Search results for: thin walled section
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2549

Search results for: thin walled section

119 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy

Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini

Abstract:

The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.

Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering

Procedia PDF Downloads 207
118 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 88
117 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization

Authors: Mohit Kumar

Abstract:

Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.

Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute

Procedia PDF Downloads 173
116 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling

Authors: Ghita Benayad

Abstract:

Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.

Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market

Procedia PDF Downloads 22
115 The Role of the Corporate Social Responsibility in Poverty Reduction

Authors: M. Verde, G. Falzarano

Abstract:

The paper examines the connection between corporate social responsibility (CSR), capability approach and poverty reduction; in particular, the local employment development (LED) by way of CSR initiatives. The joint action of LED/CSR results in a win-win situation, not only for the enterprises but also for all the stakeholders involved; in this regard, subsidiarity and coordination between national and regional/local authorities are central to a socially-oriented market economy. In the first section, the CSR is analysed on the basis of its social function in the fight against poverty, as a 'capabilities deprivation'. In the central part, the attention is focused on the relationship between CSR and LED; ergo, on the role of the enterprises in fostering capabilities development (the employment). Besides, all the potential solutions are presented, stressing the possible combinations, in the last part. The benchmark is the enterprise as an economic and a social institution: the business should not be combined with profit merely, paying more attention to its sustainable impact and social contribution. In which way could it be possible? The answer is the CSR. The impact of CSR on poverty reduction is still little explored. The companies help to reduce poverty through economic contribution, human rights and social inclusion; hence, the business becomes an 'agent of development' in order to fight against 'inequality'. The starting point is the pyramid of social responsibility, where ethic and philanthropic responsibilities involve programmes and actions aimed at personal development of the individuals, improving human standard of living in all forms, including poverty, when people do not have a choice between different 'life options', ranging from level of education to employment. At this point, CSR comes into play and works on two dimensions: poverty reduction and poverty prevention, by means of a series of initiatives: first of all, job creation and precarious work reduction. Empowerment of the local actors, financial support and combination of top down and bottom up initiatives are some of CSR areas of activity. Several positive effects occur on individual levels of educations, access to capital, individual health status, empowerment of youth and woman, access to social networks and it was observed that these effects depend on the type of CSR strategy. Indeed, CSR programmes should take into account fundamental criteria, such as the transparency, the information about benefits, a coordination unit among institutions and more clear guidelines. In this way, the advantages to the corporate reputation and to the community translate into a better job matching on the labour market, inter alia. It is important to underline that the success depends on the specific measures of the areas in question, by adapting them to the local needs, in light of general principles and index; therefore, the concrete commitment of the all stakeholders involved is decisive in order to achieve the goals. The enterprise would represent a concrete contribution for the pursuit of sustainable development and for the dissemination of a social and well being awareness.

Keywords: capability approach, local employment development, poverty, social inclusion

Procedia PDF Downloads 112
114 Synthesis of Smart Materials Based on Polyaniline Coated Fibers

Authors: Mihaela Beregoi, Horia Iovu, Cristina Busuioc, Alexandru Evanghelidis, Elena Matei, Monica Enculescu, Ionut Enculescu

Abstract:

Nanomaterials field is very attractive for all researchers who are attempting to develop new devices with the same or improved properties than the micro-sized ones, while reducing the reagents and power consumptions. In this way, a wide range of nanomaterials were fabricated and integrated in applications for electronics, optoelectronics, solar cells, tissue reconstruction and drug delivery. Obviously, the most appealing ones are those dedicated to the medical domain. Different types of nano-sized materials, such as particles, fibers, films etc., can be synthesized by using physical, chemical or electrochemical methods. One of these techniques is electrospinning, which enable the production of fibers with nanometric dimensions by pumping a polymeric solution in a high electric field; due to the electrostatic charging and solvent evaporation, the precursor mixture is converted into nonwoven meshes with different fiber densities and mechanical properties. Moreover, polyaniline is a conducting polymer with interesting optical properties, suitable for displays and electrochromic windows. Otherwise, polyaniline is an electroactive polymer that can contract/expand by applying electric stimuli, due to the oxidation/reduction reactions which take place in the polymer chains. These two main properties can be exploited in order to synthesize smart materials that change their dimensions, exhibiting in the same time good electrochromic properties. In the context aforesaid, a poly(methyl metacrylate) solution was spun to get webs composed of fibers with diameter values between 500 nm and 1 µm. Further, the polymer meshes were covered with a gold layer in order to make them conductive and also appropriate as working electrode in an electrochemical cell. The gold shell was deposited by DC sputtering. Such metalized fibers can be transformed into smart materials by covering them with a thin layer of conductive polymer. Thus, the webs were coated with a polyaniline film by the electrochemical route, starting from and aqueous solution of aniline and sulfuric acid, where sulfuric acid acts as oxidant agent. For the polymerization of aniline, a saturated calomel electrode was employed as reference, a platinum plate as counter electrode and the gold covered webs as working electrode. Chronoamperometry was selected as deposition method for polyaniline, by modifying the deposition time. Metalized meshes with different fiber densities were used, the transmission ranging between 70 and 80 %. The morphological investigation showed that polyaniline layer has a granular structure for all deposition experiments. As well, some preliminary optical tests were done by using sulfuric acid as electrolyte, which revealed the modification of polyaniline colour from green to dark blue when applying a voltage. In conclusion, new multilayered materials were obtained by a simple approach: the merge of the electrospinning method benefits with polyaniline chemistry. This synthesis method allows the fabrication of structures with reproducible characteristics, suitable for display or tissue substituents.

