Search results for: dynamic contact angle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6596

Search results for: dynamic contact angle

4136 The Mechanical Properties of a Small-Size Seismic Isolation Rubber Bearing for Bridges

Authors: Yi F. Wu, Ai Q. Li, Hao Wang

Abstract:

Taking a novel type of bridge bearings with the diameter being 100mm as an example, the theoretical analysis, the experimental research as well as the numerical simulation of the bearing were conducted. Since the normal compression-shear machines cannot be applied to the small-size bearing, an improved device to test the properties of the bearing was proposed and fabricated. Besides, the simulation of the bearing was conducted on the basis of the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearing are modified in the finite element model to effectively reduce the computation cost. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearing.

Keywords: ANSYS/LS-DYNA, compression shear, contact analysis, explicit algorithm, small-size

Procedia PDF Downloads 166
4135 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 282
4134 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan

Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz

Abstract:

Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.

Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan

Procedia PDF Downloads 352
4133 Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon

Authors: Serife Parlayici, Erol Pehlivan

Abstract:

In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively.

Keywords: plum-stone, activated carbon, copper and lead, isotherms

Procedia PDF Downloads 351
4132 Quality Assessment of Pedestrian Streets in Iran: Case Study of Saf, Tehran

Authors: Fstemeh Rais Esmaili, Ehsan Ranjbar

Abstract:

Pedestrian streets as one type of urban public spaces have an important role in improving the quality of urban life. In Iran, planning and designing of pedestrian streets is in its primary steps. In spite of starting this approach in Iran, and designing several pedestrian streets, there are still not organized studies about quality assessment of pedestrian streets. As a result, the strength and weakness points of the initial experiences have not been utilized. This inattention to quality assessment have caused designing pedestrian streets to be limited to just vehicles traffic control and preliminary actions like paving; so that, special potentials of pedestrian streets for creating social, livable and dynamic public spaces have not been used. This article, as an organized study about quality assessment of pedestrian streets in Iran, tries to reach two main goals: first, introducing a framework for quality assessment of pedestrian streets in Iran, and second, creating a context for improving the quality of pedestrian streets especially for further experiences. The main research methods are description and context analyzing. With respect to comparative analysis of ideas about quality, considering international and local case studies and analyzing existing condition of Saf Pedestrian Street, a particular model for quality assessment has been introduced. In this model, main components and assessment criteria have been presented. On the basis of this model, questionnaire and checklist for assessment have been prepared. The questionnaire and interview have been used to assess qualities which are in direct contact with people and the checklist has been used for analyzing visual qualities by authors through observation. Some results of questionnaire and checklist show that 7 of 11 primary components, diversity, flexibility, cleanness, legibility and imaginably, identity, livability, form and physical setting are rated low and very low in quality degree. Three components, efficiency, comfort and distinctiveness, have medium and low quality degree and one component, access, linkage and permeability has high quality degree. Therefore, based on implemented analyzing process, Saf Pedestrian Street needs to be improved and these quality improvement priorities are determined based on presented criteria. Adaption of final results with existing condition illustrates the shortage of services for satisfying user’s needs, inflexibility and impossibility of using spaces in various times, lack of facilities for different climatic conditions, lack of facilities such as drinking fountain, inappropriate designing of existing urban furniture like garbage cans, and creating pollution and unsuitable view, lack of visual attractions, neglecting disabled persons in designing entrances, shortage of benches and their undesirable designing, lack of vegetation, absence of special characters making it different from other streets, preventing people taking part in the space causing lack of affiliation, lack of appropriate elements for leisure time and lack of exhilaration in the space. On the other hand, these results present high access and permeability, high safety, less sound pollution and more relief, comfortable movement along the way due to suitable pavement and economic efficiency, as the strength points of Saf pedestrian street.

