Search results for: fractional differential equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3522

Search results for: fractional differential equation

1002 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung

Authors: Yu-Chen Hsu, Kuang C. Lin

Abstract:

The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.

Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows

Procedia PDF Downloads 311
1001 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 135
1000 Intention Mediating Goal and Attitude Relationship with Academic Dishonesty among Undergraduate University Students, Ghana

Authors: Yayra Dzakadzie

Abstract:

The descriptive cross-sectional survey study assessed dishonest academic intention, mediating academic goals, and attitude relationship with academic dishonesty among university undergraduate students in Ghana. The target population for this study was all the final-year undergraduate students enrolled full-time in Ghanaian public universities. One thousand two hundred (1,200) undergraduate students participated in the study. Multistage sampling was used to select the sample for the study. A structured questionnaire was used to collect the needed data to test hypotheses. Structural Equation Modelling (PLS-SEM) was used for the analyses. The results revealed that academic goals and attitudes had direct and indirect effects on academic dishonesty behaviour. Also, academic intention was statistically a significant mediator in the relationship that academic goals and attitude have with academic dishonesty. It was concluded that when academic goals are high, it compels individual students to try new strategies, and when academic goals are low, the students would like to “cut corners” to meet expectations. It was also concluded that when the attitude towards academic dishonesty is low, students are more unlikely to form an intention to be academically dishonest. It is recommended that lecturers should make their students aware of the goals that need to be attained in their courses and provide them with feedback on goal progress. Students should set their proximal goals and enhance their commitment so that they avoid putting things off. Enforcement of rules and regulations against academic dishonesty must be fully adhered to since students’ positive attitudes can result in high intention, which would lead to academic dishonesty behaviour.

Keywords: intention, academic goals, attitude, academic dishonesty, public university

Procedia PDF Downloads 99
999 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 456
998 Preceramic Polymers Formulations for Potential Additive Manufacturing

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao

Abstract:

Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.

Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10

Procedia PDF Downloads 124
997 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: finite volume method, fluid flow, laminar flow, unstructured grid

Procedia PDF Downloads 286
996 A Bayesian Parameter Identification Method for Thermorheological Complex Materials

Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider

Abstract:

Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.

Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex

Procedia PDF Downloads 263
995 Technology Transfer and FDI: Some Lessons for Tunisia

Authors: Assaad Ghazouani, Hedia Teraoui

Abstract:

The purpose of this article is to try to see if the FDI actually contributes to technology transfer in Tunisia or are there other sources that can guarantee this transfer? The answer to this problem was gradual as we followed an approach using economic theory, the reality of Tunisia and econometric and statistical tools. We examined the relationship between technology transfer and FDI in Tunisia over a period of 40 years from 1970 to 2010. We estimated in two stages: first, a growth equation, then we have learned from this regression residue (proxy technology), secondly, we regressed on European FDI, exports of manufactures, imports of goods from the European Union in addition to other variables to test the robustness of the results and describing the level of infrastructure in the country. It follows from our study that technology transfer does not originate primarily and exclusively in the FDI and the latter is econometrically weakly with technology transfer and spill over effect of FDI does not seem to occur according to our results. However, the relationship between technology transfer and imports is negative and significant. Although this result is cons-intuitive, is recurrent in the literature of panel data. It has also given rise to intense debate on the microeconomic modelling as well as on the empirical applications. Technology transfer through trade or foreign investment has become a catalyst for growth recognized by numerous empirical studies in particular. However, the relationship technology transfer FDI is more complex than it appears. This complexity is due, primarily, but not exclusively to the close link between FDI and the characteristics of the host country. This is essentially the host's responsibility to establish general conditions, transparent and conducive to investment, and to strengthen human and institutional capacity necessary for foreign capital flows that can have real effects on growth.

