Search results for: Hidden Markov Model (HMM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17168

Search results for: Hidden Markov Model (HMM)

14588 Matching Law in Autoshaped Choice in Neural Networks

Authors: Giselle Maggie Fer Castañeda, Diego Iván González

Abstract:

The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.

Keywords: matching law, neural networks, computational models, behavioral sciences

Procedia PDF Downloads 74
14587 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani

Abstract:

Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.

Keywords: swell, current, radiation, stress, mesh, mike21, sediment

Procedia PDF Downloads 469
14586 Knowledge Decision of Food Waste and Loss Reduction in Supply Chain System: A Case Study of Kingdom of Saudi Arabia

Authors: Nadia Adnan, Muhammad Mohsin Raza, Latha Ravindran

Abstract:

Based on the principles above, the study presents an economic model of food waste for consumers, intermediaries, and producers. We discriminate between purchasing and selling, purchases versus customers consumption, and gross output versus sales for each intermediary. To compensate for waste at each level of the supply chain, agents must charge higher sales prices. The research model can produce more accurate predictions about how actions (public regulations or private efforts) to reduce food waste impact markets, including indirect (cascading) effects. With a formal model, researchers demonstrate the uniqueness of these interaction effects and simulate an empirical model calibrated to market characteristics and waste rates in Saudi Arabia. Researchers demonstrate that the effects of waste reduction differ per commodity, depending on supply and demand elasticities, degree of openness to international commerce, and the beginning rates of food loss and waste at each level of the value chain. Because of the consequential effects related to the supply chain, initiatives to minimize food waste will be strengthened in some circumstances and partially countered in others.

Keywords: food loss, food waste, supply chain management, Saudi Arabia, food supply

Procedia PDF Downloads 107
14585 The Promotion Effects for a Supply Chain System with a Dominant Retailer

Authors: Tai-Yue Wang, Yi-Ho Chen

Abstract:

In this study, we investigate a two-echelon supply chain with two suppliers and three retailers among which one retailer dominates other retailers. A price competition demand function is used to model this dominant retailer, which is leading market. The promotion strategies and negotiation schemes are integrated to form decision-making models under different scenarios. These models are then formulated into different mathematical programming models. The decision variables such as promotional costs, retailer prices, wholesale price, and order quantity are included in these models. At last, the distributions of promotion costs under different cost allocation strategies are discussed. Finally, an empirical example used to validate our models. The results from this empirical example show that the profit model will create the largest profit for the supply chain but with different profit-sharing results. At the same time, the more risk a member can take, the more profits are distributed to that member in the utility model.

Keywords: supply chain, price promotion, mathematical models, dominant retailer

Procedia PDF Downloads 401
14584 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells

Authors: András Szekrényes

Abstract:

Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.

Keywords: J-integral, levy method, third-order shell theory, state space solution

Procedia PDF Downloads 131
14583 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method

Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih

Abstract:

Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.

Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style

Procedia PDF Downloads 284
14582 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming

Authors: V. Pourmostaghimi, M. Zadshakoyan

Abstract:

Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.

Keywords: cutting parameters, flank wear, genetic programming, hard turning

Procedia PDF Downloads 179
14581 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process

Authors: Djarot B. Darmadi

Abstract:

The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.

Keywords: residual stress, ferritic steels, SSPT, coupled-TMM

Procedia PDF Downloads 270
14580 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 152
14579 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment

Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal

Abstract:

There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport, the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonder and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.

