Search results for: crop water requirements
9101 Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator
Authors: Yang-Gyun Kim, Eun-Taek Woo, Myeong-Gon Lee, Yun-Hyun Cho, Seung-Ho Han
Abstract:
For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible.Keywords: wind turbine, axial flux permanent magnet (AFPM) generator, conductive-type cooling system
Procedia PDF Downloads 3279100 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang
Authors: Siti Aminatu Zuhria
Abstract:
On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste
Procedia PDF Downloads 3059099 Effect of Climatic Change on the Life Activities of Schistocerca graria from Thar Desert, Sindh, Pakistan
Authors: Ahmed Ali Samejo, Riffat Sultana
Abstract:
Pakistan has the sandy Thar Desert in the eastern area, which share border line with India and has exotic fauna and flora, the livelihood of native people rely on livestock and rain fed cultivated fields. The climate of Thar Desert is very harsh and stressful due to frequent drought and very little rainfall, which may occur during monsoon season in the months of July to October and temperature is high, and wind speed also increases in April to June. Schistocerca gregaria is a destructive pest of vegetation from Mauritania to the border line of Pakistan and India. Sometimes they produce swarms which consume all plant where ever they land down and cause the loss in agro-economy of the world. During the recent study, we observed that vegetation was not unique throughout the Thar Desert in the year 2015, because the first spell of rainfall showered over all areas of the Thar Desert in July. However, the second and third spell of rain was confined to village Mahandre jo par and surroundings from August to October. Consequently, vegetation and cultivated crops grew up specially bajra crop (Pennistum glaucum). The climate of Mahandre jo par and surroundings became favorable for S.gregaria, and remaining areas of Thar Desert went hostile. Therefore desert locust attracted to the pleasant area (Mahandre jo par and surroundings) and gradually concentrated, increased reproductive activities, but did not gregarize due to the harvest of bajra crop and the onset of the winter season with an immediate decrease in temperature. An outbreak was near to come into existence, and thereupon conditions become stressful for hoppers to continue further development. Afore mentioned was one reason behind hurdle to the outbreak, another reason might be that migration and concentration of desert locust took place at the end of the season, so climate becomes unfavorable for hoppers, due to dryness of vegetation. Soils also become dry, because rainfall was not showered in end of the season, that’s why eggs that were deposited in late summer were desiccated. This data might be proved fruitful to forecast any outbreak update in future.Keywords: agro-economy, destructive pest, climate, outbreak, vegetation
Procedia PDF Downloads 1729098 Coating of Cotton with Blend of Natural Rubber and Chloroprene Containing Ammonium Acetate for Producing Moisture Vapour Permeable Waterproof Fabric
Authors: Debasish Das, Mainak Mitra, A.Chaudhuri
Abstract:
For the purpose of producing moisture vapor permeable waterproof cotton fabric to be used for protective apparel against rain, cotton fabric was coated with the blend of natural rubber and chloroprene rubber containing ammonium acetate as the water-soluble salt, employing a calendar coating technique. Rubber formulations also contained filler, homogenizer, and a typical sulphur curing system. Natural rubber and chloroprene blend in the blend ratio of 30: 70, containing 25 parts of sodium acetate per hundred parts of rubber was coated on the fabric. The coated fabric was vulcanized thereafter at 140oC for 3 h. Coated and vulcanized fabric was subsequently dipped in water for 45 min, followed by drying in air. Such set of treatments produced optimum results. Coated, vulcanized, washed and dried cotton fabric showed optimum developments in the property profiles in respect of waterproofness, breathability as revealed by moisture vapor transmission rate, coating adhesion, tensile properties, abrasion resistance, flex endurance and fire retardancy. Incorporation of highly water-soluble ammonium acetate salt in the coating formulation and their subsequent removal from vulcanized coated layer affected by post washing in consequent to dipping in the water-bath produced holes of only a few microns in the coating matrix of the fabric. Such microporous membrane formed on the cotton fabric allowed only transportation of moisture vapor through them, giving a moisture vapor transmission rate of 3734 g/m2/24h, while acting as a barrier for large liquid water droplet resisting 120cm of the water column in the hydrostatic water-head tester, rendering the coated cotton fabric waterproof. Examination of surface morphology of vulcanized coating by scanning electron microscopy supported the mechanism proposed for development of breathable waterproof layer on cotton fabric by the process employed above. Such process provides an easy and cost-effective route for achieving moisture vapor permeable waterproof cotton.Keywords: moisture vapour permeability, waterproofness, chloroprene, calendar coating, coating adhesion, fire retardancy