Keywords: technology transfer, foreign direct investment, economics, finance

Procedia PDF Downloads 320
994 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: multi-layer facade, porous media, wind damping, wind tunnel test, building ventilation

Procedia PDF Downloads 148
993 Healthy Lifestyle and Risky Behaviors amongst Students of Physical Education High Schools

Authors: Amin Amani, Masomeh Reihany Shirvan, Mahla Nabizadeh Mashizi, Mohadese Khoshtinat, Mohammad Elyas Ansarinia

Abstract:

The purpose of this study is the relationship between a healthy lifestyle and risky behavior in physical education students of Bojnourd schools. The study sample consisted of teenagers studying in second and third grade of Bojnourd's high schools. According to level sampling, 604 students studying in the second grade, and 600 students studying in third grade were tested from physical education schools in Bojnourd. For sample selection, populations were divided into 4 area including north, East, West and South. Then according to the number of students of each area, sample size of each level was determined. Two questionnaires were used to collect data in this study which were consisted of three parts: The demographic data, Iranian teenagers' risk taking (IARS) and prevention methods with emphasize on the importance of family role were examined. The Central and dispersion indices, such as standard deviation, multiple variance analysis, and multivariate regression analysis were used. Results showed that the observed F is significant (P ≤ 0.01) and 21% of variance related to risky behavior is explained by the lack of awareness. Given the significance of the regression, the coefficients of risky behavior in teenagers in prediction equation showed that each of teenagers' risky behavior can have an impact on healthy lifestyle.

Keywords: healthy lifestyle, high-risk behavior, students, physical education

Procedia PDF Downloads 189
992 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 373
991 Overcoming Usability Challenges of Educational Math Apps: Designing and Testing a Mobile Graphing Calculator

Authors: M. Tomaschko

Abstract:

The integration of technology in educational settings has gained a lot of interest. Especially the use of mobile devices and accompanying mobile applications can offer great potentials to complement traditional education with new technologies and enrich students’ learning in various ways. Nevertheless, the usability of the deployed mathematics application is an indicative factor to exploit the full potential of technology enhanced learning because directing cognitive load toward using an application will likely inhibit effective learning. For this reason, the purpose of this research study is the identification of possible usability issues of the mobile GeoGebra Graphing Calculator application. Therefore, eye tracking in combination with task scenarios, think aloud method, and a SUS questionnaire were used. Based on the revealed usability issues, the mobile application was iteratively redesigned and assessed in order to verify the success of the usability improvements. In this paper, the identified usability issues are presented, and recommendations on how to overcome these concerns are provided. The main findings relate to the conception of a mathematics keyboard and the interaction design in relation to an equation editor, as well as the representation of geometrical construction tools. In total, 12 recommendations were formed to improve the usability of a mobile graphing calculator application. The benefit to be gained from this research study is not only the improvement of the usability of the existing GeoGebra Graphing Calculator application but also to provide helpful hints that could be considered from designers and developers of mobile math applications.

Keywords: GeoGebra, graphing calculator, math education, smartphone, usability

Procedia PDF Downloads 134
990 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study

Authors: Chokri Slim

Abstract:

The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.

Keywords: stationarity, cointegration, dynamic models, causality, VECM models

Procedia PDF Downloads 364
989 Vestibular Schwannoma: A Rare Cause of Trigeminal Nerve Paraesthesia

Authors: Jessie Justice

Abstract:

This is a case report of a vestibular schwannoma presenting with numbness to the left lower lip and tongue and altered taste. The aim of this case is to raise awareness of differential diagnoses for trigeminal nerve paraesthesia and, hence, prompt thorough investigation. A 65-year-old male was referred to the Oral and Maxillofacial department regarding sudden-onset of numbness to his left lower lip and left tongue, with altered taste sensation subsequently developing. The patient was simultaneously being investigated for severe hearing loss in his left ear. On examination, there was altered sensation in the distribution of the left inferior alveolar nerve and left lingual nerve. There was no palpable cervical lymphadenopathy and no intra-oral lesions or dental cause for the symptoms. Due to his hearing loss in the left ear, the patient was sent for magnetic resonance imaging of the internal auditory meatus by the Ear, Nose and Throat (ENT) department, revealing a 2.5cm mass within the left cerebellopontine angle presumed to be a vestibular schwannoma. This led to the diagnosis of trigeminal nerve compression by a medium vestibular schwannoma. Consequently, the patient was followed up by an ENT, who referred him for stereotactic radiosurgery. A literature review regarding vestibular schwannomas presenting with orofacial paraesthesia was then carried out. A review of the literature has shown the incidence of vestibular schwannoma to be 3-5 cases per 100,000. It has been reported that approximately 5% of vestibular schwannoma cases display orofacial dysaesthesia, and about 1-3% of cases exhibit trigeminal neuralgia symptoms. This is a rare case of vestibular schwannoma causing trigeminal nerve paraesthesia. The aim of this study is to raise awareness of alternative causes of trigeminal nerve paraesthesia and the available literature surrounding this.