Keywords: auto-rickshaws, business model, GPS device, mobile application

Procedia PDF Downloads 227
14578 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method

Procedia PDF Downloads 483
14577 Adopting the Transition Management Model as a Tool for Sustainable Groundwater Management in Nigeria

Authors: Ali Bakari Mohammed

Abstract:

Transitioning is a continuous process of radical change in a society which involves co-evolution of institutional, technological, socio-cultural, and ecological developments at different scales and levels. Transition management model is a methodology that influences structural change of complex systems over a period (0-30 years) by experimenting and implementing new techniques. A transition management in the context of groundwater is a radical change from the current operate and control system to a next generation integrated and sustainable system that takes into account quality protection and sustained supply into the future. This study evaluates the transition management model in adopting it as a viable tool for the attainment of sustainable groundwater management. The outcome of the evaluation shows that there are three levels (strategic, tactical and operational) of operating the transition management model. At the strategic level, long-term goals for sustainable groundwater management are formulated, at the tactical level activities such as inter institutional networking, negotiation, planning and financing are carried out, and at the operational level, transition experiments and strategic niche management are carried out at the societal level. Overall, different actors and set of activities are required to partake at each management level. The outcome of this paper will provide basis for the implementation of the Sustainable Development Goal (SDG) 6 in Nigeria.

Keywords: transition management, groundwater, sustainable management, tool, Nigeria

Procedia PDF Downloads 272
14576 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
14575 Heritage of the Ancient Greco-Roman Cities and Harbors in the North West Coast of Egypt

Authors: Wessam Fekry Ibrahim Moussa

Abstract:

The northwest coast of Egypt embraces about 500 km of the Mediterranean coastline. The area covered extends from Alexandria on the East to the village of Sallum at Egypt's border with Libya in the west with an average depth of 20-70 km. When one looks at this long strip of land, one is struck by the fact that, from the archaeological point of view, one knows relatively little about this region during ancient times, its history, villages, inhabitants, and heritage. According to classical writers, in antiquity, the area seemed to be more populated and characterized by its rich buildings and inhabitants. They mentioned several Greco-Roman towns and harbors scattered along the coast nearly 2 thousand years ago. Strabo, for instance, in his book 17, confirmed the existence of about 12 several clusters along the coast, which varied between cities, villages, harbors, and small islands. Claudius Ptolemaeus also enumerated many marina sites as well as some small cities and villages. Unfortunately, nowadays, most of them have been lost either due to the extensive development of the north coast, Natural Disasters, or Erosion Factors. However, recent excavations carried out within the area revealed just a little of these settlements. The aim of this study is to reveal the secrets of the hidden heritage of those ancient sites and shed light on the role they played in the past, as some of them used to be stops on the trade route between Libya and Egypt (Strabo 17) or major centers for some of the international imports. The study will explore the archeological evidence using the analytical methodology to analyze each site and identify its features and significances in order to conclude the importance and role it once played during the past. Findings could be used by authorities and policymakers to utilize these heritage resources to improve cultural tourism within the area and enhance the tourist's experience.

Keywords: Greco Roman, heritage, ancient cities, north west coast

Procedia PDF Downloads 211
14574 Agriculture and Global Economy vis-à-vis the Climate Change

Authors: Assaad Ghazouani, Ati Abdessatar

Abstract:

In the world, agriculture maintains a social and economic importance in the national economy. Its importance is distinguished by its ripple effects not only downstream but also upstream vis-à-vis the non-agricultural sector. However, the situation is relatively fragile because of weather conditions. In this work, we propose a model to highlight the impacts of climate change (CC) on economic growth in the world where agriculture is considered as a strategic sector. The CC is supposed to directly and indirectly affect economic growth by reducing the performance of the agricultural sector. The model is tested for Tunisia. The results validate the hypothesis that the potential economic damage of the CC is important. Indeed, an increase in CO2 concentration (temperatures and disruption of rainfall patterns) will have an impact on global economic growth particularly by reducing the performance of the agricultural sector. Analysis from a vector error correction model also highlights the magnitude of climate impact on the performance of the agricultural sector and its repercussions on economic growth

Keywords: Climate Change, Agriculture, Economic Growth, World, VECM, Cointegration.

