Search results for: self injury behavior
4825 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures
Authors: Jelena R. Pejović, Nina N. Serdar
Abstract:
This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building
Procedia PDF Downloads 3674824 Blood Pressure Level, Targeted Blood Pressure Control Rate, and Factors Related to Blood Pressure Control in Post-Acute Ischemic Stroke Patients
Authors: Nannapus Saramad, Rewwadee Petsirasan, Jom Suwanno
Abstract:
Background: This retrospective study design was to describe average blood pressure, blood pressure level, target blood pressure control rate post-stroke BP control in the year following discharge from Sichon hospital, Sichon District, Nakhon Si Thammarat province. The secondary data analysis was employed from the patient’s health records with patient or caregiver interview. A total of 232 eligible post-acute ischemic strokes in the year following discharge (2017-2018) were recruited. Methods: Data analyses were applied to identify the relationship values of single variables were determined through univariate analyses: The Chi-square test, Fisher exact test, the variables found to have a p-value < 0.2 were analyzed by the binary logistic regression Results: Most of the patients in this study were men 61.6%, an average age of 65.4 ± 14.8 years. Systolic blood pressure levels were in the grade 1-2 hypertension and diastolic pressure at optimal and normal at all times during the initial treatment through the present. The results revealed 25% among the groups under the age of 60 achieved BP control; 36.3% for older than 60 years group; and 27.9% for diabetic group. The multivariate analysis revealed the final relationship of four significant variables: 1) receiving calcium-channel blocker (p =.027); 2) medication adherence of antihypertensive (p = .024) 3) medication adherence of antiplatelet ( p = .020); and 4) medication behavior ( p = . 010) . Conclusion: The medical nurse and health care provider should promote their adherence to behavior to improve their blood pressure control.Keywords: acute ischemic stroke, target blood pressure control, medication adherence, recurrence stroke
Procedia PDF Downloads 1264823 Anthocyanins as Markers of Enhanced Plant Defence in Maize (Zea Mays L.) Exposed to Copper Stress
Authors: Fadime Eryılmaz Pehlivan
Abstract:
Anthocyanins are important plant pigments having roles in many physiological and ecological functions; that are controlled by numerous regulatory factors. The accumulation of anthocyanins in Z. mays cause the plants stems to exhibit red coloration when encountering gradually increasing copper treatments (1, 5, and 10 mM of Cu in a period of 5 days) on maize seedlings. Stress injury was measured in terms of chlorophyll (a and b), carotenoid and anthocyanin contents, malondialdehyde (MDA), hydrogen peroxide (H2O2). Carotenoid and anthocyanin contents dramatically increased by increasing concentrations of Cu stress. MDA and H2O2 levels were found to significantly increase at high Cu treatments (5 and 10 mM of Cu). Chlorophyll content was observed to be highest at 1 mM Cu and then decreased at 5 and 10 mM of Cu. In addition, significant increases were determined in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under high Cu concentrations, while glutathione S-transferase (GST) and peroxidase (POX) activities showed no change. Treatments above 5 and 10 mM of Cu triggered copper stress in maize seedlings. The results of this study provide evidence that maize seedlings represent a high tolerance to gradually increasing copper treatments. Improved copper tolerance may relate to high anthocyanin, and carotenoid content besides antioxidant enzyme activity may improve the metal chelating ability of anthocyanin pigments. Data presented in this study may also contribute to a better understanding of phytoremediation studies in maize exposed to high copper contenting soils.Keywords: anthocyanin, copper, maize , antioxidant
Procedia PDF Downloads 1524822 Minding the Gap: Consumer Contracts in the Age of Online Information Flow
Authors: Samuel I. Becher, Tal Z. Zarsky
Abstract:
The digital world becomes part of our DNA now. The way e-commerce, human behavior, and law interact and affect one another is rapidly and significantly changing. Among others things, the internet equips consumers with a variety of platforms to share information in a volume we could not imagine before. As part of this development, online information flows allow consumers to learn about businesses and their contracts in an efficient and quick manner. Consumers can become informed by the impressions that other, experienced consumers share and spread. In other words, consumers may familiarize themselves with the contents of contracts through the experiences that other consumers had. Online and offline, the relationship between consumers and businesses are most frequently governed by consumer standard form contracts. For decades, such contracts are assumed to be one-sided and biased against consumers. Consumer Law seeks to alleviate this bias and empower consumers. Legislatures, consumer organizations, scholars, and judges are constantly looking for clever ways to protect consumers from unscrupulous firms and unfair behaviors. While consumers-businesses relationships are theoretically administered by standardized contracts, firms do not always follow these contracts in practice. At times, there is a significant disparity between what the written contract stipulates and what consumers experience de facto. That is, there is a crucial gap (“the Gap”) between how firms draft their contracts on the one hand, and how firms actually treat consumers on the other. Interestingly, the Gap is frequently manifested by deviation from the written contract in favor of consumers. In other words, firms often exercise lenient approach in spite of the stringent written contracts they draft. This essay examines