Procedia PDF Downloads 2549097 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis
Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone
Abstract:
The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21◦C and 25◦C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.Keywords: dehumidification, nodal calculation, radiant cooling panel, system sizing
Procedia PDF Downloads 1759096 Improved Performance of Mn Substituted Ceria Nanospheres for Water Gas Shift Reaction: Influence of Preparation Conditions
Authors: Bhairi Lakshminarayana, Surajit Sarker, Ch. Subrahmanyam
Abstract:
The present study reports the development of noble metal free nano catalysts for low-temperature CO oxidation and water gas shift reaction. Mn-substituted CeO2 solid solution catalysts were synthesized by co-precipitation, combustion and hydrothermal methods. The formation of solid solution was confirmed by XRD with Rietveld refinement and the percentage of carbon and nitrogen doping was ensured by CHNS analyzer. Raman spectroscopic confirmed the oxygen vacancies. The surface area, pore volume and pore size distribution confirmed by N2 physisorption analysis, whereas, UV-visible diffuse reflectance spectroscopy and XPS data confirmed the oxidation state of the Mn ion. The particle size and morphology (spherical shape) of the material was confirmed using FESEM and HRTEM analysis. Ce0.8Mn0.2O2-δ was calcined at 400 °C, 600 °C and 800 °C. Raman spectroscopy confirmed that the catalyst calcined at 400 °C has the best redox properties. The activity of the designed catalysts for CO oxidation (0.2 vol%), carried out with GHSV of 21,000 h-1 and it has been observed that co-precipitation favored the best active catalyst towards CO oxidation and water gas shift reaction, due to the high surface area, improved reducibility, oxygen mobility and highest quantity of surface oxygen species. The activation energy of low temperature CO oxidation on Ce0.8Mn0.2O2- δ (combustion) was 5.5 kcal.K-1.mole-1. The designed catalysts were tested for water gas shift reaction. The present study demonstrates that Mn ion substituted ceria at 400 °C calcination temperature prepared by co-precipitation method promise to revive a green sustainable energy production approach.Keywords: Ce0.8Mn0.2O2-ð, CO oxidation, physicochemical characterization, water gas shift reaction (WGS)
Procedia PDF Downloads 2379095 Comparative Study of Water Quality Parameters in the Proximity of Various Landfills Sites in India
Authors: Abhishek N. Srivastava, Rahul Singh, Sumedha Chakma
Abstract:
The rapid urbanization in the developing countries is generating an enormous amount of waste leading to the creation of unregulated landfill sites at various places at its disposal. The liquid waste, known as leachate, produced from these landfills sites is severely affecting the surrounding water quality. The water quality in the proximity areas of the landfill is found affected by various physico-chemical parameters of leachate such as pH, alkalinity, total hardness, conductivity, chloride, total dissolved solids (TDS), total suspended solids (TSS), sulphate, nitrate, phosphate, fluoride, sodium and potassium, biological parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), Faecal coliform, and heavy metals such as cadmium (Cd), lead (Pb), iron (Fe), mercury (Hg), arsenic (As), cobalt (Co), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni). However, all these parameters are distributive in leachate that produced according to the nature of waste being dumped at various landfill sites, therefore, it becomes very difficult to predict the main responsible parameter of leachate for water quality contamination. The present study is endeavour the comparative analysis of the physical, chemical and biological parameters of various landfills in India viz. Okhla landfill, Ghazipur landfill, Bhalswa ladfill in NCR Delhi, Deonar landfill in Mumbai, Dhapa landfill in Kolkata and Kodungayaiyur landfill, Perungudi landfill in Chennai. The statistical analysis of the parameters was carried out using the Statistical Packages for the Social Sciences (SPSS) and LandSim 2.5 model to simulate the long term effect of various parameters on different time scale. Further, the uncertainties characterization of various input parameters has also been analysed using fuzzy alpha cut (FAC) technique to check the sensitivity of various water quality parameters at the proximity of numerous landfill sites. Finally, the study would help to suggest the best method for the prevention of pollution migration from the landfill sites on priority basis.Keywords: landfill leachate, water quality, LandSim, fuzzy alpha cut
Procedia PDF Downloads 1259094 Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion
Authors: Bosiacki Mateusz, Anna Lubkowska, Dariusz Chlubek, Irena Baranowska-Bosiacka
Abstract:
Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles.Keywords: cold water immersion, adaptive responses, muscle energy metabolism, aging