Keywords: pedestrian streets, quality assessment, quality criteria, Saf Pedestrian Street

Procedia PDF Downloads 241
4131 Study on the Forging of AISI 1015 Spiral Bevel Gear by Finite Element Analysis

Authors: T. S. Yang, J. H. Liang

Abstract:

This study applies the finite element method (FEM) to predict maximum forging load, effective stress distribution, effective strain distribution, workpiece temperature temperature in spiral bevel gear forging of AISI 1015. Maximum forging load, effective stress, effective strain, workpiece temperature are determined for different process parameters, such as modules, number of teeth, helical angle and workpiece temperature of the spiral bevel gear hot forging, using the FEM. Finally, the prediction of the power requirement for the spiral bevel gear hot forging of AISI 1015 is determined.

Keywords: spiral bevel gear, hot forging, finite element method

Procedia PDF Downloads 469
4130 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 107
4129 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge

Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert

Abstract:

The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.

Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis

Procedia PDF Downloads 85
4128 Vibroacoustic Modulation with Chirp Signal

Authors: Dong Liu

Abstract:

By sending a high-frequency probe wave and a low-frequency pump wave to a specimen, the vibroacoustic method evaluates the defect’s severity according to the modulation index of the received signal. Many studies experimentally proved the significant sensitivity of the modulation index to the tiny contact type defect. However, it has also been found that the modulation index was highly affected by the frequency of probe or pump waves. Therefore, the chirp signal has been introduced to the VAM method since it can assess multiple frequencies in a relatively short time duration, so the robustness of the VAM method could be enhanced. Consequently, the signal processing method needs to be modified accordingly. Various studies utilized different algorithms or combinations of algorithms for processing the VAM signal method by chirp excitation. These signal process methods were compared and used for processing a VAM signal acquired from the steel samples.

Keywords: vibroacoustic modulation, nonlinear acoustic modulation, nonlinear acoustic NDT&E, signal processing, structural health monitoring

Procedia PDF Downloads 82
4127 An ab initioStudy of the Structural, Elastic, Electronic, and Optical Properties of the Perovskite ScRhO3

Authors: L. Foudia, K. Haddadi, M. Reffas

Abstract:

First principles study of structural, elastic, electronic and optical properties of the monoclinic perovskite type ScRhO₃ has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated lattice parameters, including the lattice constants and angle β, are in excellent agreement with the available experimental data, which proving the reliability of the chosen theoretical approach. Pressure dependence up to 20 GPa of the single crystal and polycrystalline elastic constants has been investigated in details using the strain-stress approach. The mechanical stability, ductility, average elastic wave velocity, Debye temperature and elastic anisotropy were also assessed. Electronic band structure and density of states (DOS) demonstrated its semiconducting nature showing a direct band gap of 1.38 eV. Furthermore, several optical properties, such as absorption coefficient, reflectivity, refractive index, dielectric function, optical conductivity and electron energy loss function, have been calculated for radiation up to 40 eV.

Keywords: ab-initio, perovskite, DFT, band gap

Procedia PDF Downloads 59
4126 Experimental Study Damage in a Composite Structure by Vibration Analysis- Glass / Polyester

Authors: R. Abdeldjebar, B. Labbaci, L. Missoum, B. Moudden, M. Djermane

Abstract:

The basic components of a composite material made him very sensitive to damage, which requires techniques for detecting damage reliable and efficient. This work focuses on the detection of damage by vibration analysis, whose main objective is to exploit the dynamic response of a structure to detect understand the damage. The experimental results are compared with those predicted by numerical models to confirm the effectiveness of the approach.

Keywords: experimental, composite, vibration analysis, damage

Procedia PDF Downloads 659
4125 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 473
4124 Size Effects on Structural Performance of Concrete Gravity Dams

Authors: Mehmet Akköse

Abstract:

Concern about seismic safety of concrete dams have been growing around the world, partly because the population at risk in locations downstream of major dams continues to expand and also because it is increasingly evident that the seismic design concepts in use at the time most existing dams were built were inadequate. Most of the investigations in the past have been conducted on large dams, typically above 100m high. A large number of concrete dams in our country and in other parts of the world are less than 50m high. Most of these dams were usually designed using pseudo-static methods, ignoring the dynamic characteristics of the structure as well as the characteristics of the ground motion. Therefore, it is important to carry out investigations on seismic behavior this category of dam in order to assess and evaluate the safety of existing dams and improve the knowledge for different high dams to be constructed in the future. In this study, size effects on structural performance of concrete gravity dams subjected to near and far-fault ground motions are investigated including dam-water-foundation interaction. For this purpose, a benchmark problem proposed by ICOLD (International Committee on Large Dams) is chosen as a numerical application. Structural performance of the dam having five different heights is evaluated according to damage criterions in USACE (U.S. Army Corps of Engineers). It is decided according to their structural performance if non-linear analysis of the dams requires or not. The linear elastic dynamic analyses of the dams to near and far-fault ground motions are performed using the step-by-step integration technique. The integration time step is 0.0025 sec. The Rayleigh damping constants are calculated assuming 5% damping ratio. The program NONSAP modified for fluid-structure systems with the Lagrangian fluid finite element is employed in the response calculations.

Keywords: concrete gravity dams, Lagrangian approach, near and far-fault ground motion, USACE damage criterions

Procedia PDF Downloads 260
4123 Hydrodynamics of Shear Layers at River Confluences by Formation of Secondary Circulation

Authors: Ali Aghazadegan, Ali Shokri, Julia Mullarney

Abstract:

River confluences are areas where there is a lot of mixing, which is often caused by the formation of shear layers and helical motions. The hydrodynamics of secondary circulation at river confluences with low flow discharge ratios and a 90° junction angle are investigated in this study. The analysis is based on Delft 3D modelling, which includes a three-dimensional time-averaged velocity field, turbulence, and water surface levels that have been validated using laboratory data. Confluence structure was characterized by shear layer, secondary circulation, and mixing at the junction and post confluence channel. This study analysis formation of the shear layer by generation of secondary circulations in variation discharge ratios. The values of streamwise, cross-wise, and vertical components are used to estimate the secondary circulation observed within and downstream of the tributary mouth. These variables are estimated for three horizontal planes at Z = [0.14; 0.07; 0.02] and for eight cross-sections at X = [-0.1; 0.00; 0.10; 0.2; 0.30; 0.4; 0.5; 0.6] within a range of 0.05 Y 0.30.

Keywords: river confluence, shear layer, secondary circulation, hydrodynamics

Procedia PDF Downloads 81
4122 Developing Dynamic Capabilities: The Case of Western Subsidiaries in Emerging Market

Authors: O. A. Adeyemi, M. O. Idris, W. A. Oke, O. T. Olorode, S. O. Alayande, A. E. Adeoye

Abstract:

The purpose of this paper is to investigate the process of capability building at subsidiary level and the challenges to such process. The relevance of external factors for capability development, have not been explicitly addressed in empirical studies. Though, internal factors, acting as enablers, have been more extensively studied. With reference to external factors, subsidiaries are actively influenced by specific characteristics of the host country, implying a need to become fully immersed in local culture and practices. Specifically, in MNCs, there has been a widespread trend in management practice to increase subsidiary autonomy,  with subsidiary managers being encouraged to act entrepreneurially, and to take advantage of host country specificity. As such, it could be proposed that: P1: The degree at which subsidiary management is connected to the host country, will positively influence the capability development process. Dynamic capabilities reside to a large measure with the subsidiary management team, but are impacted by the organizational processes, systems and structures that the MNC headquarter has designed to manage its business. At the subsidiary level, the weight of the subsidiary in the network, its initiative-taking and its profile building increase the supportive attention of the HQs and are relevant to the success of the process of capability building. Therefore, our second proposition is that: P2: Subsidiary role and HQ support are relevant elements in capability development at the subsidiary level. Design/Methodology/Approach: This present study will adopt the multiple case studies approach. That is because a case study research is relevant when addressing issues without known empirical evidences or with little developed prior theory. The key definitions and literature sources directly connected with operations of western subsidiaries in emerging markets, such as China, are well established. A qualitative approach, i.e., case studies of three western subsidiaries, will be adopted. The companies have similar products, they have operations in China, and both of them are mature in their internationalization process. Interviews with key informants, annual reports, press releases, media materials, presentation material to customers and stakeholders, and other company documents will be used as data sources. Findings: Western Subsidiaries in Emerging Market operate in a way substantially different from those in the West. What are the conditions initiating the outsourcing of operations? The paper will discuss and present two relevant propositions guiding that process. Practical Implications: MNCs headquarter should be aware of the potential for capability development at the subsidiary level. This increased awareness could induce consideration in headquarter about the possible ways of encouraging such known capability development and how to leverage these capabilities for better MNC headquarter and/or subsidiary performance. Originality/Value: The paper is expected to contribute on the theme: drivers of subsidiary performance with focus on emerging market. In particular, it will show how some external conditions could promote a capability-building process within subsidiaries.