Procedia PDF Downloads 620
14573 A Selection Approach: Discriminative Model for Nominal Attributes-Based Distance Measures

Authors: Fang Gong

Abstract:

Distance measures are an indispensable part of many instance-based learning (IBL) and machine learning (ML) algorithms. The value difference metrics (VDM) and inverted specific-class distance measure (ISCDM) are among the top-performing distance measures that address nominal attributes. VDM performs well in some domains owing to its simplicity and poorly in others that exist missing value and non-class attribute noise. ISCDM, however, typically works better than VDM on such domains. To maximize their advantages and avoid disadvantages, in this paper, a selection approach: a discriminative model for nominal attributes-based distance measures is proposed. More concretely, VDM and ISCDM are built independently on a training dataset at the training stage, and the most credible one is recorded for each training instance. At the test stage, its nearest neighbor for each test instance is primarily found by any of VDM and ISCDM and then chooses the most reliable model of its nearest neighbor to predict its class label. It is simply denoted as a discriminative distance measure (DDM). Experiments are conducted on the 34 University of California at Irvine (UCI) machine learning repository datasets, and it shows DDM retains the interpretability and simplicity of VDM and ISCDM but significantly outperforms the original VDM and ISCDM and other state-of-the-art competitors in terms of accuracy.

Keywords: distance measure, discriminative model, nominal attributes, nearest neighbor

Procedia PDF Downloads 115
14572 Sea-Spray Calculations Using the MESO-NH Model

Authors: Alix Limoges, William Bruch, Christophe Yohia, Jacques Piazzola

Abstract:

A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD.

Keywords: atmospheric models, sea-spray source, sea-spray dynamics, aerosols

Procedia PDF Downloads 149
14571 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network

Authors: Jui-Chen Huang, Shou-Hsiung Cheng

Abstract:

This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.

Keywords: fall, fuzzy neural network, health belief model, telecare, willingness

Procedia PDF Downloads 201
14570 The Case for Strategic Participation: How Facilitated Engagement Can Be Shown to Reduce Resistance and Improve Outcomes Through the Use of Strategic Models

Authors: Tony Mann

Abstract:

This paper sets out the case for involving and engaging employees/workers/stakeholders/staff in any significant change that is being considered by the senior executives of the organization. It establishes the rationale, the approach, the methodology of engagement and the benefits of a participative approach. It challenges the new norm of imposing change for fear of resistance and instead suggests that involving people has better outcomes and a longer-lasting impact. Various strategic models are introduced and illustrated to explain how the process can be most effective. The paper highlights one model in particular (the Process Iceberg® Organizational Change model) that has proven to be instrumental in developing effective change. Its use is demonstrated in its various forms and explains why so much change fails to address the key elements and how we can be more productive in managing change. ‘Participation’ in change is too often seen as negative, expensive and unwieldy. The paper aims to show that another model: UIA=O+E, can offset the difficulties and, in fact, produce much more positive and effective change.

Keywords: facilitation, stakeholders, buy-in, digital workshops

Procedia PDF Downloads 110
14569 Investigation of a Technology Enabled Model of Home Care: the eShift Model of Palliative Care

Authors: L. Donelle, S. Regan, R. Booth, M. Kerr, J. McMurray, D. Fitzsimmons

Abstract:

Palliative home health care provision within the Canadian context is challenged by: (i) a shortage of registered nurses (RN) and RNs with palliative care expertise, (ii) an aging population, (iii) reliance on unpaid family caregivers to sustain home care services with limited support to conduct this ‘care work’, (iv) a model of healthcare that assumes client self-care, and (v) competing economic priorities. In response, an interprofessional team of service provider organizations, a software/technology provider, and health care providers developed and implemented a technology-enabled model of home care, the eShift model of palliative home care (eShift). The eShift model combines communication and documentation technology with non-traditional utilization of health human resources to meet patient needs for palliative care in the home. The purpose of this study was to investigate the structure, processes, and outcomes of the eShift model of care. Methodology: Guided by Donebedian’s evaluation framework for health care, this qualitative-descriptive study investigated the structure, processes, and outcomes care of the eShift model of palliative home care. Interviews and focus groups were conducted with health care providers (n= 45), decision-makers (n=13), technology providers (n=3) and family care givers (n=8). Interviews were recorded, transcribed, and a deductive analysis of transcripts was conducted. Study Findings (1) Structure: The eShift model consists of a remotely-situated RN using technology to direct care provision virtually to patients in their home. The remote RN is connected virtually to a health technician (an unregulated care provider) in the patient’s home using real-time communication. The health technician uses a smartphone modified with the eShift application and communicates with the RN who uses a computer with the eShift application/dashboard. Documentation and communication about patient observations and care activities occur in the eShift portal. The RN is typically accountable for four to six health technicians and patients over an 8-hour shift. The technology provider was identified as an important member of the healthcare team. Other members of the team include family members, care coordinators, nurse practitioners, physicians, and allied health. (2) Processes: Conventionally, patient needs are the focus of care; however within eShift, the patient and the family caregiver were the focus of care. Enhanced medication administration was seen as one of the most important processes, and family caregivers reported high satisfaction with the care provided. There was perceived enhanced teamwork among health care providers. (3) Outcomes: Patients were able to die at home. The eShift model enabled consistency and continuity of care, and effective management of patient symptoms and caregiver respite. Conclusion: More than a technology solution, the eShift model of care was viewed as transforming home care practice and an innovative way to resolve the shortage of palliative care nurses within home care.