whether, counter-intuitively, policy makers should add firms’ leniency to the growing list of firms suspicious behaviors. At first glance, firms should be allowed, if not encouraged, to exercise leniency. Many legal regimes are looking for ways to cope with unfair contract terms in consumer contracts. Naturally, therefore, consumer law should enable, if not encourage, firms’ lenient practices. Firms’ willingness to deviate from their strict contracts in order to benefit consumers seems like a sensible approach. Apparently, such behavior should not be second guessed. However, at times online tools, firm’s behaviors and human psychology result in a toxic mix. Beneficial and helpful online information should be treated with due respect as it may occasionally have surprising and harmful qualities. In this essay, we illustrate that technological changes turn the Gap into a key component in consumers' understanding, or misunderstanding, of consumer contracts. In short, a Gap may distort consumers’ perception and undermine rational decision-making. Consequently, this essay explores whether, counter-intuitively, consumer law should sanction firms that create a Gap and use it. It examines when firms’ leniency should be considered as manipulative or exercised in bad faith. It then investigates whether firms should be allowed to enforce the written contract even if the firms deliberately and consistently deviated from it.Keywords: consumer contracts, consumer protection, information flow, law and economics, law and technology, paper deal v firms' behavior
Procedia PDF Downloads 2014821 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients
Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani
Abstract:
Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.Keywords: 3D printing, knee orthotics, finite element analysis, design for additive manufacturing
Procedia PDF Downloads 1834820 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder
Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea
Abstract:
Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening
Procedia PDF Downloads 1264819 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate
Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur
Abstract:
Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration
Procedia PDF Downloads 1384818 Factors Influencing Intention to Engage in Long-term Care Services among Nursing Aide Trainees and the General Public
Authors: Ju-Chun Chien
Abstract:
Rapid aging and depopulation could lead to serious problems, including workforce shortages and health expenditure costs. The current and predicted future LTC workforce shortages could be a real threat to Taiwan’s society. By means of comparison of data from 144 nursing aide trainees and 727 general public, the main purpose of the present study was to determine whether there were any notable differences between the two groups toward engaging in LTC services. Moreover, this study focused on recognizing the attributes of the general public who had the willingness to take LTC jobs but continue to ride the fence. A self-developed questionnaire was designed based on Ajzen’s Theory of Planned Behavior model. After conducting exploratory factor analysis (EFA) and reliability analysis, the questionnaire was a reliable and valid instrument for both nursing aide trainees and the general public. The main results were as follows: Firstly, nearly 70% of nursing aide trainees showed interest in LTC jobs. Most of them were middle-aged female (M = 46.85, SD = 9.31), had a high school diploma or lower, had unrelated work experience in healthcare, and were mostly unemployed. The most common reason for attending the LTC training program was to gain skills in a particular field. The second most common reason was to obtain the license. The third and fourth reasons were to be interested in caring for people and to increase income. The three major reasons that might push them to leave LTC jobs were physical exhaustion, payment is bad, and being looked down on. Secondly, the variables that best-predicted nursing aide trainees’ intention to engage in LTC services were having personal willingness, perceived behavior control, with high school diploma or lower, and supported from family and friends. Finally, only 11.80% of the general public reported having interest in LTC jobs (the disapproval rating was 50% for the general public). In comparison to nursing aide trainees who showed interest in LTC settings, 64.8% of the new workforce for LTC among the general public was male and had an associate degree, 54.8% had relevant healthcare experience, 67.1% was currently employed, and they were younger (M = 32.19, SD = 13.19) and unmarried (66.3%). Furthermore, the most commonly reason for the new workforce to engage in LTC jobs were to gain skills in a particular field. The second priority was to be interested in caring for people. The third and fourth most reasons were to give back to society and to increase income, respectively. The top five most commonly reasons for the new workforce to quitting LTC jobs were listed as follows: physical exhaustion, being looked down on, excessive working hours, payment is bad, and excessive job stress.Keywords: long-term care services, nursing aide trainees, Taiwanese people, theory of planned behavior
Procedia PDF Downloads 1614817 Shared Versus Pooled Automated Vehicles: Exploring Behavioral Intentions Towards On-Demand Automated Vehicles
Authors: Samira Hamiditehrani
Abstract:
Automated vehicles (AVs) are emerging technologies that could potentially offer a wide range of opportunities and challenges for the transportation sector. The advent of AV technology has also resulted in new business models in shared mobility services where many ride hailing and car sharing companies are developing on-demand AVs including shared automated vehicles (SAVs) and pooled automated vehicles (Pooled AVs). SAVs and Pooled AVs could provide alternative shared mobility services which encourage sustainable transport systems, mitigate traffic congestion, and reduce automobile dependency. However, the success of on-demand AVs in addressing major transportation policy issues depends on whether and how the public adopts them as regular travel modes. To identify conditions under which individuals may adopt on-demand AVs, previous studies have applied human behavior and technology acceptance theories, where Theory of Planned Behavior (TPB) has been validated and is among the most tested in on-demand AV research. In this respect, this study has three objectives: (a) to propose and validate a theoretical model for behavioral intention to use SAVs and Pooled AVs by extending the original TPB model; (b) to identify the characteristics of early adopters of SAVs, who prefer to have a shorter and private ride, versus prospective users of Pooled AVs, who choose more affordable but longer and shared trips; and (c) to investigate Canadians’ intentions to adopt on-demand AVs for regular trips. Toward this end, this study uses data from an online survey (n = 3,622) of workers or adult students (18 to 75 years old) conducted in October and November 2021 for six major Canadian metropolitan areas: Toronto, Vancouver, Ottawa, Montreal, Calgary, and Hamilton. To accomplish the goals of this study, a base bivariate ordered probit model, in which both SAV and Pooled AV adoptions are estimated as ordered dependent variables, alongside a full structural equation modeling (SEM) system are estimated. The findings of this study indicate that affective motivations such as attitude towards AV technology, perceived privacy, and subjective norms, matter more than sociodemographic and travel behavior characteristic in adopting on-demand AVs. Also, the results of second objective provide evidence that although there are a few affective motivations, such as subjective norms and having ample knowledge, that are common between early adopters of SAVs and PooledAVs, many examined motivations differ among SAV and Pooled AV adoption factors. In other words, motivations influencing intention to use on-demand AVs differ among the service types. Likewise, depending on the types of on-demand AVs, the sociodemographic characteristics of early adopters differ significantly. In general, findings paint a complex picture with respect to the application of constructs from common technology adoption models to the study of on-demand AVs. Findings from the final objective suggest that policymakers, planners, the vehicle and technology industries, and the public at large should moderate their expectations that on-demand AVs may suddenly transform the entire transportation sector. Instead, this study suggests that SAVs and Pooled AVs (when they entire the Canadian market) are likely to be adopted as supplementary mobility tools rather than substitutions for current travel modesKeywords: automated vehicles, Canadian perception, theory of planned behavior, on-demand AVs
Procedia PDF Downloads 774816 Feeling, Thinking, Acting: The Role of Subjective Social Class and Social Class Identity on Emotions, Attitudes and Prosocial Behavior Towards Muslim Immigrants in Belgium
Authors: Theresa Zagers, Rita Guerra
Abstract:
Most research investigating how receiving communities perceive, and experience migration has overlooked the potential role of subjective social class and social class identity in positive intergroup relations and social cohesion of migrants and host societies. The present study aimed to provide insights to understand this relationship and focused on three important features: prosocial behaviour, attitudes and emotions towards Muslim immigrants in Flanders, Belgium. Building on relative deprivation-gratification theory we examined the indirect relationships of subjective social class on prosocial behaviour/intentions, attitudes and emotions via relative deprivation (RD), as well as the moderator role of the importance of social class identity. 431 Belgian participants participated in an online survey study. Overall, our results supported the predicted indirect effect of subjective social class: the lower the subjective social class, the higher the perceptions of relative deprivation, which in turn is related to less prosocial behaviour intentions, and more negative attitudes and emotions towards immigrants. This indirect effect was, however, not moderated by the importance of social class identity. Interestingly, the direct effects of subjective social class showed a different pattern: when bypassing deprivation our results showed higher subjective social class was detrimental for intergroup relations (more negative attitudes and emotions), and that lower subjective social class was positively related to prosocial intentions for those identifying highly with their class identity. Overall, we gained valuable insights in the relationship of subjective social class and the three features of intergroup relations.Keywords: social class, relative deprivation-gratification, prosocial behavior, attitudes, emotions, Muslim immigrants
Procedia PDF Downloads 654815 Surface Morphology and Wetting Behavior of the Aspidiotus spp. Scale Covers
Authors: Meril Kate Mariano, Billy Joel Almarinez Divina Amalin, Jose Isagani Janairo
Abstract:
The scale insects Aspidiotus destructor and Aspidiotus rigidus exhibit notable scale covers made of wax which provides protection against water loss and is capable to resist wetting, thus making them a desirable model for biomimetic designs. Their waxy covers enable them to infest mainly leaves of coconut trees despite the harsh wind and rain. This study aims to describe and compare the micro morphological characters on the surfaces of their scale covers consequently, how these micro structures affect their wetting properties. Scanning electron microscope was used for the surface characterization while an optical contact angle meter was employed in the wetting measurement. The scale cover of A. destructor is composed of multiple overlapping layers of wax that is arranged regularly while that of A. rigidus is composed of a uniform layer of wax with much more prominent wax ribbons irregularly arranged compared to the former. The protrusions found on the two organisms are formed by the wax ribbons that differ in arrangement with their height being A. destructor (3.57+1.29) < A. rigidus (4.23+1.22) and their density A. destructor (15+2.94) < A. rigidus (18.33+2.64). These morphological measurements could affect the contact angle (CA θ) measurement of A. destructor (102.66+9.78°) < A. rigidus (102.77 + 11.01°) wherein the assessment that the interaction of the liquid to the microstructures of the substrate is a large factor in the wetting properties of the insect scales is realized. The calculated surface free energy of A. destructor (38.47 mJ/m²) > A. rigidus (31.02 mJ/m²) shows inverse proportionality with the CA measurement. The dispersive interaction between the surface and liquid is more prevalent compared to the polar interaction for both Aspidiotus species, which was observed using the Fowkes method. The results of this study have possible applications to be a potential biomimetic design for various industries such as textiles and coatings.Keywords: Aspidiotus spp., biomimetics, contact angle, surface characterization, wetting behavior
Procedia PDF Downloads 1264814 Increased Availability and Accessibility of Family Planning Services: An Approach Leading to Improved Contraceptive Uptake and Reproductive Behavior of Women Living in Pakistan
Authors: Lutaf Ali, Haris Ahmed, Hina Najmi
Abstract:
Background: Access, better counseling and quality in the provision of family planning services remain big challenges. Sukh Initiative (a project of three different foundations) is a multi-pronged approach, working in one million underserved population residing peri urban slums in Karachi and providing door to door services by lady health workers (LHWs) and community health workers (CHWs) linked with quality family planning and reproductive (FP/RH) services both at public and private health care facilities. Objective: To assess the improvement in family planning and reproductive health behavior among MWRAs by improving access in peri-urban-underserved population of Karachi. Methodology: Using cross sectional study design 3866 married women with reproductive age (MWRAs) were interviewed in peri urban region of Karachi during November 2016 to January 2017. All face to face structured interviews were conducted with women aged 15-49 currently living with their husbands. Based on the project intervention question on reproductive health were developed and questions on contraceptive use were adopted from PDHS- Pakistan 2013. Descriptive and inferential analysis was performed on SPSS version 22. Results: 65% of population sample are literate, 51% women were in young age group- 15–29. On the poverty index, 6% of the population sample living at national poverty line 1.25$ and 52% at 2.50$. During the project years 79% women opted for facility based delivery; private facilities are the priority choice. 61.7% women initiated the contraceptive use in last two years (after the project).Use of family planning was increased irrespective of education level and poverty index- about 55.5% women with no formal education are using any form of contraception and trend of current modern contraceptives across poverty scores strata equally distributed amongst all groups. Age specific modern contraceptive prevalence rate (mCPR)(between 25-34) was found to be 43.8%. About 23% of this contraceptive ascertained from door to door services- short acting, (pills and condoms) are common, 29.5% from public facilities and 47.6% are from public facilities in which long acting and permanent method most received methods. Conclusion: Strategy of expanding access and choice in the form of providing family planning information and supplies at door step and availability of quality family planning services in the peripheries of underserved may improve the behavior of women regarding FP/RH.Keywords: access, family planning, underserved population, socio-demographic facts
Procedia PDF Downloads 2094813 Development of a Diagnostic Device to Predict Clinically Significant Inflammation Associated with Cardiac Surgery
Authors: Mohamed Majrashi, Patricia Connolly, Terry Gourlay
Abstract:
Cardiopulmonary bypass is known to cause inflammatory response during open heart surgery. It includes the initiation of different cascades such as coagulation, complement system and cytokines. Although the immune system is body’s key defense mechanism against external assault, when overexpressed, it can be injurious to the patient, particularly in a cohort of patients in which there is a heightened and uncontrolled response. The inflammatory response develops in these patients to an exaggerated level resulting in an autoimmune injury and may lead to poor postoperative outcomes (systemic inflammatory response syndrome and multi-organs failure). Previous studies by this group have suggested a correlation between the level of IL6 measured in patient’s blood before surgery and after polymeric activation and the observed inflammatory response during surgery. Based upon these findings, the present work is aimed at using this response to develop a test which can be used prior to the open heart surgery to identify the high-risk patients before their operation. The work will be accomplished via three main clinical phases including some pilot in-vitro studies, device development and clinical investigation. Current findings from studies using animal blood, employing DEHP and DEHP plasticized PVC materials as the activator, support the earlier results in patient samples. Having established this relationship, ongoing work will focus on developing an activated lateral flow strip technology as a screening device for heightened inflammatory propensity.Keywords: cardiopulmonary bypass, cytokines, inflammatory response, overexpression