Procedia PDF Downloads 819093 Cascade Control for Pressure Calibration by Fieldbus Communication System
Authors: Chatchaval Pornpatkul, Wipawan Suksathid
Abstract:
This paper is to study and control the pressure of the water inside the open tank using a cascade control with the communication in the process by fieldbus system for the pressure calibration. The plant model is to be used in experiments to control the level and flow process of the water by using Syscon program to create functions. We used to control by Intouch runtime program to create the graphic display on the screen. In this case we used PI control the level and the flow process of water in the open tank in the range of 0 – 10 L/m. The output signal of the level and the flow transmitter are the digital standard signal by fieldbus system. And all information displayed on the computer with the communication between the computer and plant model can be communication to each other through just one cable pair. And in this paper, the PI tuning, we used calculate by Ziegler-Nichols reaction curve method to control the plant model by PI controller.Keywords: cascade control, fieldbus system, pressure calibration, microelectronics systems
Procedia PDF Downloads 4599092 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand
Authors: Won Taek Oh, Adin Richard
Abstract:
Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.Keywords: critical height, matric suction, unsaturated soil, unsupported trench
Procedia PDF Downloads 1219091 Case Study of High-Resolution Marine Seismic Survey in Shallow Water, Arabian Gulf, Saudi Arabia
Authors: Almalki M., Alajmi M., Qadrouh Y., Alzahrani E., Sulaiman A., Aleid M., Albaiji A., Alfaifi H., Alhadadi A., Almotairy H., Alrasheed R., Alhafedh Y.
Abstract:
High-resolution marine seismic survey is a well-established technique that commonly used to characterize near-surface sediments and geological structures at shallow water. We conduct single channel seismic survey to provide high quality seismic images for near-surface sediments upto 100m depth at Jubal costal area, Arabian Gulf. Eight hydrophones streamer has been used to collect stacked seismic traces alone 5km seismic line. To reach the required depth, we have used spark system that discharges energies above 5000 J with expected frequency output span the range from 200 to 2000 Hz. A suitable processing flow implemented to enhance the signal-to-noise ratio of the seismic profile. We have found that shallow sedimentary layers at the study site have complex pattern of reflectivity, which decay significantly due to amount of source energy used as well as the multiples associated to seafloor. In fact, the results reveal that single channel marine seismic at shallow water is a cost-effective technique that can be easily repeated to observe any possibly changes in the wave physical properties at the near surface layersKeywords: shallow marine single-channel data, high resolution, frequency filtering, shallow water
Procedia PDF Downloads 729090 Development of Natural Zeolites Adsorbent: Preliminary Study on Water-Isopropyl Alcohol Adsorption in a Close-Loop Continuous Adsorber
Authors: Sang Kompiang Wirawan, Pandu Prabowo Jati, I Wayan Warmada
Abstract:
Klaten Indonesian natural zeolite can be used as powder or pellet adsorbent. Pellet adsorbent has been made from activated natural zeolite powder by a conventional pressing method. Starch and formaldehyde were added as binder to strengthen the construction of zeolite pellet. To increase the absorptivity and its capacity, natural zeolite was activated first chemically and thermally. This research examined adsorption process of water from Isopropyl Alcohol (IPA)-water system using zeolite adsorbent pellet from natural zeolite powder which has been activated with H2SO4 0.1 M and 0.3 M. Adsorbent was pelleted by pressing apparatus at certain pressure to make specification in 1.96 cm diameter, 0.68 cm thickness which the natural zeolite powder (-80 mesh). The system of isopropyl-alcohol water contained 80% isopropyl-alcohol. Adsorption process was held in close-loop continuous apparatus which the zeolite pellet was put inside a column and the solution of IPA-water was circulated at certain flow. Concentration changing was examined thoroughly at a certain time. This adsorption process included mass transfer from bulk liquid into film layer and from film layer into the solid particle. Analysis of rate constant was using first order isotherm model that simulated with MATLAB. Besides using first order isotherm, intra-particle diffusion model was proposed by using pore diffusion model. The study shows that adsorbent activated by H2SO4 0.1 M has good absorptivity with mass transfer constant at 0.1286 min-1.Keywords: intra-particle diffusion, fractional attainment, first order isotherm, zeolite
Procedia PDF Downloads 3119089 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System
Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh
Abstract:
Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato
Procedia PDF Downloads 4439088 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 2559087 Potential Benefits and Adaptation of Climate Smart Practices by Small Farmers Under Three-Crop Rice Production System in Vietnam
Authors: Azeem Tariq, Stephane De Tourdonnet, Lars Stoumann Jensen, Reiner Wassmann, Bjoern Ole Sander, Quynh Duong Vu, Trinh Van Mai, Andreas De Neergaard
Abstract:
Rice growing area is increasing to meet the food demand of increasing population. Mostly, rice is growing on lowland, small landholder fields in most part of the world, which is one of the major sources of greenhouse gases (GHG) emissions from agriculture fields. The strategies such as, altering water and residues (carbon) management practices are assumed to be essential to mitigate the GHG emissions from flooded rice system. The actual implementation and potential of these measures on small farmer fields is still challenging. A field study was conducted on red river delta in Northern Vietnam to identify the potential challenges and barriers to the small rice farmers for implementation of climate smart rice practices. The objective of this study was to develop and access the feasibility of climate smart rice prototypes under actual farmer conditions. Field and scientific oriented framework was used to meet our objective. The methodological framework composed of six steps: i) identification of stakeholders and possible options, ii) assessment of barrios, drawbacks/advantages of new technologies, iii) prototype design, iv) assessment of mitigation potential of each prototype, v) scenario building and vi) scenario assessment. A farm survey was conducted to identify the existing farm practices and major constraints of small rice farmers. We proposed the two water (pre transplant+midseason drainage and early+midseason drainage) and one straw (full residue incorporation) management option keeping in views the farmers constraints and barriers for implementation. To test new typologies with existing prototypes (midseason drainage, partial residue incorporation) at farmer local conditions, a participatory field experiment was conducted for two consecutive rice seasons at farmer fields. Following the results of each season a workshop was conducted with stakeholders (farmers, village leaders, cooperatives, irrigation staff, extensionists, agricultural officers) at local and district level to get feedbacks on new tested prototypes and to develop possible scenarios for climate smart rice production practices. The farm analysis survey showed that non-availability of cheap labor and lacks of alternatives for straw management influence the small farmers to burn the residues in the fields except to use for composting or other purposes. Our field results revealed that application of early season drainage significantly mitigates (40-60%) the methane emissions from residue incorporation. Early season drainage was more efficient and easy to control under cooperate manage system than individually managed water system, and it leads to both economic (9-11% high rice yield, low cost of production, reduced nutrient loses) and environmental (mitigate methane emissions) benefits. The participatory field study allows the assessment of adaptation potential and possible benefits of climate smart practices on small farmer fields. If farmers have no other residue management option, full residue incorporation with early plus midseason drainage is adaptable and beneficial (both environmentally and economically) management option for small rice farmers.Keywords: adaptation, climate smart agriculture, constrainsts, smallholders
Procedia PDF Downloads 2669086 A Conceptual Design of Freeze Desalination Using Low Cost Refrigeration
Authors: Parul Sahu
Abstract:
In recent years, seawater desalination has been emerged as a potential resource to circumvent water scarcity, especially in coastal regions. Among the various methods, thermal evaporation or distillation and membrane operations like Reverse Osmosis (RO) has been exploited at commercial scale. However, the energy cost and maintenance expenses associated with these processes remain high. In this context Freeze Desalination (FD), subjected to the availability of low cost refrigeration, offers an exciting alternative. Liquefied Natural Gas (LNG) regasification terminals provide an opportunity to utilize the refrigeration available with regasification of LNG. This work presents the conceptualization and development of a process scheme integrating the ice and hydrate based FD to the LNG regasification process. This integration overcomes the high energy demand associated with FD processes by utilizing the refrigeration associated with LNG regasification. An optimal process scheme was obtained by performing process simulation using ASPEN PLUS simulator. The results indicated the new proposed process requires only 1 kWh/m³ of energy with the utilization of maximum refrigeration. In addition, a sensitivity analysis was also performed to study the effect of various process parameters on water recovery and energy consumption for the proposed process. The results show that the energy consumption decreases by 30% with an increase in water recovery from 30% to 60%. However, due to operational limitations associated with ice and hydrate handling in seawater, the water recovery cannot be maximized but optimized. The proposed process can be potentially used to desalinate seawater in integration with LNG regasification terminal.Keywords: freeze desalination, liquefied natural gas regasification, process simulation, refrigeration