Keywords: palliative home care, health information technology, patient-centred care, interprofessional health care team

Procedia PDF Downloads 421
14568 Multi-Objective Simulated Annealing Algorithms for Scheduling Just-In-Time Assembly Lines

Authors: Ghorbanali Mohammadi

Abstract:

New approaches to sequencing mixed-model manufacturing systems are present. These approaches have attracted considerable attention due to their potential to deal with difficult optimization problems. This paper presents Multi-Objective Simulated Annealing Algorithms (MOSAA) approaches to the Just-In-Time (JIT) sequencing problem where workload-smoothing (WL) and the number of set-ups (St) are to be optimized simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models similar in product characteristics are assembled. Moreover, this type of problem is NP-hard. Two annealing methods are proposed to solve the multi-objective problem and find an efficient frontier of all design configurations. The performances of the two methods are tested on several problems from the literature. Experimentation demonstrates the relative desirable performance of the presented methodology.

Keywords: scheduling, just-in-time, mixed-model assembly line, sequencing, simulated annealing

Procedia PDF Downloads 128
14567 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)

Authors: Abdelkader Hachemi, Boualem Remini

Abstract:

Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.

Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria

Procedia PDF Downloads 120
14566 Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations

Authors: A. Azari, S. S. K. Seyyedi

Abstract:

One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided.

Keywords: molecular, noise, diffusion, channel

Procedia PDF Downloads 279
14565 Decoding Socio-Cultural Trends in Indian Urban Youth Using Ogilvy 3E Model

Authors: Falguni Vasavada, Pradyumna Malladi

Abstract:

The research focuses on studying the ecosystem of the youth using Ogilvy's 3E model, Ethnography and Thematic Analysis. It has been found that urban Indian youth today is an honest generation, hungry for success, living life by the moment, fiercely independent, are open about sex, sexuality and embrace individual differences. Technology and social media dominate their life. However, they are also phobic about commitments, often drifting along life and engage in unsubstantiated brave-talk.

Keywords: ethnography, youth, culture, track, buyer behavior

Procedia PDF Downloads 360
14564 Estimation of Optimum Parameters of Non-Linear Muskingum Model of Routing Using Imperialist Competition Algorithm (ICA)

Authors: Davood Rajabi, Mojgan Yazdani

Abstract:

Non-linear Muskingum model is an efficient method for flood routing, however, the efficiency of this method is influenced by three applied parameters. Therefore, efficiency assessment of Imperialist Competition Algorithm (ICA) to evaluate optimum parameters of non-linear Muskingum model was addressed through this study. In addition to ICA, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also used aiming at an available criterion to verdict ICA. In this regard, ICA was applied for Wilson flood routing; then, routing of two flood events of DoAab Samsami River was investigated. In case of Wilson flood that the target function was considered as the sum of squared deviation (SSQ) of observed and calculated discharges. Routing two other floods, in addition to SSQ, another target function was also considered as the sum of absolute deviations of observed and calculated discharge. For the first floodwater based on SSQ, GA indicated the best performance, however, ICA was on first place, based on SAD. For the second floodwater, based on both target functions, ICA indicated a better operation. According to the obtained results, it can be said that ICA could be used as an appropriate method to evaluate the parameters of Muskingum non-linear model.