Keywords: case studies, dynamic capability, emerging market, subsidiary

Procedia PDF Downloads 110
4121 Haunted Pilgrims: The Absence of Touch and the Sounds of Silence in Online Communication

Authors: Karen Armstrong

Abstract:

This paper explores the impact of two aspects of online communication: the absence of touch and the sound of silence. In order to place the discussion in context, the paper begins with a brief description of communication itself and the many ways in which we communicate with each other both verbally and non-verbally. Next, the discussion moves to consider the general characteristics of online communication and the ways in which it is similar as well as very different from face to face communication. This examination considers the ways we communicate primarily in email, but also through texting, instagram stickers, and twitter—the primary modes of online communication aside from face to face videos, which are less common. With few exceptions of course, most such interactions take place without sound or physical contact. First to be examined is the absence of touch, followed by the presence of silence. The paper explores these issues, concluding with the ways in which both absence of touch and the prevalence of silence are important determinants shaping communication in our online universe.

Keywords: absence of touch, communication, face-to-face, haptics, online, silence

Procedia PDF Downloads 357
4120 Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency

Authors: Abdulrahman M. Homadi

Abstract:

As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 o. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels.

Keywords: solar panels, elevation, wind direction, efficiency

Procedia PDF Downloads 279
4119 Effect of Plasma Discharge Power on Activation Energies of Plasma Poly(Ethylene Oxide) Thin Films

Authors: Sahin Yakut, H. Kemal Ulutas, Deniz Deger

Abstract:

Plasma Assisted Physical Vapor Deposition (PAPVD) method used to produce Poly(ethylene oxide) (pPEO) thin films. Depositions were progressed at various plasma discharge powers as 0, 2, 5 and 30 W for pPEO at 500nm film thicknesses. The capacitance and dielectric dissipation of the thin films were measured at 0,1-107 Hz frequency range and 173-353 K temperature range by an impedance analyzer. Then, alternative conductivity (σac) and activation energies were derived from capacitance and dielectric dissipation. σac of conventional PEO (PEO precursor) was measured to determine the effect of plasma discharge. Differences were observed between the alternative conductivity of PEO’s and pPEO’s depending on plasma discharge power. By this purpose, structural characterization techniques such as Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied on pPEO thin films. Structural analysis showed that density of crosslinking is plasma power dependent. The crosslinking density increases with increasing plasma discharge power and this increase is displayed as increasing dynamic glass transition temperatures at DSC results. Also, shifting of frequencies of some type of bond vibrations, belonging to bond vibrations produced after fragmentation because of plasma discharge, were observed at FTIR results. The dynamic glass transition temperatures obtained from alternative conductivity results for pPEO consistent with the results of DSC. Activation energies exhibit Arrhenius behavior. Activation energies decrease with increasing plasma discharge power. This behavior supports the suggestion expressing that long polymer chains and long oligomers are fragmented into smaller oligomers or radicals.

Keywords: activation energy, dielectric spectroscopy, organic thin films, plasma polymer

Procedia PDF Downloads 288
4118 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor

Authors: K. Senthil Kumar, A. Vasumalaikannan

Abstract:

In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.