Procedia PDF Downloads 2864812 Assessment of Al/Fe Humus, pH, and P Retention to Differentiate Andisols under Different Cultivation, Karanganyar, Central Java, Indonesia
Authors: Miseri Roeslan Afany, Nur Ainun Pulungan
Abstract:
The unique characteristics of Andisol differentiate them from other soils. These characteristics become a guideline in determining management and usage with regards to agriculture. Especially in the tropical area, Andisols may have fast mineral alteration due to intensive water movement in the soils. Four soil chemical tests were conducted for evaluating soils in the study area. Al/Fe humus, allophane, pH, and P retention were used to differentiate Andisols under different practices. Non-cultivation practice (e.g. natural forest) and cultivation practices (e.g. horticulture systems and intensive farming systems) are compared in this study. We applied Blackmore method for P retention analysis. The aims of this study are: (i) to analyze the specific behavior of Al/Fe humus, pH, and allophane towards P retention in order (ii) to evaluate the effect of cultivation practices on their behavior changes among Andisols, and (iii) to gain the sustainable agriculture through proposing an appropriate soil managements in the study area. 5 observation sites were selected, and 75 soil sampling were analyzed in this study. The results show that the cultivation decreases P retention in all sampling sites. There is a declining from ±90% to ±50% of P retention in the natural forest where shifts into cultivated land. The average of P retention under 15 years of cultivation down into 63%, whereas, the average of P retention more than 15 years of cultivation down into 54%. Many factors affect the retention of P in the soil such as: (1) type and amount of clay, (2) allophone and/or imogolit, (3) Al/Fe humus, (4) soil pH, (5) type and amount of organic material, (6) Exchangeable bases (Ca, Mg, Na, K), (7) forms and solubility of Al/Fe. To achieve the sustainable agriculture in the study area, conventional agriculture practices should be preserved and intensive fertilizing practices should be applied in order to increase the soil pH, to maintain the organic matter of andisols, to maintain microba activities, and to release Al/Fe humus complex, and thus increase available P in the soils.Keywords: Andisols, cultivation, P retention, sustainable agriculture
Procedia PDF Downloads 2844811 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers
Authors: Catherine Vasnetsov, Victor Vasnetsov
Abstract:
Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers
Procedia PDF Downloads 734810 Effects of Crisis-Induced Emotions on in-Crisis Protective Behavior and Post-Crisis Perception: An Analysis of Survey Data for the 2015 Middle East Respiratory Syndrome in South Korea
Authors: Myoungsoon You, Heejung Son
Abstract:
Background: In the current study, we investigated the effects of emotions induced by an infectious disease outbreak on the various protective behaviors taken during the crisis and on the perception after the crisis. The investigation was based on two psychological theories of appraisal tendency and action tendency. Methods: A total of 900 participants in South Korea who experienced the 2015 Middle East Respiratory Syndrome outbreak were sampled by a professional survey agency. To assess the influence of the emotions fear and anger, a regression approach was used. The effect of emotions on various protective behaviors and perceptions was observed using a hierarchical regression method. Results: Fear and anger induced by the infectious disease outbreak were both associated with increased protective behaviors during the crisis. However, the differences between the emotions were observed. While protective behaviors with avoidance tendency (adherence to recommendations, self-mitigation), were raised by both fear and anger, protective behaviors with approach tendency (information-seeking) were increased by anger, but not fear. Regarding the effect of emotion on the risk perception after the crisis, only fear was associated with a higher level of risk perception. Conclusions: This study confirmed the role of emotions in crisis protective behaviors and post-crisis perceptions regarding an infectious disease outbreak. These findings could enhance understanding of the public’s protective behaviors during infectious disease outbreaks and afterward risk perception corresponding to emotions. The results also suggested strategies for communicating with the public that takes into account emotions that are prominently induced by crises associated with disease outbreaks.Keywords: crisis communication, emotion, infectious disease outbreak, protective behavior, risk perception
Procedia PDF Downloads 2794809 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders
Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen
Abstract:
With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming
Procedia PDF Downloads 1534808 Using Biopolymer Materials to Enhance Sandy Soil Behavior
Authors: Mohamed Ayeldeen, Abdelazim Negm
Abstract:
Nowadays, strength characteristics of soils have more importance due to increasing building loads. In some projects, geotechnical properties of the soils are be improved using man-made materials varying from cement-based to chemical-based. These materials have proven successful in improving the engineering properties of the soil such as shear strength, compressibility, permeability, bearing capacity etc.. However, the use of these artificial injection formulas often modifies the pH level of soil, contaminates soil and groundwater. This is attributed to their toxic and hazardous characteristics. Recently, an environmentally friendly soil treatment method or Biological Treatment Method (BTM) was to bond particles of loose sandy soils. This research paper presents the preliminary results of using biopolymers for strengthening cohesionless soil. Xanthan gum was identified for further study over a range of concentrations varying from 0.25% to 2.00%. Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and it is a nontoxic material. A series of direct shear, unconfined compressive strength, and permeability tests were carried out to investigate the behavior of sandy soil treated with Xanthan gum with different concentration ratios and at different curing times. Laser microscopy imaging was also conducted to study the microstructure of the treated sand. Experimental results demonstrated the compatibility of Xanthan gum to improve the geotechnical properties of sandy soil. Depending on the biopolymer concentration, it was observed that the biopolymers effectively increased the cohesion intercept and stiffness of the treated sand and reduced the permeability of sand. The microscopy imaging indicates that the cross-links of the biopolymers through and over the soil particles increase with the increase of the biopolymer concentration.Keywords: biopolymer, direct shear, permeability, sand, shear strength, Xanthan gum
Procedia PDF Downloads 2854807 Digital Twins for 3D Printed Concrete Structures at Early Ages: A Comprehensive Review
Authors: Fentahun Ayu Muche
Abstract:
This review investigates the application of digital twin technology in 3D-printed concrete (3DPC) structures, with a primary focus on the early-age behavior of concrete. The integration of digital twins into 3DPC construction holds significant promise for monitoring, predicting, and optimizing structural performance during critical early stages, such as curing and setting. Digital twin technology integrates a range of advanced systems, including 3D modeling, machine learning, physical modeling, simulation technologies, communication technologies, and IOT. 3DPC, an additive manufacturing (AM) technology, constructs concrete structures layer by layer without deformation. The process begins with the mixer tank, pump, and nozzle system. Compared to traditional concrete construction methods, 3DPC offers numerous advantages, such as enhanced design flexibility, material efficiency, faster construction speed, reduced costs, higher quality, minimal material wastage, and elimination of formwork, reduced errors, and decreased labor requirements. Concrete, the most widely used construction material globally, is composed of materials such as cement, aggregates, admixtures, additives, supplementary cementitious materials (SCMs), fibers, and geopolymer components. At early ages, properties such as fresh state behavior, mechanical characteristics, hydration processes, microstructure, and chemical properties are particularly critical. This paper synthesizes current research, identifies key challenges, and highlights future directions in the evolving field of digital twins in 3DPC, emphasizing their transformative potential for advancing construction technologies.Keywords: digital twin, 3DCP, concrete, early age properties, material composition
Procedia PDF Downloads 134806 Dynamic Theory of Criminal Psychology Effect on Human Organs: A Comprehensive Study by the Scientific Activism in View of Judicial Interpretation and Impact on Global Society
Authors: Tanmoy Basu
Abstract:
The dynamic theory of criminal psychology and its physiological effects on human organs presents a novel perspective that bridges the gap between behavioral sciences and medical research, with significant implications for judicial interpretation and global societal impact. This study seeks to explore the intricate interplay between psychological factors driving criminal behavior and their measurable effects on the human body, hypothesizing that psychological stressors inherent in criminal tendencies produce detectable physiological changes. These insights have the potential to reshape approaches to crime prevention, judicial fairness, and rehabilitation strategies worldwide. Criminal psychology, often confined to behavioral and cognitive dimensions, rarely considers its direct impact on human biology. This research proposes that criminal tendencies and behavior's, characterized by heightened psychological stress and deviant mental patterns, trigger physiological responses in the cardiovascular, endocrine, and neurological systems. The scientific questions addressed here are pivotal: Can criminal psychology leave biological imprints? If so, can these markers provide early warning systems or contribute to judicial evaluations of criminal accountability? Addressing these questions can transform the intersection of science, law, and society. Criminological theories traditionally focus on socio-economic, cultural, or psychological triggers for criminal acts. However, emerging research underscores the psychosomatic connections between mental states and bodily health. Psychological stressors such as anxiety, guilt, or fear—common in individuals predisposed to criminal behavior—may lead to systemic changes in hormone levels, cardiovascular strain, and neural activity. Despite these connections, their implications for understanding criminal behavior remain underexplored, leaving a critical gap in the literature. This study adopts a multidisciplinary, mixed-methods approach that combines empirical data collection with theoretical analysis. Neurological imaging, biomarkers, and physiological testing are employed to identify and quantify changes in the human body associated with individuals exhibiting criminal tendencies. These data are correlated with detailed case histories, enabling an integrative perspective on how psychological and physiological factors converge in criminal behavior. Complementary qualitative analyses provide insights into contextual factors, such as socio-environmental stressors, that influence these physiological responses. Preliminary results reveal a