Procedia PDF Downloads 1319085 Unravelling Glyphosates Disruptive Effects on the Photochemical Efficiency of Amaranthus cruentus
Authors: Jacques M. Berner, Lehlogonolo Maloma
Abstract:
Context: Glyphosate, a widely used herbicide, has raised concerns about its impact on various crops. Amaranthus cruentus, an important grain crop species, is particularly susceptible to glyphosate. Understanding the specific disruptions caused by glyphosate on the photosynthetic process in Amaranthus cruentus is crucial for assessing its effects on crop productivity and ecological sustainability. Research Aim: This study aimed to investigate the dose-dependent impact of glyphosate on the photochemical efficiency of Amaranthus cruentus using the OJIP transient analysis. The goal was to assess the specific disruptions caused by glyphosate on key parameters of photosystem II. Methodology: The experiment was conducted in a controlled greenhouse environment. Amaranthus cruentus plants were exposed to different concentrations of glyphosate, including half, recommended, and double the recommended application rates. The photochemical efficiency of the plants was evaluated using non-invasive chlorophyll a fluorescence measurements and subsequent analysis of OJIP transients. Measurements were taken on 1-hour dark-adapted leaves using a Hansatech Handy PEA+ chlorophyll fluorimeter. Findings: The study's results demonstrated a significant reduction in the photochemical efficiency of Amaranthus cruentus following glyphosate treatment. The OJIP transients showed distinct alterations in the glyphosate-treated plants compared to the control group. These changes included a decrease in maximal fluorescence (FP) and a delay in the rise of the fluorescence signal, indicating impairment in the energy conversion process within the photosystem II. Glyphosate exposure also led to a substantial decrease in the maximum quantum yield efficiency of photosystem II (FV/FM) and the total performance index (PItotal), which reflects the overall photochemical efficiency of photosystem II. These reductions in photochemical efficiency were observed even at half the recommended dose of glyphosate. Theoretical Importance: The study provides valuable insights into the specific disruptions caused by glyphosate on the photochemical efficiency of Amaranthus cruentus. Data Collection and Analysis Procedures: Data collection involved non-invasive chlorophyll a fluorescence measurements using a chlorophyll fluorimeter on dark-adapted leaves. The OJIP transients were then analyzed to assess specific disruptions in key parameters of photosystem II. Statistical analysis was conducted to determine the significance of the differences observed between glyphosate-treated plants and the control group. Question Addressed: The study aimed to address the question of how glyphosate exposure affects the photochemical efficiency of Amaranthus cruentus, specifically examining disruptions in the photosynthetic electron transport chain and overall photochemical efficiency. Conclusion: The study demonstrates that glyphosate severely impairs the photochemical efficiency of Amaranthus cruentus, as indicated by the alterations in OJIP transients. Even at half the recommended dose, glyphosate caused significant reductions in photochemical efficiency. These findings highlight the detrimental effects of glyphosate on crop productivity and emphasize the need for further research to evaluate its long-term consequences and ecological implications in agriculture. The authors gratefully acknowledge the support from North-West University for making this research possible.Keywords: glyphosate, amaranthus cruentus, ojip transient analysis, pitotal, photochemical efficiency, chlorophyll fluorescence, weeds
Procedia PDF Downloads 919084 Growth and Yield Potential of Quinoa genotypes on Salt Affected Soils
Authors: Shahzad M. A. Basra, Shahid Iqbal, Irfan Afzal, Hafeez-ur-Rehman
Abstract:
Quinoa a facultative halophyte crop plant is a new introduction in Pakistan due to its superior nutritional profile and its abiotic stress tolerance, especially against salinity. Present study was conducted to explore halophytic behavior of quinoa. Four quinoa genotypes (A1, A2, A7 and A9) were evaluated against high salinity (control, 100, 200, 300 and 400 mM). Evaluation was made on the basis of ionic analysis (Na+, K+ and K+: Na+ ratio in shoot) and root- shoot fresh and dry weight at four leaf stage. Seedling growth i.e. fresh and dry weight of shoot and root increased by 100 mM salinity and then growth decreased gradually with increasing salinity level in all geno types. Mineral analysis indicated that A2 and A7 have more tolerant behavior having low Na+ and high K+ ¬concentration as compared to A1 and A9. Same geno types as above were also evaluated against high