Search results for: graphics processing units
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5131

Search results for: graphics processing units

2611 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device

Authors: Long Kim Vu

Abstract:

The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.

Keywords: CFD, FPGA, heat transfer, thermal analysis

Procedia PDF Downloads 184
2610 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4

Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.

Keywords: ZnO, nanorods, hydrothermal, KMnO4

Procedia PDF Downloads 400
2609 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 132
2608 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector

Authors: Victor Birikorang Danquah

Abstract:

Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.

Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy

Procedia PDF Downloads 181
2607 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: integral production, level set method, morphological operation, segmentation

Procedia PDF Downloads 317
2606 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa

Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete

Abstract:

This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.

Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model

Procedia PDF Downloads 369
2605 Tamper Resistance Evaluation Tests with Noise Resources

Authors: Masaya Yoshikawa, Toshiya Asai, Ryoma Matsuhisa, Yusuke Nozaki, Kensaku Asahi

Abstract:

Recently, side-channel attacks, which estimate secret keys using side-channel information such as power consumption and compromising emanations of cryptography circuits embedded in hardware, have become a serious problem. In particular, electromagnetic analysis attacks against cryptographic circuits between information processing and electromagnetic fields, which are related to secret keys in cryptography circuits, are the most threatening side-channel attacks. Therefore, it is important to evaluate tamper resistance against electromagnetic analysis attacks for cryptography circuits. The present study performs basic examination of the tamper resistance of cryptography circuits using electromagnetic analysis attacks with noise resources.

Keywords: tamper resistance, cryptographic circuit, hardware security evaluation, noise resources

Procedia PDF Downloads 504
2604 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
2603 A Multi-Agent System for Accelerating the Delivery Process of Clinical Diagnostic Laboratory Results Using GSM Technology

Authors: Ayman M. Mansour, Bilal Hawashin, Hesham Alsalem

Abstract:

Faster delivery of laboratory test results is one of the most noticeable signs of good laboratory service and is often used as a key performance indicator of laboratory performance. Despite the availability of technology, the delivery time of clinical laboratory test results continues to be a cause of customer dissatisfaction which makes patients feel frustrated and they became careless to get their laboratory test results. The Medical Clinical Laboratory test results are highly sensitive and could harm patients especially with the severe case if they deliver in wrong time. Such results affect the treatment done by physicians if arrived at correct time efforts should, therefore, be made to ensure faster delivery of lab test results by utilizing new trusted, Robust and fast system. In this paper, we proposed a distributed Multi-Agent System to enhance and faster the process of laboratory test results delivery using SMS. The developed system relies on SMS messages because of the wide availability of GSM network comparing to the other network. The software provides the capability of knowledge sharing between different units and different laboratory medical centers. The system was built using java programming. To implement the proposed system we had many possible techniques. One of these is to use the peer-to-peer (P2P) model, where all the peers are treated equally and the service is distributed among all the peers of the network. However, for the pure P2P model, it is difficult to maintain the coherence of the network, discover new peers and ensure security. Also, security is a quite important issue since each node is allowed to join the network without any control mechanism. We thus take the hybrid P2P model, a model between the Client/Server model and the pure P2P model using GSM technology through SMS messages. This model satisfies our need. A GUI has been developed to provide the laboratory staff with the simple and easy way to interact with the system. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: multi-agent system, delivery process, GSM technology, clinical laboratory results

Procedia PDF Downloads 249
2602 Removal of Iron (II) from Wastewater in Oil Field Using 3-(P-Methyl) Phenyl-5-Thionyl-1,2,4-Triazoline Assembled on Silver Nanoparticles

Authors: E. M. S. Azzam, S. A. Ahmed, H. H. Mohamed, M. A. Adly, E. A. M. Gad

Abstract:

In this work we prepared 3-(p-methyl) phenyl-5-thionyl-1,2,4-triazoline (C1). The nanostructure of the prepared C1 compound was fabricated by assembling on silver nanoparticles. The UV and TEM analyses confirm the assembling of C1 compound on silver nanoparticles. The effect of C1 compound on the removal of Iron (II) from Iron contaminated samples and industrial wastewater samples (produced water from oil processing facility) were studied before and after their assembling on silver nanoparticles. The removal of Iron was studied at different concentrations of FeSO4 solution (5, 14 and 39 mg/l) and field sample concentration (661 mg/l). In addition, the removal of Iron (II) was investigated at different times. The Prepared compound and its nanostructure with AgNPs show highly efficient in removing the Iron ions. Quantum chemical descriptors using DFT was discussed. The output of the study pronounces that the C1 molecule can act as chelating agent for Iron (II).