Keywords: acoustic neuroma, orofacial dysaesthesia, trigeminal nerve paraesthesia, vestibular schwannoma

Procedia PDF Downloads 14
988 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 205
987 Preparation of Carbon Nanofiber Reinforced HDPE Using Dialkylimidazolium as a Dispersing Agent: Effect on Thermal and Rheological Properties

Authors: J. Samuel, S. Al-Enezi, A. Al-Banna

Abstract:

High-density polyethylene reinforced with carbon nanofibers (HDPE/CNF) have been prepared via melt processing using dialkylimidazolium tetrafluoroborate (ionic liquid) as a dispersion agent. The prepared samples were characterized by thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses. The samples blended with imidazolium ionic liquid exhibit higher thermal stability. DSC analysis showed clear miscibility of ionic liquid in the HDPE matrix and showed single endothermic peak. The melt rheological analysis of HDPE/CNF composites was performed using an oscillatory rheometer. The influence of CNF and ionic liquid concentration (ranging from 0, 0.5, and 1 wt%) on the viscoelastic parameters was investigated at 200 °C with an angular frequency range of 0.1 to 100 rad/s. The rheological analysis shows the shear-thinning behavior for the composites. An improvement in the viscoelastic properties was observed as the nanofiber concentration increases. The progress in the modulus values was attributed to the structural rigidity imparted by the high aspect ratio CNF. The modulus values and complex viscosity of the composites increased significantly at low frequencies. Composites blended with ionic liquid exhibit slightly lower values of complex viscosity and modulus over the corresponding HDPE/CNF compositions. Therefore, reduction in melt viscosity is an additional benefit for polymer composite processing as a result of wetting effect by polymer-ionic liquid combinations.

Keywords: high-density polyethylene, carbon nanofibers, ionic liquid, complex viscosity

Procedia PDF Downloads 127
986 Binary Logistic Regression Model in Predicting the Employability of Senior High School Graduates

Authors: Cromwell F. Gopo, Joy L. Picar

Abstract:

This study aimed to predict the employability of senior high school graduates for S.Y. 2018- 2019 in the Davao del Norte Division through quantitative research design using the descriptive status and predictive approaches among the indicated parameters, namely gender, school type, academics, academic award recipient, skills, values, and strand. The respondents of the study were the 33 secondary schools offering senior high school programs identified through simple random sampling, which resulted in 1,530 cases of graduates’ secondary data, which were analyzed using frequency, percentage, mean, standard deviation, and binary logistic regression. Results showed that the majority of the senior high school graduates who come from large schools were females. Further, less than half of these graduates received any academic award in any semester. In general, the graduates’ performance in academics, skills, and values were proficient. Moreover, less than half of the graduates were not employed. Then, those who were employed were either contractual, casual, or part-time workers dominated by GAS graduates. Further, the predictors of employability were gender and the Information and Communications Technology (ICT) strand, while the remaining variables did not add significantly to the model. The null hypothesis had been rejected as the coefficients of the predictors in the binary logistic regression equation did not take the value of 0. After utilizing the model, it was concluded that Technical-Vocational-Livelihood (TVL) graduates except ICT had greater estimates of employability.