salinity (control, 10, 20, 30, and 40 dS m-1) in pot culture during 2012-13. It was found that increase in salinity up to 10 dS m-1 the plant height, stem diameter and yield related traits increased but decreased with further increase in salinity. Same trend was observed in ionic contents. Maximum grain yield was achieved by A7 (100 g plant-1) followed by A2 (82 g plant-1) at salinity level 10 dS m-1. Next phase was carried out through field settings by using salt tolerant geno types (A2 and A7) at Crop Physiology Research Area Farm (non saline soil as control)/ Proka Farm (salt affected with EC up to 15 dS m-1), University of Agriculture, Faisalabad and Soil Salinity Research Institute, Pindi Bhtiaan (SSRI) Farm (one normal as control and two salt affected fields with EC values up to 15 and 30 dS m-1) during 2013-14. Genotype A7 showed maximum growth and gave maximum yield (3200 kg ha-1) at Proka Farm which was statistically at par to the values of yield obtained on normal soils of Faisalabad. Geno type A7 also gave maximum yield 2800 kg ha-1 on normal field of Pindi bhtiaan followed by as obtained (2340) on salt problem field (15 dS m-1) of same location.Keywords: quinoa, salinity, halophyte, genotype
Procedia PDF Downloads 5709083 The Beneficial Effects of Hydrotherapy for Recovery from Team Sport – A Meta-Analysis
Authors: Trevor R. Higgins
Abstract:
To speed/enhance recovery from sport, cold water immersion (CWI) and contrast water therapy (CWT) have become common practice within the high-level team sport. Initially, research into CWI and CWT protocols and recovery was sparse; athletes relied solely upon an anecdotal support. However, an increase into recovery research has occurred. A number of reviews have subsequently been conducted to clarify scientific evidence. However, as the nature of physiological stress and training status of participants will impact on results, an opportunity existed to narrow the focus to a more exacting review evaluating hydrotherapy for recovery in a team sport. A Boolean logic [AND] keyword search of databases was conducted: SPORTDiscus; AMED; CINAHL; MEDLINE. Data was extracted and the standardized mean differences were calculated with 95% CI. The analysis of pooled data was conducted using a random-effect model, with Heterogeneity assessed using I2. 23 peer reviewed papers (n=606) met the criteria. Meta-analyses results indicated CWI was likely beneficial for recovery at 24h (Countermovement Jump (CMJ): p= 0.05, CI -0.004 to 0.578; All-out sprint: p=0.02, -0.056 to 0.801; DOMS: p=0.08, CI -0.092 to 1.936) and at 72h (accumulated sprinting: p=0.07, CI -0.062 to 1.209; DOMS: p=0.09, CI -0.121 to 1.555) following team sport. Whereas CWT was likely beneficial for recovery at 1h (CMJ: p= 0.07, CI -0.004 to 0.863) and at 48h (fatigue: p=0.04, CI 0.013 to 0.942) following team sport. Athlete’s perceptions of muscle soreness and fatigue are enhanced with CWI and/or CWT, however even though CWI and CWT were beneficial in attenuating decrements in neuromuscular performance 24 hours following team sport, indications are those benefits were no longer Sydney evident 48 hours following team sport.Keywords: cold water immersion, contrast water therapy, recovery, team sport
Procedia PDF Downloads 5079082 Hybrid Method Development for the Removal of Crystal Violet Dye from Aqueous Medium
Authors: D. Nareshyadav, K. Anand Kishore, D. Bhagawan
Abstract:
Water scarcity is the much-identified issue all over the world. The available sources of water need to be reused to sustainable future. The present work explores the treatment of dye wastewater using combinative photocatalysis and ceramic nanofiltration membrane. Commercial ceramic membrane and TiO₂ catalyst were used in this study to investigate the removal of crystal violet dye from the aqueous solution. The effect of operating parameters such as inlet pressure, initial concentration of crystal violet dye, catalyst (TiO₂) loading, initial pH was investigated in the individual system as well as the combined system. In this study, 95 % of dye water was decolorized and 89 % of total organic carbon (TOC) was removed by the hybrid system for 500 ppm of dye and 0.75 g/l of TiO₂ concentrations at pH 9. The operation of the integrated photocatalytic reactor and ceramic membrane filtration has shown the maximum removal of crystal violet dye compared to individual systems. Hence this proposed method may be effective for the removal of Crystal violet dye from effluents.Keywords: advanced oxidation process, ceramic nanoporous membrane, dye degradation/removal, hybrid system, photocatalysis
Procedia PDF Downloads 1789081 Monte Carlo Simulations of LSO/YSO for Dose Evaluation in Photon Beam Radiotherapy
Authors: H. Donya
Abstract:
Monte Carlo (MC) techniques play a fundamental role in radiotherapy. A two non-water-equivalent of different media were used to evaluate the dose in water. For such purpose, Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates scintillators are chosen for MC simulation using Penelope code. To get higher efficiency in dose calculation, variance reduction techniques are discussed. Overall results of this investigation ensured that the LSO/YSO bi-media a good combination to tackle over-response issue in dynamic photon radiotherapy.Keywords: Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates, Monte Carlo, correlated sampling, radiotherapy