Keywords: triazole derivatives, silver nanoparticles, iron (II), oil field

Procedia PDF Downloads 657
2601 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
2600 Correlation of Serum Apelin Level with Coronary Calcium Score in Patients with Suspected Coronary Artery Disease

Authors: M. Zeitoun, K. Abdallah, M. Rashwan

Abstract:

Introduction: A growing body of evidence indicates that apelin, a relatively recent member of the adipokines family, has a potential anti-atherogenic effect. An association between low serum apelin state and coronary artery disease (CAD) was previously reported; however, the relationship between apelin and the atherosclerotic burden was unclear. Objectives: Our aim was to explore the correlation of serum apelin level with coronary calcium score (CCS) as a quantitative marker of coronary atherosclerosis. Methods: This observational cross-sectional study enrolled 100 consecutive subjects referred for cardiac multi-detector computed tomography (MDCT) for assessment of CAD (mean age 54 ± 9.7 years, 51 male and 49 females). Clinical parameters, glycemic and lipid profile, high sensitivity CRP (hsCRP), homeostasis model assessment of insulin resistance (HOMA-IR), serum creatinine and complete blood count were assessed. Serum apelin levels were determined using a commercially available Enzyme Immunoassay (EIA) Kit. High-resolution non-contrast CT images were acquired by a 64-raw MDCT and CCS was calculated using the Agatston scoring method. Results: Forty-three percent of the studied subjects had positive coronary artery calcification (CAC). The mean CCS was 79 ± 196.5 Agatston units. Subjects with detectable CAC had significantly higher fasting plasma glucose, HbA1c, and WBCs count than subjects without detectable CAC (p < 0.05). Most importantly, subjects with detectable CAC had significantly lower serum apelin level than subjects without CAC (1.3 ± 0.4 ng/ml vs. 2.8 ± 0.6 ng/ml, p < 0.001). In addition, there was a statistically significant inverse correlation between serum apelin levels and CCS (r = 0.591, p < 0.001); on multivariate analysis this correlation was found to be independent of traditional cardiovascular risk factors and hs-CRP. Conclusion:To the best of our knowledge, this is the first report of an independent association between apelin and CCS in patients with suspected CAD. Apelin emerges as a possible novel biomarker for CAD, but this result remains to be proved prospectively.

Keywords: HbA1c, apelin, adipokines, coronary calcium score (CCS), coronary artery disease (CAD)

Procedia PDF Downloads 342
2599 Management Challenges and Product Quality of Fish Farms in Greece

Authors: S. Anastasiou, C. Nathanailides, S. Logothetis, G. Kanlis

Abstract:

The Greek aquaculture industry is second most important economic sector for the growth of the Greek Economy. The purpose of the present work is to present some data for the management challenges that the Aquaculture industry in Greece is currently facing. Currently the Greek aquaculture industry is going through a series of mergers and restructure. The financial status of the different aquaculture companies, the working conditions and management practices may vary according to lending exposure, market mix, company size, and technological parameters of the different fish farm units and rearing systems. Frequently, the aquaculture personnel are exposed to harsh environmental conditions and to occupational risk. Furthermore, there is pressure on the personnel of fish farms to constantly improve their production efficiency and to enhance their work skills to the new methods and practices which are adopted by the aquaculture industry. There is some data to suggest the existence of gender inequality in the workforce of Greek fish farms. Women are paid less, frequently absent higher managerial positions and most of the male workmates consider the job to harsh for women. Nevertheless, high level of job satisfaction was observed in both men and women. This high level of job satisfaction of the aquaculture personnel can be attributed, at least partially, to the nature of the work which has a very distinct working environment but most of the staff has very positive experiences with the interaction with their workmates and the satisfaction of being in a business which always exceeds its production target. Indeed, there is some evidence to suggest that the Greek aquaculture industry is always exceeding its production targets, while it is rapidly adopting and improving new technology, constantly improving of human resources management practices, which include constant training of the staff, very good communication channels between management and the personnel and reducing the risk of occupational hazard to the aquaculture personnel. All these parameters of management may have a determining role for the volume and quality of the production and future of this sector in Greece.