Keywords: Doab Samsami river, genetic algorithm, imperialist competition algorithm, meta-exploratory algorithms, particle swarm optimization, Wilson flood

Procedia PDF Downloads 505
14563 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate

Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar

Abstract:

Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.

Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis

Procedia PDF Downloads 198
14562 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential

Procedia PDF Downloads 242
14561 Competency Based Talent Acquisition: Concept, Practice, and Model, with Reference to Indian Industries

Authors: Manasi V. Shah

Abstract:

Organizations, in the competitive era, are participating in the competency act. They have discerned that, strategically researched and defined competencies when put up on the shelf, can help in achieving business goals. The research focuses on critical elements of competency-based talent acquisition process from practical vantage, with significant experience in a variety of business settings. The research is exploratory and descriptive in nature. The research conduct and outcome is the hinge on with reference to Indian Industries. It elaborates about the concept, practice and a brief model that human resource practitioner can use for effective talent acquisition process, which in turn would be in alignment with business performance. The research helps to present a prudent understanding of recruiting and selecting apt human capital, that can fit in a given job role and has action oriented competency based assessment approach for measuring the probable success of a job incumbent in a given job role.

Keywords: competency based talent acquisition, competency model, talent acquisition concept, talent acquisition practice

Procedia PDF Downloads 312
14560 Using Social Network Analysis for Cyber Threat Intelligence

Authors: Vasileios Anastopoulos

Abstract:

Cyber threat intelligence assists organizations in understanding the threats they face and helps them make educated decisions on preparing their defenses. Sharing of threat intelligence and threat information is increasingly leveraged by organizations and enterprises, and various software solutions are already available, with the open-source malware information sharing platform (MISP) being a popular one. In this work, a methodology for the production of cyber threat intelligence using the threat information stored in MISP is proposed. The methodology leverages the discipline of social network analysis and the diamond model, a model used for intrusion analysis, to produce cyber threat intelligence. The workings are demonstrated with a case study on a production MISP instance of a real organization. The paper concluded with a discussion on the proposed methodology and possible directions for further research.

Keywords: cyber threat intelligence, diamond model, malware information sharing platform, social network analysis

Procedia PDF Downloads 178
14559 Digital Employment of Disabled People: Empirical Study from Shanghai

Authors: Yan Zi, Han Xiao

Abstract:

Across the globe, ICTs are influencing employment both as an industry that creates jobs and as a tool that empowers disabled people to access new forms of work, in innovative and more flexible ways. The advancements in ICT and the number of apps and solutions that support persons with physical, cognitive and intellectual disabilities challenge traditional biased notions and offer a pathway out of traditional sheltered workshops. As the global leader in digital technology innovation, China is arguably a leader in the use of digital technology as a 'lever' in ending the economic and social marginalization of the disabled. This study investigates factors that influence adoption and use of employment-oriented ICT applications among disabled people in China and seeks to integrate three theoretical approaches: the technology acceptance model (TAM), the uses and gratifications (U&G) approach, and the social model of disability. To that end, the study used data from self-reported survey of 214 disabled adults who have been involved in two top-down 'Internet + employment' programs promoted by local disabled persons’ federation in Shanghai. A structural equation model employed in the study demonstrates that the use of employment-oriented ICT applications is affected by demographic factors of gender, categories of disability, education and marital status. The organizational support of local social organizations demonstrates significate effects on the motivations of disabled people. Results from the focus group interviews particularly suggested that to maximize the positive impact of ICTs on employment, there is significant need to build stakeholder capacity on how ICTs could benefits persons with disabilities.

Keywords: disabled people, ICTs, technology acceptance model, uses and gratifications, the social model of disability

Procedia PDF Downloads 108