Procedia PDF Downloads 4079080 Study on the Effect of Different Media on Green Roof Water Retention
Authors: Chen Zhi-Wei, Hsieh Wei-Fang
Abstract:
Taiwan annual rainfall is global average of 2.5 times, plus city excessive development, green constantly to reduced, instead of is big area of artificial base disc, makes Taiwan rainy season during occurred of storm cannot timely of emissions, led to flood constantly, and rain also cannot was retained again using, led to city hydrological balance suffered damage, and to Regulation city of by brings of negative effect, increased green covered rate became most effective of method, and city land limited, so roof green gradually became a alternative program. Green roofs have become one of the Central and local government policy initiatives for urban development, in foreign countries, such as the United States, and Japan, and Singapore etc. Development of roof greening as an important policy, has become a trend of the times. In recent years, many experts and scholars are also on the roof greening all aspects of research, mostly for green roof for the environmental impact of benefits, such as: carbon reduction, cooling, thermostat, but research on the benefits of green roofs under water cut but it is rare. Therefore, this research literature from green roof in to view and analyze what kind of medium suitable for roof greening and use of green base plate combination simulated green roof structure, via different proportions of the medium with water retention plate and drainage board, experiment with different planting base plate combination of water conservation performance. Research will want to test the effect of roof planting base mix, promotion of relevant departments and agencies in future implementation of green roofs, prompted the development of green roofs, which in the end Taiwan achieve sustainable development of the urban environment help.Keywords: thin-layer roof greening and planting medium, water efficiency
Procedia PDF Downloads 3549079 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials
Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos
Abstract:
The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR
Procedia PDF Downloads 5449078 Eco-Friendly Cleansers Initiation for Eco-Campsite Development in Khao Yai National Park, Thailand
Authors: Tatsanawalai Utarasakul
Abstract:
Environmental impact has occurred at Khao Yai National Park, especially the water pollution by tourist activities as a result of 800,000 tourists visiting annually. To develop an eco-campsite, eco-friendly cleansers were implemented in Lam Ta Khlong and Pha Kluay Mai Campsites for tourists and restaurants. The results indicated the positive effects of environmentally friendly cleansers on water quality in Lam Ta Khlong River and can be implemented in other protected areas to decrease chemical contamination in ecosystems.Keywords: sustainable tourism management, eco-campsite, Khao Yai National Park, ecology
Procedia PDF Downloads 3959077 Prefabricated Integral Design of Building Services
Authors: Mina Mortazavi
Abstract:
The common approach in the construction industry for restraint requirements in existing structures or new constructions is to have Non-Structural Components (NSCs) assembled and installed on-site by different MEP subcontractors. This leads to a lack of coordination and higher costs, construction time, and complications due to inaccurate building information modelling (BIM) systems. Introducing NSCs to a consistent BIM system from the beginning of the design process and considering their seismic loads in the analysis and design process can improve coordination and reduce costs and time. One solution is to use prefabricated mounts with attached MEPs delivered as an integral module. This eliminates the majority of coordination complications and reduces design and installation costs and time. An advanced approach is to have as many NSCs as possible installed in the same prefabricated module, which gives the structural engineer the opportunity to consider the involved component weights and locations in the analysis and design of the prefabricated support. This efficient approach eliminates coordination and access issues, leading to enhanced quality control. This research will focus on the existing literature on modular sub-assemblies that are integrated with architectural and structural components. Modular MEP systems take advantage of the precision provided by BIM tools to meet exact requirements and achieve a buildable design every time. Modular installations that include MEP systems provide efficient solutions for the installation of MEP services or components.Keywords: building services, modularisation, prefabrication, integral building design
Procedia PDF Downloads 729076 Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface
Authors: Takahiro Ishizaki, Shutaro Hisada, Oi Lun Li