Keywords: aquaculture, fish quality, management, production targets

Procedia PDF Downloads 442
2598 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City

Authors: Mohammed Alruwaili‬

Abstract:

Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.

Keywords: renewable energy, smart grid, efficiency, distribution network

Procedia PDF Downloads 140
2597 Deficient Multisensory Integration with Concomitant Resting-State Connectivity in Adult Attention Deficit/Hyperactivity Disorder (ADHD)

Authors: Marcel Schulze, Behrem Aslan, Silke Lux, Alexandra Philipsen

Abstract:

Objective: Patients with Attention Deficit/Hyperactivity Disorder (ADHD) often report that they are being flooded by sensory impressions. Studies investigating sensory processing show hypersensitivity for sensory inputs across the senses in children and adults with ADHD. Especially the auditory modality is affected by deficient acoustical inhibition and modulation of signals. While studying unimodal signal-processing is relevant and well-suited in a controlled laboratory environment, everyday life situations occur multimodal. A complex interplay of the senses is necessary to form a unified percept. In order to achieve this, the unimodal sensory modalities are bound together in a process called multisensory integration (MI). In the current study we investigate MI in an adult ADHD sample using the McGurk-effect – a well-known illusion where incongruent speech like phonemes lead in case of successful integration to a new perceived phoneme via late top-down attentional allocation . In ADHD neuronal dysregulation at rest e.g., aberrant within or between network functional connectivity may also account for difficulties in integrating across the senses. Therefore, the current study includes resting-state functional connectivity to investigate a possible relation of deficient network connectivity and the ability of stimulus integration. Method: Twenty-five ADHD patients (6 females, age: 30.08 (SD:9,3) years) and twenty-four healthy controls (9 females; age: 26.88 (SD: 6.3) years) were recruited. MI was examined using the McGurk effect, where - in case of successful MI - incongruent speech-like phonemes between visual and auditory modality are leading to a perception of a new phoneme. Mann-Whitney-U test was applied to assess statistical differences between groups. Echo-planar imaging-resting-state functional MRI was acquired on a 3.0 Tesla Siemens Magnetom MR scanner. A seed-to-voxel analysis was realized using the CONN toolbox. Results: Susceptibility to McGurk was significantly lowered for ADHD patients (ADHDMdn:5.83%, ControlsMdn:44.2%, U= 160.5, p=0.022, r=-0.34). When ADHD patients integrated phonemes, reaction times were significantly longer (ADHDMdn:1260ms, ControlsMdn:582ms, U=41.0, p<.000, r= -0.56). In functional connectivity medio temporal gyrus (seed) was negatively associated with primary auditory cortex, inferior frontal gyrus, precentral gyrus, and fusiform gyrus. Conclusion: MI seems to be deficient for ADHD patients for stimuli that need top-down attentional allocation. This finding is supported by stronger functional connectivity from unimodal sensory areas to polymodal, MI convergence zones for complex stimuli in ADHD patients.

Keywords: attention-deficit hyperactivity disorder, audiovisual integration, McGurk-effect, resting-state functional connectivity

Procedia PDF Downloads 127
2596 A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound

Authors: Mosab Alrashed, Wei Xu, Stephen Abineri, Yifan Zhao, Jörn Mehnen

Abstract:

Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed.

Keywords: NDT, correlation analysis, image processing, damage, inspection

Procedia PDF Downloads 547
2595 Big Brain: A Single Database System for a Federated Data Warehouse Architecture

Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf

Abstract:

Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.

Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)

Procedia PDF Downloads 236
2594 Quantum Computing with Qudits on a Graph

Authors: Aleksey Fedorov

Abstract:

Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived.

Keywords: quantum computing, qudits, Toffoli gates, gate decomposition

Procedia PDF Downloads 147
2593 Automatic Queuing Model Applications

Authors: Fahad Suleiman

Abstract:

Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time.