Keywords: employability, senior high school graduates, Davao del Norte, Philippines

Procedia PDF Downloads 152
985 Urban Land Use Type Analysis Based on Land Subsidence Areas Using X-Band Satellite Image of Jakarta Metropolitan City, Indonesia

Authors: Ratih Fitria Putri, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze

Abstract:

Jakarta Metropolitan City is located on the northwest coast of West Java province with geographical location between 106º33’ 00”-107º00’00”E longitude and 5º48’30”-6º24’00”S latitude. Jakarta urban area has been suffered from land subsidence in several land use type as trading, industry and settlement area. Land subsidence hazard is one of the consequences of urban development in Jakarta. This hazard is caused by intensive human activities in groundwater extraction and land use mismanagement. Geologically, the Jakarta urban area is mostly dominated by alluvium fan sediment. The objectives of this research are to make an analysis of Jakarta urban land use type on land subsidence zone areas. The process of producing safer land use and settlements of the land subsidence areas are very important. Spatial distributions of land subsidence detection are necessary tool for land use management planning. For this purpose, Differential Synthetic Aperture Radar Interferometry (DInSAR) method is used. The DInSAR is complementary to ground-based methods such as leveling and global positioning system (GPS) measurements, yielding information in a wide coverage area even when the area is inaccessible. The data were fine tuned by using X-Band image satellite data from 2010 to 2013 and land use mapping data. Our analysis of land use type that land subsidence movement occurred on the northern part Jakarta Metropolitan City varying from 7.5 to 17.5 cm/year as industry and settlement land use type areas.

Keywords: land use analysis, land subsidence mapping, urban area, X-band satellite image

Procedia PDF Downloads 274
984 Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets

Authors: Raphael de Oliveira Garcia, Samuel Rocha de Oliveira

Abstract:

We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer.

Keywords: finite volume methods, central schemes, fortran 90, relativistic astrophysics, jet

Procedia PDF Downloads 454
983 Research on Strategies of Building a Child Friendly City in Wuhan

Authors: Tianyue Wan

Abstract:

Building a child-friendly city (CFC) contributes to improving the quality of urbanization. It also forms a local system committed to fulfilling children's rights and development. Yet, the work related to CFC is still at the initial stage in China. Therefore, taking Wuhan, the most populous city in central China, as the pilot city would offer some reference for other cities. Based on the analysis of theories and practice examples, this study puts forward the challenges of building a child-friendly city under the particularity of China's national conditions. To handle these challenges, this study uses four methods to collect status data: literature research, site observation, research inquiry, and semantic differential (SD). And it adopts three data analysis methods: case analysis, geographic information system (GIS) analysis, and analytic hierarchy process (AHP) method. Through data analysis, this study identifies the evaluation system and appraises the current situation of Wuhan. According to the status of Wuhan's child-friendly city, this study proposes three strategies: 1) construct the evaluation system; 2) establish a child-friendly space system integrating 'point-line-surface'; 3) build a digitalized service platform. At the same time, this study suggests building a long-term mechanism for children's participation and multi-subject supervision from laws, medical treatment, education, safety protection, social welfare, and other aspects. Finally, some conclusions of strategies about CFC are tried to be drawn to promote the highest quality of life for all citizens in Wuhan.

Keywords: action plan, child friendly city, construction strategy, urban space

Procedia PDF Downloads 90
982 Energy Conservation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.

Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis

Procedia PDF Downloads 288
981 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 243
980 MicroRNA Differential Profiling in Hepatitis C Patients Undergoing Major Surgeries: Propofol versus Sevoflurane Anesthesia

Authors: Hala Demerdash, Ola M. Zanaty, Emad Eldin Arida

Abstract:

Background: This study investigated the micoRNA expression changes induced by Sevoflurane and Propofol and their effects on liver functions. Patients and methods: The study was designed as randomized controlled study, carried out on 200 adult patients, scheduled for major surgeries under general anesthesia (GA). Patients were randomly divided into four groups; groups SC and PC included chronic hepatitis C (CHC) patients where SC group are patients receiving Sevoflurane, and PC group are patients receiving Propofol anesthesia. While S and P groups included non- hepatitis patients; S group are patients receiving Sevoflurane and P group are patients receiving Propofol. Anesthesia in Group S and SC patients was maintained by sevoflurane, while anesthesia in Group P and PC patients was maintained by propofol infusion. Blood samples were analyzed for PT, PTT and liver enzymes. Serum samples were analyzed for microRNA before and after surgery. Results: Results show miRNA-122 and miRNA-21 were absent in serum of S and P groups in pre-operative samples. However, they were expressed in SC and PC groups. In post-operative samples; miRNA-122 revealed an increased expression in all groups; with more exaggerated response in SC group. On the other hand miRNA-21 revealed increased expression in both SC and PC groups; a slight expression in S group with absent expression in P group. There was a post-operative negative correlation between miR-122 and ALT (r=-0.46) in SC group and (r=-0.411) in PC group and positive correlation between ALT and miR-21 (r=0.335) in SC group and (r=0.379) in PC group. The amount of blood loss was positively correlated with miR-122 (r=0.366) in SC group and (r=0.384) in PC group. Conclusion: Propofol anesthesia is safer than Sevoflurane anesthesia in patients with CHC. Sevoflurane and Propofol anesthesia affect miRNA expression in both CHC and non-hepatitis patients.

Keywords: anesthesia, chronic hepatitis C, micoRNA, propofol, sevoflurane

Procedia PDF Downloads 342
979 Effects of Main Contractors’ Service Quality on Subcontractors’ Behaviours and Project Outcomes

Authors: Zhuoyuan Wang, Benson T. H. Lim, Imriyas Kamardeen

Abstract:

Effective service quality management has long been touted as a means of improving project and organisational performance. Particularly, in construction projects, main contractors are often seen as a broker between clients and subcontractors, and their service quality is thus associated with the overall project affinity and outcomes. While a considerable amount of research has focused on the aspect of clients-main contractors, very little research has been done to explore the effect of contractors’ service quality on subcontractors’ behaviours and so project outcomes. In addressing this gap, this study surveyed 97 subcontractors in the Chinese Construction industry and data was analysed using the Partial Least Square (PLS) Structural Equation Modelling (SEM) technique. The overall findings reveal that subcontractors categorised main contractors’ service quality into three dimensions: assurance; responsiveness; reliability and empathy. Of these, it is found that main contractors’ ‘assurance’ and ‘responsiveness’ positively influence subcontractors’ intention to engage in contractual behaviours. The results further show that the subcontractors’ intention to engage in organizational citizenship behaviours is associated with how flexible and committed the main contractors are in reliability and empathy. Collectively, both subcontractors’ contractual and organizational citizenship behaviours positively influence the overall project outcomes. In conclusion, the findings inform contractors different strategies towards managing and gaining subcontractors’ behaviour commitment in a socially connected, yet complex and uncertain, business environment.

Keywords: construction firms, organisational citizenship behaviour, service quality, social exchange theory

Procedia PDF Downloads 214
978 Characterisation of Fractions Extracted from Sorghum Byproducts

Authors: Prima Luna, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (Tg) of cellulose fraction of the stalk was ~78.33 oC at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the Tg value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had Tg value of ~93 oC at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of p-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.

Keywords: alkaline extraction, bran, cellulose, hemicellulose, lignin, stalk

Procedia PDF Downloads 299
977 Viewing Entrepreneurship Through a Goal Congruity Lens: The Roles of Dominance and Communal Goal Orientations in Women’s and Men’s Venture Interests

Authors: Xiaoming Yang, Abby Folberg, Carey Ryan, Lwetzel, Tgoering

Abstract:

We examined gender differences in entrepreneurial career interests drawing on goal congruity theory, which posits that people adopt gender-stereotypic goal orientations in response to social pressures to conform to traditional gender roles. Aspiring entrepreneurs (N = 351) first wrote three to five sentences about what they believed made an entrepreneur successful. They then completed measures of agentic and communal goal orientations (i.e., male and female stereotypic orientations, respectively) and indicated their interests in starting ventures in stereotypically feminine (e.g., salon), masculine (e.g., auto-repair) and science, technology, engineering, and mathematics (STEM; e.g., software developer) ventures. Qualitative analyses demonstrated that participants ascribed agentic and, more specifically, dominance, attributes to entrepreneurs; few participants ascribed communal attributes (e.g., warmth). Bifactor structural equation modeling indicated that, as expected, agentic goal orientations included dimensions of competence, self-direction, and dominance orientations and communal goal orientations were unidimensional. Further, as expected, dominance and communal orientations partially accounted for gender differences in all three career types. We discuss implications for entrepreneurial education and practice from a goal congruity perspective and the use of bifactor modeling to improve the measurement of goal orientations.