Keywords: teleoperation, quadrotor, neural smith predictor, time delay

Procedia PDF Downloads 600
4117 The Analogy of Visual Arts and Visual Literacy

Authors: Lindelwa Pepu

Abstract:

Visual Arts and Visual Literacy are defined with distinction from one another. Visual Arts are known for art forms such as drawing, painting, and photography, just to name a few. At the same time, Visual Literacy is known for learning through images. The Visual Literacy phenomenon may be attributed to the use of images was first established for creating memories and enjoyment. As time evolved, images became the center and essential means of making contact between people. Gradually, images became a means for interpreting and understanding words through visuals, that being Visual Arts. The purpose of this study is to present the analogy of the two terms Visual Arts and Visual Literacy, which are defined and compared through early practicing visual artists as well as relevant researchers to reveal how they interrelate with one another. This is a qualitative study that uses an interpretive approach as it seeks to understand and explain the interest of the study. The results reveal correspondence of the analogy between the two terms through various writers of early and recent years. This study recommends the significance of the two terms and the role they play in relation to other fields of study.

Keywords: visual arts, visual literacy, pictures, images

Procedia PDF Downloads 144
4116 Investigation of Active Modified Atmosphere and Nanoparticle Packaging on Quality of Tomatoes

Authors: M. Ghasemi-Varnamkhasti, S. H. Yoosefian, A. Mohammad-Razdari

Abstract:

This study investigated the effects of Ag nanoparticle polyethylene film and active modified atmosphere on the postharvest quality of tomatoes stored at 6 ºC. The atmosphere composition used in the packaging was 7% O2 + 7% CO2 + 86% N2, and synthetic air (control). The variables measured were weight loss, firmness, color and respiration rate over 21 days. The results showed that the combination of Ag nanoparticle polyethylene film and modified atmosphere could extend the shelf life of tomatoes to 21 days and could influence the postharvest quality of tomatoes. Also, existence of Ag nanoparticles caused preventing from increasing weight loss, a*, b*, Chroma, Hue angle and reducing firmness and L*. As well as, tomatoes at Ag nanoparticle polyethylene films had lower respiration rate than Polyethylene and paper bags to 13.27% and 23.50%, respectively. The combination of Ag nanoparticle polyethylene film and active modified atmosphere was effective with regard to delaying maturity during the storage period, and preserving the quality of tomatoes.

Keywords: ag nanoparticles, modified atmosphere, polyethylene film, tomato

Procedia PDF Downloads 263
4115 Effect of Baffles on the Cooling of Electronic Components

Authors: O. Bendermel, C. Seladji, M. Khaouani

Abstract:

In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity.

Keywords: electronic components, baffles, cooling, fluids engineering

Procedia PDF Downloads 281
4114 Flame Dynamics in Small Scale Channels

Authors: Mohammed Mahmoud Osman Ahmed, Akram Mohammad

Abstract:

Flame dynamics in heated quartz glass channels of various aspect ratios (2,5,10,15) were experimentally investigated. A premixed Propane-air mixture was used for the reported experiments. Regarding micro-combustion, flame quenching is considered to be the most crucial problem to overcome first. Experiments were carried out on four channels with different aspect ratios. The results show that at a very low equivalence ratio ϕ=0.4, there is no flame inside the channels. The FREI condition (Flame with repetitive extinction and ignition) was overcome by increasing velocity and by making the channels more in contact with the external heater. The flame tested inside the channels at different locations for V=0.3 m/s or higher below V=0.65 m/s. The effects of equivalence ratio and flow velocity on the characteristics of combustion in the channels were examined. Different ways of flame propagation were observed in the current investigations based on how they appear as planar, concave and convex flames.