strong correlation between criminal psychology and physiological dysfunction. Specifically, individuals displaying persistent criminal tendencies exhibit elevated cortisol levels, irregular heart rate patterns, and abnormal neural activity in regions associated with impulse control and decision-making. These findings suggest that criminal psychology is not merely a cognitive or emotional phenomenon but one with tangible biological markers. The results are interpreted through the lens of judicial applications, suggesting that physiological markers could supplement psychological evaluations in assessing criminal intent and responsibility. This perspective raises ethical considerations about the use of biological data in legal systems, highlighting the need for careful policy-making. The study advocates for integrating scientific activism into judicial frameworks, enabling more evidence-based decisions that consider both psychological and physiological dimensions of criminal behavior. This research holds transformative potential for global society. By recognizing the biological underpinnings of criminal psychology, policymakers can devise more holistic crime prevention strategies and rehabilitation programmed. Furthermore, this understanding promotes equitable judicial interpretations, ensuring that decisions are informed by comprehensive, evidence-based analyses. This comprehensive investigation not only deepens the understanding of criminal psychology but also paves the way for innovative intersections between science, law, and societal reform.Keywords: behavioral science, criminal psychology, cognitive dimensions, dysfunction, dynamic theory, emotional phenomenon, global societal impact, human organs, judicial interpretation, psychological changes, rehabilitation strategies
Procedia PDF Downloads 154805 Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks
Authors: Mustapha Rilwan Adewale, Salau Ayobami Muhammed
Abstract:
This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas.Keywords: squeezing flow, magneto-hydro-dynamics (MHD), chebyshev collocation method(CCA), parallel manifolds, finite difference method (FDM)
Procedia PDF Downloads 784804 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments
Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora
Abstract:
Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver
Procedia PDF Downloads 3184803 US-China Competition in South China Sea and International Law
Authors: Mubashra Shaheen
Abstract:
The conflict over the South China Sea (SCS) is a complex imbroglio spanning over several territorial and maritime claims involving two major island groups, the Paracels and the Spratlys. It has become a major source of geopolitical competition between the United States and China. The study's overall objective is to understand China's land reclamations and assertive behavior in the South China Sea, which lies between both the Western Pacific and the Indian Ocean. Over half of global commerce passes through these waterways, which host a great amount of marine life and hydrocarbon deposits. China's sand-filling and island-building strategy in the South China Sea is motivated by its goal of privatizing all these riches as well as the routes. It would raise China to the pinnacle of world power status as well as allow it to threaten the dominance of the U.S. The study will examine China's assertive behavior and modernization plans as well as the United States' quest for supremacy through the lens of realists. While using a qualitative method of analysis, the study will examine China's nine-dash line claims and Exclusive Economic Zones (EEZs), UNCLOS, and U.S.-China divergence over international law considerations to pacify the tensions in the South China Sea. This paper is intended to explore the possible answers to the following questions: (1) Why does China’s rise necessitate the US's efforts to contain and encircle it through the lending of a hand to strategic partners and allies in the South China Sea? (2) Why South China Sea dispute is so complex imbroglio? (3) What are US-China international law considerations regarding the South China Sea? The study will further follow the bellow research procedure: 1: Comparative Legal Method: This method simply chalk-outs the follow of few steps that discarnate the positive and negative effects of the great power competitions. 2: Conceptualization: The conceptualization of the policies of containment defines and differentiates two different problems behind the persuasive means of hegemony and dominance in the strategic milieu.Keywords: us, china, south china sea, unclos
Procedia PDF Downloads 944802 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls
Authors: Berna Istegun, Erkan Celebi
Abstract:
The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests
Procedia PDF Downloads 2084801 Study on Comparison Between Acoustic Emission Behavior and Strain on Concrete Surface During Rebar Corrosion in Reinforced Concrete
Authors: Ejazulhaq Rahimi
Abstract:
The development of techniques evaluating deterioration on concrete structures is vital for structural health monitoring (SHM). One of the main reasons for reinforced concrete structure's deterioration is the corroding of embedded rebars. It is a natural process that begins when the rebar starts to rust. It occurs when the protective layer on the rebar is destroyed. The rebar in concrete is usually protected against corrosion by the high pH of the surrounding cement paste. However, there are chemicals that can destroy the protective layer, making it susceptible to corrosion. It is very destructive for the lifespan and durability of the concrete structure. Corrosion products which are 3 to 6 times voluminous than the rebar stress its surrounding concrete and lead to fracture as cracks even peeling off the cover concrete over the rebar. As is clear that concrete shows limit elastic behavior in its stress strain property, so corrosion