Keywords: gender, entrepreneurship, gender stereotypes, agentic and communal goal orientations, entrepreneurship education

Procedia PDF Downloads 97
976 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes

Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi

Abstract:

A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.

Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV

Procedia PDF Downloads 309
975 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity

Authors: B. S. Yadav, A. Mani, S. Srivastava

Abstract:

Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.

Keywords: abiotic stress, biological network, chickpea, microarray

Procedia PDF Downloads 197
974 Diffusion Mechanism of Aroma Compound (2-Acetyl-1-Pyrroline) in Rice During Storage

Authors: Mary Ann U. Baradi, Arnold R. Elepaño, Manuel Jose C. Regalado

Abstract:

Aromatic rice has become popular and continues to command higher price than ordinary rice because of its distinctive scent that makes it special. Freshly harvested aromatic rice exhibits strong aromatic scent but decreases with time and conditions during storage. Of the many volatile compounds in aromatic rice, 2-acetyl-1-pyrroline (2AP) is a major compound that gives rice its popcorn-like aroma. The diffusion mechanism of 2AP in rice was investigated. Semi-empirical models explaining 2AP diffusion as affected by temperature and duration were developed. Storage time and temperature affected 2AP loss via diffusion. The amount of 2AP in rice decreased with time. Free 2AP, being volatile, is lost due to diffusion. Storage experiment indicated rapid 2AP loss during the first five weeks and subsequently leveled off afterwards; attaining level of starch bound 2AP. Decline of 2AP during storage followed exponential equation and exhibited four stages; i.e. the initial, second, third and final stage. Free 2AP is easily lost while bound 2AP is left, only to be released upon exposure to high temperature such as cooking. Both free and bound 2AP is found in endosperm while free 2AP is in the bran. Around 63–67% of total 2AP was lost in brown and milled rice of MS 6 paddy kept at ambient. Samples stored at higher temperature (27°C) recorded higher 2AP loss than those kept at lower temperature (15°C). The study should be able to guide processors in understanding and controlling parameters in storage to produce high quality rice.

Keywords: 2-acetyl-1-pyrroline, aromatic rice, diffusion mechanism, storage

Procedia PDF Downloads 338
973 Performance Comparison of Microcontroller-Based Optimum Controller for Fruit Drying System

Authors: Umar Salisu

Abstract:

This research presents the development of a hot air tomatoes drying system. To provide a more efficient and continuous temperature control, microcontroller-based optimal controller was developed. The system is based on a power control principle to achieve smooth power variations depending on a feedback temperature signal of the process. An LM35 temperature sensor and LM399 differential comparator were used to measure the temperature. The mathematical model of the system was developed and the optimal controller was designed and simulated and compared with the PID controller transient response. A controlled environment suitable for fruit drying is developed within a closed chamber and is a three step process. First, the infrared light is used internally to preheated the fruit to speedily remove the water content inside the fruit for fast drying. Second, hot air of a specified temperature is blown inside the chamber to maintain the humidity below a specified level and exhaust the humid air of the chamber. Third, the microcontroller disconnects the power to the chamber after the moisture content of the fruits is removed to minimal. Experiments were conducted with 1kg of fresh tomatoes at three different temperatures (40, 50 and 60 °C) at constant relative humidity of 30%RH. The results obtained indicate that the system is significantly reducing the drying time without affecting the quality of the fruits. In the context of temperature control, the results obtained showed that the response of the optimal controller has zero overshoot whereas the PID controller response overshoots to about 30% of the set-point. Another performance metric used is the rising time; the optimal controller rose without any delay while the PID controller delayed for more than 50s. It can be argued that the optimal controller performance is preferable than that of the PID controller since it does not overshoot and it starts in good time.

Keywords: drying, microcontroller, optimum controller, PID controller

Procedia PDF Downloads 301