Abstract:
Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules.Keywords: alkyl-chain length, self-assembled monolayer, silane coupling agent, surface wettability
Procedia PDF Downloads 3909075 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia PDF Downloads 1849074 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems
Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke
Abstract:
Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.Keywords: microplastics pollution, hydraulic, transport, accumulation
Procedia PDF Downloads 709073 In Vitro Study on the Antimicrobial Activity of Ass Hay (Donkey Skin) On Some Pathogenic Microorganisms
Authors: Emmanuel Jaluchimike Iloputaife, Kelechi Nkechinyere Mbah-Omeje
Abstract:
This study was designed to determine the antimicrobial activities and minimum inhibitory concentration of three different batches (Fresh, Oven dried and Sundried) of Ass Hay extracted with water, ethanol and methanolagainst selected human pathogenic microorganisms (Escherichia coli, Klebsiella Pneumonia, Staphylococcus aureus, Aspergillus niger and Candidaalbicans). All extracts were reconstituted with peptone water and tested for antimicrobial activity. The antimicrobial activity, the Minimum Inhibitory Concentration and Minimum Bactericidal/Fungicidal concentrations were determined by agar well diffusion methodagainst test organismsin which aseptic conditions were observed. The antimicrobial activities of the different batches of Ass Hay on the test organisms varied considerably. The highest inhibition zone diameter at 200 mg/ml for the different batches of Ass Hay was recorded by sundried methanol extract against Escherichia coli at 36.4 ± 0.2 mm while fresh methanol extract inhibited Klebsiela pneumonia with the least inhibition zone diameter at 20.1 ± 0.1mm. At 100 mg/ml the highest inhibition zone diameter was recorded by oven dried water extract against Escherichia coli at 30.3 ± 0.3 mm while sun dried water extract inhibited Staphylococcus aureus with the least inhibition zone diameter at 15.1 ± 0.1 mm. At 50mg/ml, the highest inhibition zone diameter was recorded by fresh water extract against Escherichia coli at 25.9 ± 0.1 mm while oven dried water extract inhibited Klebsiela pneumonia with least inhibition zone diameter at 12.1 ± 0.2 mm. At 25mg/ml, the highest inhibition zone diameter was recorded by fresh water extract against Escherichia coli at 18.3 ± 0.2 mm while sun dried ethanol extract inhibited Escherichia coli with least inhibition zone diameter at 10.1 ± 0.1 mm. The MIC and MBC result of ethanol extract of fresh Ass Hay showed a uniform value of 6.25 mg/ml and 12.5 mg/ml respectively for all test bacterial isolates. The Minimum Inhibitory concentration and Minimum bactericidal concentration results of Oven dried ethanol Ass Hay extract showed a uniform value of 3.125 mg/ml and 6.25 mg/ml respectively for all test bacterial isolates and Minimum fungicidal concentration value of 12.5 mg/ml for Aspergillus niger. Statistical analysis showed there is significant difference in mean zone inhibition diameter of the products at p < 0.05, p = 0.019. This study has shown there is antimicrobial potential in Ass Hay and at such there is need to further exploit Donkey Ass Hay in order to maximize the potential.Keywords: microorganisms, Ass Hay, antimicrobial activity, extracts
Procedia PDF Downloads 1399072 Aquatic Intervention Research for Children with Autism Spectrum Disorders
Authors: Mehmet Yanardag, Ilker Yilmaz
Abstract:
Children with autism spectrum disorders (ASD) enjoy and success the aquatic-based exercise and play skills in a pool instead of land-based exercise in a gym. Some authors also observed that many children with ASD experience more success in attaining movement skills in aquatic environment. Properties of the water and hydrodynamic principles cause buoyancy of the water and decrease effects of gravity and it leads to allow a child to practice important aquatic skills with limited motor skills. Also, some authors experience that parents liked the effects of the aquatic intervention program on children with ASD such as improving motor performance, movement capacity and learning basic swimming skills. The purpose of this study was to investigate the effects of aquatic exercise training on water orientation and underwater working capacity were measured in the pool. This study included in four male children between 5 and 7 years old with ASD and 6.25±0.5 years old. Aquatic exercise skills were applied by using one of the error less teaching which is called the 'most to least prompt' procedure during 12-week, three times a week and 60 minutes a day. The findings of this study indicated that there were improvements test results both water orientation skill and underwater working capacity of children with ASD after 12-weeks exercise training. It was seen that the aquatic exercise intervention would be affected to improve working capacity and orientation skills with the special education approaches applying children with ASD in multidisciplinary team-works.Keywords: aquatic, autism, orientation, ASD, children
Procedia PDF Downloads 432