Keywords: queuing systems, queuing system models, scheduling algorithms, patients

Procedia PDF Downloads 354
2592 Juxtaposition of the Past and the Present: A Pragmatic Stylistic Analysis of the Short Story “Too Much Happiness” by Alice Munro

Authors: Inas Hussein

Abstract:

Alice Munro is a Canadian short-story writer who has been regarded as one of the greatest writers of fiction. Owing to her great contribution to fiction, she was the first Canadian woman and the only short-story writer ever to be rewarded the Nobel Prize for Literature in 2013. Her literary works include collections of short stories and one book published as a novel. Her stories concentrate on the human condition and the human relationships as seen through the lens of daily life. The setting in most of her stories is her native Canada- small towns much similar to the one where she grew up. Her writing style is not only realistic but is also characterized by autobiographical, historical and regional features. The aim of this research is to analyze one of the key stylistic devices often adopted by Munro in her fictions: the juxtaposition of the past and the present, with reference to the title story in Munro's short story collection Too Much Happiness. The story under exploration is a brief biography of the Russian Mathematician and novelist Sophia Kovalevsky (1850 – 1891), the first woman to be appointed as a professor of Mathematics at a European University in Stockholm. Thus, the story has a historical protagonist and is set on the European continent. Munro dramatizes the severe historical and cultural constraints that hindered the career of the protagonist. A pragmatic stylistic framework is being adopted and the qualitative analysis is supported by textual reference. The stylistic analysis reveals that the juxtaposition of the past and the present is one of the distinctive features that characterize the author; in a typical Munrovian manner, the protagonist often moves between the units of time: the past, the present and, sometimes, the future. Munro's style is simple and direct but cleverly constructed and densely complicated by the presence of deeper layers and stories within the story. Findings of the research reveal that the story under investigation merits reading and analyzing. It is recommended that this story and other stories by Munro are analyzed to further explore the features of her art and style.

Keywords: Alice Munro, Too Much Happiness, style, stylistic analysis

Procedia PDF Downloads 145
2591 Effects of Culture Conditions on the Adhesion of Yeast Candida spp. and Pichia spp. to Stainless Steel with Different Polishing and Their Control

Authors: Ružica Tomičić, Zorica Tomičić, Peter Raspor

Abstract:

An abundant growth of unwanted yeasts in food processing plants can lead to problems in quality and safety with significant financial losses. Candida and Pichia are the genera mainly involved in spoilage of products in the food and beverage industry. These contaminating microorganisms can form biofilms on food contact surfaces, being difficult to eradicate, increasing the probability of microbial survival and further dissemination during food processing. It is well known that biofilms are more resistant to antimicrobial agents compared to planktonic cells and this makes them difficult to eliminate. Among the strategies used to overcome resistance to antifungal drugs and preservatives, the use of natural substances such as plant extracts has shown particular promise, and many natural substances have been found to exhibit antifungal properties. This study aimed to investigated the impact of growth medium (Malt Extract broth (MEB) or Yeast Peptone Dextrose (YPD) broth) and temperatures (7°C, 37°C, 43°C for Candida strains and 7°C, 27°C, 32°C for Pichia strains) on the adhesion of Candida spp. and Pichia spp. to stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20 – 961.9 nm), a material commonly used in the food industry. We also evaluated the antifungal and antiadhesion activity of plant extracts such as Humulus lupulus, Alpinia katsumadai and Evodia rutaecarpa against C. albicans, C glabrata and P. membranifaciens and investigated whether these plant extracts can interfere with biofilm formation. The adhesion was assessed by the crystal violet staining method, while the broth microdilution method CLSI M27-A3 was used to determine the minimum inhibitory concentration (MIC) of plant extracts. Our results indicated that the nutrient content of the medium significantly influenced the amount of adhered cells of the tested yeasts. The growth medium which resulted in a higher adhesion of C. albicans and C. glabrata was MEB, while for C. parapsilosis and C. krusei was YPD. In the case of P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. Regarding the effect of temperature, C. albicans strain adhered to stainless steel surfaces in significantly higher level at a temperature of 43°C, while on the other hand C. glabrata, C. parapsilosis and C. krusei showed a different behavior with significantly higher adhesion at 37°C than at 7°C and 43°C. Further, the adherence ability of Pichia strains was highest at 27°C. Based on the MIC values, all plant extracts exerted significant antifungal effects with MIC values ranged from 100 to 400 μg/mL. It was observed that biofilm of C. glabrata were more resistance to plant extracts as compared to C. albicans. However, extracts of A. katsumadai and E. rutaecarpa promoted the growth and development of the preformed biofilm of P. membranifaciens. Thus, the knowledge of how these microorganisms adhere and which factors affect this phenomenon is of great importance in order to avoid their colonization on food contact surfaces.

