet boundary conditions can give more realistic characteristics of the distal vascular branches of the carotid artery, such as the resistance to the blood flow and compliance of the distal arterial walls. This study aims to find the most influential distal branches of the carotid artery by using the Windkessel model parameters in the outlet boundary conditions. The parametric study approach to Windkessel model parameters can include the geometrical features of the distal branches, such as radius and length. The incorporation of the variations of the geometrical features of the major distal branches such as the middle cerebral artery, anterior cerebral artery, and ophthalmic artery through the Windkessel model can aid in identifying the most influential distal branch in the carotid artery. The results from this study can help physicians and stroke neurologists to have a more detailed and accurate judgment of the patient's condition.Keywords: stroke, carotid artery, computational fluid dynamics, patient-specific, Windkessel model, distal vascular branches
Procedia PDF Downloads 215976 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.Keywords: climate change, downscaling, GCM, RCM
Procedia PDF Downloads 406975 Evaluation of the Predatory Mites' Manner against Root-Knot Nematode Using Water Agar Technique
Authors: Abdelrady K. Nasr, Ezzat M. A. Noweer, Mahmoud M. Ramadan
Abstract:
The root-knot nematode, Meloidogyne incognita Kofoid and White (Tylenchida: Heteroderidae), is one of the most important plant-parasitic nematodes attacking large numbers of vegetable and fruit plants in Egypt. Moreover, the soil predatory mites (Protogamasellopsisdenticus (Nasr), Gaeolaelaps longus (Hafez, El-Badry and Nasr) and Cosmolaelapskeni(Hafez, El-Badry and Nasr) are one of the excellent agents for biocontrol, this study was designed to evaluate the predation of the root-knot nematode (M. incognita) using water agar technique. The water agar medium was used as an experimental medium to rear both the mentioned mites and egg masses; these media allowed observe the development and predacious manner. The present study revealed that the predatory mites successfully developed and reproduced their egg masses. The mean life cycle of the tested mites P. denticus, G. longus, and C.keni were 10.33, 12.00, and 9.77 days, respectively. The mean total life span of the female of P. denticus, G. longus, and C. keni on egg-mases of M. incognita were obtained 63.44, 77.55 and 70.11 days, respectively, and the mean total fecundity of predatory mites, P. denticus, G.longus, and C. keni on egg-mases nematode were observed 62.66, 31.61 and 11.83 eggs, respectively. The mean total number of eggs laid by female P. denticus was significantly higher than other predatory mites, G. longus and C. keni. According to the obtained results, the tested predacious mites can be applied to combat the spreading of M. incognita in the agriculture field as a safe and effective biological control.Keywords: biological control, plant-parasitic nematodes, predaceous mites, water agar
Procedia PDF Downloads 79974 FWGE Production From Wheat Germ Using Co-culture of Saccharomyces cerevisiae and Lactobacillus plantarum
Authors: Valiollah Babaeipour, Mahdi Rahaie
Abstract:
food supplements are rich in specific nutrients and bioactive compounds that eliminate free radicals and improve cellular metabolism. The major bioactive compounds are found in bran and cereal sprouts. Secondary metabolites of these microorganisms have antioxidant properties that can be used alone or in combination with chemotherapy and radiation therapy to treat cancer. Biologically active compounds such as benzoquinone derivatives extracted from fermented wheat germ extract (FWGE) have several positive effects on the overall state of human health and strengthen the immune system. The present work describes the discontinuous fermentation of raw wheat germ for FWGE production through the simultaneous culture process using the probiotic strains of Saccharomyces cerevisiae, Lactobacillus plantarum, and the possibility of using solid waste. To increase production efficiency, first to select important factors in the optimization of each fermentation process, using a factorial statistical scheme of stirring fraction (120 to 200 rpm), dilution of solids to solvent (1 to 8-12), fermentation time (16 to 24 hours) and strain to wheat germ ratio (20% to 50%) were studied and then simultaneous culture was performed to increase the yields of 2 and 6 dimethoxybenzoquinone (2,6-DMBQ). Since 2 and 6 dimethoxy benzoquinone were fermented as the main biologically active compound in wheat germ extract, UV-Vis analysis was performed to confirm the presence of 2 and 6 dimethoxy benzoquinone in the final product. In addition, 2,6-DMBQ of some products was isolated in a non-polar C-18 column and quantified using high performance liquid chromatography (HPLC). Based on our findings, it can be concluded that the increase of 2 and 6 dimethoxybenzoquinone in the simultaneous culture of Saccharomyces cerevisiae - Lactobacillus plantarum compared to pure culture of Saccharomyces cerevisiae (from 1.89 mg / g) to 28.9% (2.66 mg / g) Increased.Keywords: wheat germ, FWGE, saccharomyces cerevisiae, lactobacillus plantarum, co-culture, 2, 6-DMBQ