Keywords: flame stabilization, combustion, flame dynamics, small-scale channels, external heater

Procedia PDF Downloads 207
4113 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 119
4112 The Psychological Contract and the Readiness to Verbalize It in Financial Institutions in Poland

Authors: Anna Rogozińska-Pawełczyk

Abstract:

A psychological contract is an agreement between the employer and an employee that covers the parties’ informal and frequently non-verbalized obligations and expectations towards each other. The contract is a cognitive pattern-governing employee’s behaviour in the organization. A gap between employee’s expectations and the organizational reality may lead to difficult-to-solve conflicts or cause the employee to modify their behaviour towards organizational values and goals, if they are willing and ready to verbalize their expectations. The article discusses psychological contracts in the financial institutions in Poland. Its theoretical part outlines the types of psychological contracts in organizations (relational, transactional, and balanced) and shows the process of their verbalization. The purpose of the article is to present how the type of the psychological contract relates to employee’s readiness to verbalize it. The article ends with conclusions arising from the study.

Keywords: customer contact staff in banks, employee expectations, financial institutions, mutual expectations, psychological contract, verbalization of the psychological contract

Procedia PDF Downloads 468
4111 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 224
4110 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone

Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi

Abstract:

The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.

Keywords: system identification, tuned mass damper, wall buildings, seismic protection

Procedia PDF Downloads 110
4109 The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction

Authors: Ramzi Farra, Detre Teschner, Marc Willinger, Robert Schlögl

Abstract:

Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics.

Keywords: CeO2, deacon process, in situ PGAA, in situ TEM, in situ FTIR

Procedia PDF Downloads 272
4108 Cooperative Robot Application in a Never Explored or an Abandoned Sub-Surface Mine

Authors: Michael K. O. Ayomoh, Oyindamola A. Omotuyi

Abstract:

Autonomous mobile robots deployed to explore or operate in a never explored or an abandoned sub-surface mine requires extreme effectiveness in coordination and communication. In a bid to transmit information from the depth of the mine to the external surface in real-time and amidst diverse physical, chemical and virtual impediments, the concept of unified cooperative robots is seen to be a proficient approach. This paper presents an effective [human → robot → task] coordination framework for effective exploration of an abandoned underground mine. The problem addressed in this research is basically the development of a globalized optimization model premised on time series differentiation and geometrical configurations for effective positioning of the two classes of robots in the cooperation namely the outermost stationary master (OSM) robots and the innermost dynamic task (IDT) robots for effective bi-directional signal transmission. In addition, the synchronization of a vision system and wireless communication system for both categories of robots, fiber optics system for the OSM robots in cases of highly sloppy or vertical mine channels and an autonomous battery recharging capability for the IDT robots further enhanced the proposed concept. The OSM robots are the master robots which are positioned at strategic locations starting from the mine open surface down to its base using a fiber-optic cable or a wireless communication medium all subject to the identified mine geometrical configuration. The OSM robots are usually stationary and function by coordinating the transmission of signals from the IDT robots at the base of the mine to the surface and in a reverse order based on human decisions at the surface control station. The proposed scheme also presents an optimized number of robots required to form the cooperation in a bid to reduce overall operational cost and system complexity.

Keywords: sub-surface mine, wireless communication, outermost stationary master robots, inner-most dynamic robots, fiber optic

Procedia PDF Downloads 199
4107 Enhancement of Light Out Efficiency of PLED Device Employing Designed Substrate Combined with Nano-Line Patterns

Authors: Ting-Ting Wen, H. C. Lin

Abstract:

This paper reports a study for the light outcoupling efficiency of the PLED device. In use of a designed substrate combined with nano-line patterns in PLED device, the light outcoupling efficiency can be significantly enhanced. The designed substrate was made by UV imprinting technology, such as triangular microlens arrays on the front and periodic corrugated patterns on the back surface. The nano-line patterns in PLED device was fabricated by advanced microstamping and ink-jet printing techniques. For high angles of observation with respect to the substrate surface normal, the light out intensity of the developed PLED device is increased from 0.05 (a.u.) up to 0.69 (a.u.) at the view angle 85 degree. The designed integration leads to 64% increase of the light out intensity compared with the conventional PLED device.

Keywords: triangular microlens, corrugation patterns, nano-line patterns, PLED device, UV imprinting technology, microstamping

Procedia PDF Downloads 464