Keywords: adhesion, Candida spp., Pichia spp., plant extracts

Procedia PDF Downloads 194
2590 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours

Authors: Charlotte Entwistle, Ryan Boyd

Abstract:

Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.

Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data

Procedia PDF Downloads 349
2589 Renovation of Industrial Zones in Ho Chi Minh City: An Approach from Changing Function of Processing to Urban Warehousing

Authors: Thu Le Thi Bao

Abstract:

Industrial parks have both active roles in promoting economic development and source of appearance of boarding houses and slums in the adjacent area, lacking infrastructure, causing many social evils. The context of the recent pandemic and climate change on a global scale pose issues that need to be resolved for sustainable development. Ho Chi Minh City aims to develop housing for migrant workers to stabilize human resources and, at the same time, solve problems of social evils caused by poor living conditions. The paper focuses on the content of renovating existing industrial parks and worker accommodation in Ho Chi Minh City to propose appropriate models, contributing to the goal of urban embellishment and solutions for industrial parks to adapt to abnormal impact conditions such as pandemics, climate change, crises.

Keywords: industrial park, social housing, accommodation, distribution center

Procedia PDF Downloads 113
2588 Biobutanol Production from Date Palm Waste by Clostridium acetobutylicum

Authors: Diya Alsafadi, Fawwaz Khalili, Mohammad W. Amer

Abstract:

Butanol is an important industrial solvent and potentially a better liquid transportation biofuel than ethanol. The cost of feedstock is one key problem associated with the biobutanol production. Date palm is sugar-rich fruit and highly abundant. Thousands of tons of date wastes that generated from date processing industries are thrown away each year and imposing serious environmental problems. To exploit the utilization of renewable biomass feedstock, date palm waste was utilized for butanol production by Clostridium acetobutylicum DSM 1731. Fermentation conditions were optimized by investigating several parameters that affect the production of butanol such as temperature, substrate concentration and pH. The highest butanol yield (1.0 g/L) and acetone, butanol, and ethanol (ABE) content (1.3 g/L) were achieved at 20 g/L date waste, pH 5.0 and 37 °C. These results suggest that date palm waste can be used for biobutanol production.

Keywords: biofuel, acetone-butanol-ethanol fermentation, date palm waste, Clostridium acetobutylicum

Procedia PDF Downloads 353
2587 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data

Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill

Abstract:

Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.

Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function

Procedia PDF Downloads 279
2586 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
2585 Multi-Period Supply Chain Design under Uncertainty

Authors: Amir Azaron

Abstract:

In this research, a stochastic programming approach is developed for designing supply chains with uncertain parameters. Demands and selling prices of products at markets are considered as the uncertain parameters. The proposed mathematical model will be multi-period two-stage stochastic programming, which takes into account the selection of retailer sites, suppliers, production levels, inventory levels, transportation modes to be used for shipping goods, and shipping quantities among the entities of the supply chain network. The objective function is to maximize the chain’s net present value. In order to maximize the chain’s NPV, the sum of first-stage investment costs on retailers, and the expected second-stage processing, inventory-holding and transportation costs should be kept as low as possible over multiple periods. The effects of supply uncertainty where suppliers are unreliable will also be investigated on the efficiency of the supply chain.

Keywords: supply chain management, stochastic programming, multiobjective programming, inventory control

Procedia PDF Downloads 296
2584 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

Authors: Iris Käppler, Paul Matthäi, Chokri Cherif

Abstract:

In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Keywords: non-crimp fabric, adhesive, stitch-free, high-performance fibre

Procedia PDF Downloads 354
2583 Speech Enhancement Using Kalman Filter in Communication

Authors: Eng. Alaa K. Satti Salih

Abstract:

Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.

Keywords: autoregressive process, Kalman filter, Matlab, noise speech

Procedia PDF Downloads 344
2582 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)

Procedia PDF Downloads 382