Procedia PDF Downloads 130973 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow
Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen
Abstract:
Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics
Procedia PDF Downloads 190972 A Comparative Study of Public and Private School Adolescent Girls on the Issues of Menstrual Hygiene and the Management Issues
Authors: Ashok Pandey, Rajan Adhikari
Abstract:
Introduction: Menstruation is part of the female reproductive cycle that starts when girls become sexually mature at the time of puberty. It is a phenomenon unique to the females. During a menstrual period, a woman bleeds from her uterus via the vagina. For decades, in many countries, academic school ‘type,’ private or public, as a predictor of or factor in future academic success has been researched and debated. MATERIAL AND METHODS: The comparative study was carried out with adolescent girls studying in both public and private schools of Kathmandu valley. A total of 100 girls participated in the survey, and out of them 21 participated in the FGD and 5 in the in- depth interview. Quantitative data from the survey was analyzed using SPSS 16.0 software. Informed verbal consent with the respective head of school and the respondents were taken before data collection. Results:The age of the respondents ranges from 11 to 18 years, with mean age of menarche being 12.37 years in both school adolescent girls. 70 percent of the public school adolescent girls and 72 percent of the private school adolescent girls are feeling upset and tension during menarche. There is a statistically significant difference on take rest during the period and good hygienic practice during menstruation of public/private school, at α=0. 05 level of significance. There is a statistically significant difference on overall score of practice during menstruation between public and private adolescent girls. Conclusion: Private schools children are more knowledgeable and maintain hygiene as compere to public school even though, it can be said that among the adolescent school girls both in public and private school, menstrual knowledge and perceptions are poor and practices often not optimal for proper hygiene. Often ignored issues of privacy affect the hygienic practices and daily lives.Keywords: Comparison, Menstruation, Private school, Public School
Procedia PDF Downloads 441971 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors
Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić
Abstract:
Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism
Procedia PDF Downloads 102970 Experimental and Numerical Evaluation of a Shaft Failure Behaviour Using Three-Point Bending Test
Authors: Bernd Engel, Sara Salman Hassan Al-Maeeni
Abstract:
A substantial amount of natural resources are nowadays consumed at a growing rate, as humans all over the world used materials obtained from the Earth. Machinery manufacturing industry is one of the major resource consumers on a global scale. Even though the incessant finding out of the new material, metals, and resources, it is urgent for the industry to develop methods to use the Earth's resources intelligently and more sustainable than before. Re-engineering of machine tools regarding design and failure analysis is an approach whereby out-of-date machines are upgraded and returned to useful life. To ensure the reliable future performance of the used machine components, it is essential to investigate the machine component failure through the material, design, and surface examinations. This paper presents an experimental approach aimed at inspecting the shaft of the rotary draw bending machine as a case to study. The testing methodology, which is based on the principle of the three-point bending test, allows assessing the shaft elastic behavior under loading. Furthermore, the shaft elastic characteristics include the maximum linear deflection, and maximum bending stress was determined by using an analytical approach and finite element (FE) analysis approach. In the end, the results were compared with the ones obtained by the experimental approach. In conclusion, it is seen that the measured bending deflection and bending stress were well close to the permissible design value. Therefore, the shaft can work in the second life cycle. However, based on previous surface tests conducted, the shaft needs surface treatments include re-carburizing and refining processes to ensure the reliable surface performance.Keywords: deflection, FE analysis, shaft, stress, three-point bending
Procedia PDF Downloads 158