product stresses can be detected as strains from the concrete surface. It means that surface strains have a relation with the situation and amount of corrosion products and related concrete fractures inside reinforced concrete. In this paper, a comparative study of surface strains due to corrosion products detected by strain gauges and acoustic emission (AE) testing under periodic accelerated corrosion in the salty environment with 3% NaCl is reported. From the results, three different stages of strains were clearly observed based on the type and rate of strains in each corrosion situation and related fracture types. AE parameters which mostly are related to fracture and their shapes, describe the same phases. It is confirmed that there is a great agreement to the result of each other and describes three phases as generation and expansion of corrosion products and initiation and propagation of corrosion-induced cracks, and surface cracks. In addition, the strain on the concrete surface was rapidly increased before the cracks arrived at the surface of the concrete.Keywords: acoustic emission, monitoring, rebar corrosion, reinforced concrete, strain
Procedia PDF Downloads 1834800 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 784799 Mapping the Sonic Spectrum of Traditional Music and Instruments Used in Malaysian Kavadi Rituals
Authors: Ainolnaim Azizol, Valerie Ross
Abstract:
Music is as old as mankind and rituals using music such as Kavadi have been associated with social, cultural, and spiritual practices in many traditional and modern societies. Recent literature has provided scientific evidence that music affects psychological and physical changes through stimulation of brainwave. Despite such advances, the scientific study of the sonic qualities peculiar to traditional instruments and how it impacts on ritualistic activities is still lacking. This study addresses one such phenomenon. Devotees in Kavadi rituals are known to be in a state of trance state and do not experience pain nor suffer injury despite the hundreds of needles pierced through their skins. Although scientists have sought to understand how this is possible, lesser is known about the music that is used to prepare devotees to enter into the trance state. This study fills this gap of knowledge by providing scientific evidence through the identification and mapping of the sonic spectrum or sound fingerprint of the instruments and the repertoire used in these ritualistic forms in their ethnographic environment and in audio-controlled situations. The objectives are to identify and categorize the different types of traditional music used in Kavadi rituals; to record, transcribe and digitally score the musical repertoire used in the oral tradition of Kavadi rituals; to map the sonic spectrum of ritual music using spectromography and advanced music analytical software a mixed methodology will be used. This comprises ethnographic field studies using interviews, participant observation, audio-video recordings and audio-methodology using spectromography and advanced audio-technology for sonic mapping and the transcription of audio recordings into digital scores.Keywords: sonic, traditional, ritual, Kavadi, music
Procedia PDF Downloads 2454798 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media
Authors: Naila Nasreen, Dianchen Lu
Abstract:
This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena
Procedia PDF Downloads 1074797 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI
Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K Rao, S. Ganesh Kamath
Abstract:
The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and haemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially-coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The haemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveals that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the haemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.Keywords: fluid-structure interaction, arterial stenosis, wall shear stress, carotid artery bifurcation
Procedia PDF Downloads 5734796 Comparative Stem Cells Therapy for Regeneration of Liver Fibrosis
Authors: H. M. Imam, H. M. Rezk, A. F. Tohamy
Abstract:
Background: Human umbilical cord blood (HUCB) is considered as a unique source for stem cells. HUCB contain different types of progenitor cells which could differentiate into hepatocytes. Aims: To investigate the potential of rat's liver damage repair using human umbilical cord mesenchymal stem cells (hUCMSCs). We investigated the feasibility for hUCMSCs in recovery from liver damage. Moreover, investigating fibrotic liver repair and using the CCl4-induced model for liver damage in the rat. Methods: Rats were injected with 0.5 ml/kg CCl4 to induce liver damage and progressive liver fibrosis. hUCMSCs were injected into the rats through the tail vein; Stem cells were transplanted at a dose of 1×106 cells/rat after 72 hours of CCl4 injection without receiving any immunosuppressant. After (6 and 8 weeks) of transplantation, blood samples were collected to assess liver functions (ALT, AST, GGT and ALB) and level of Procollagen III as a liver fibrosis marker. In addition, hepatic tissue regeneration was assessed histopathologically and immunohistochemically using antihuman monoclonal antibodies against CD34, CK19 and albumin. Results: Biochemical and histopathological analysis showed significantly increased recovery from liver damage in the transplanted group. In addition, HUCB stem cells transdifferentiated into functional hepatocytes in rats with hepatic injury which results in improving liver structure and function. Conclusion: Our findings suggest that transplantation of hUCMSCs may be a novel therapeutic approach for treating liver fibrosis. Therefore, hUCMSCs are a potential option for treatment of liver cirrhosis.Keywords: carbon tetra chloride, liver fibrosis, mesenchymal stem cells, rat
Procedia PDF Downloads 344