Keywords: electrospinning, fibers, smart materials, polyaniline

Procedia PDF Downloads 266
113 E-Business Role in the Development of the Economy of Sultanate of Oman

Authors: Mairaj Salim, Asma Zaheer

Abstract:

Oman has accomplished as much or more than its fellow Gulf monarchies, despite starting from scratch considerably later, having less oil income to utilize, dealing with a larger and more rugged geography, and resolving a bitter civil war along the way. Of course, Oman's progress in the past 30-plus years has not been without problems and missteps, but the balance is squarely on the positive side of the ledger. Oil has been the driving force of the Omani economy since Oman began commercial production in 1967. The oil industry supports the country’s high standard of living and is primarily responsible for its modern and expansive infrastructure, including electrical utilities, telephone services, roads, public education and medical services. In addition to extensive oil reserves, Oman also has substantial natural gas reserves, which are expected to play a leading role in the Omani economy in the Twenty-first Century. To reduce the country’s dependence on oil revenues, the government is restructuring the economy by directing investment to non-oil activities. Since the 21st century IT has changed the performing tasks. To manage the affairs for the benefits of organizations and economy, the Omani government has adopted E-Business technologies for the development. E-Business is important because it allows • Transformation of old economy relationships (vertical/linear relationships) to new economy relationships characterized by end-to-end relationship management solutions (integrated or extended relationships) • Facilitation and organization of networks, small firms depend on ‘partner’ firms for supplies and product distribution to meet customer demands • SMEs to outsource back-end process or cost centers enabling the SME to focus on their core competence • ICT to connect, manage and integrate processes internally and externally • SMEs to join networks and enter new markets, through shortened supply chains to increase market share, customers and suppliers • SMEs to take up the benefits of e-business to reduce costs, increase customer satisfaction, improve client referral and attract quality partners • New business models of collaboration for SMEs to increase their skill base • SMEs to enter virtual trading arena and increase their market reach A national strategy for the advancement of information and communication technology (ICT) has been worked out, mainly to introduce e-government, e-commerce, and a digital society. An information technology complex KOM (Knowledge Oasis Muscat) had been established, consisting of section for information technology, incubator services, a shopping center of technology software and hardware, ICT colleges, E-Government services and other relevant services. So, all these efforts play a vital role in the development of Oman economy.

Keywords: ICT, ITA, CRM, SCM, ERP, KOM, SMEs, e-commerce and e-business

Procedia PDF Downloads 228
112 Nonconventional Method for Separation of Rosmarinic Acid: Synergic Extraction

Authors: Lenuta Kloetzer, Alexandra C. Blaga, Dan Cascaval, Alexandra Tucaliuc, Anca I. Galaction

Abstract:

Rosmarinic acid, an ester of caffeic acid and 3-(3,4-dihydroxyphenyl) lactic acid, is considered a valuable compound for the pharmaceutical and cosmetic industries due to its antimicrobial, antioxidant, antiviral, anti-allergic, and anti-inflammatory effects. It can be obtained by extraction from vegetable or animal materials, by chemical synthesis and biosynthesis. Indifferent of the method used for rosmarinic acid production, the separation and purification process implies high amount of raw materials and laborious stages leading to high cost for and limitations of the separation technology. This study focused on separation of rosmarinic acid by synergic reactive extraction with a mixture of two extractants, one acidic (acid di-(2ethylhexyl) phosphoric acid, D2EHPA) and one with basic character (Amberlite LA-2). The studies were performed in experimental equipment consisting of an extraction column where the phases’ mixing was made by mean of a perforated disk with 45 mm diameter and 20% free section, maintained at the initial contact interface between the aqueous and organic phases. The vibrations had a frequency of 50 s⁻¹ and 5 mm amplitude. The extraction was carried out in two solvents with different dielectric constants (n-heptane and dichloromethane) in which the extractants mixture of varying concentration was dissolved. The pH-value of initial aqueous solution was varied between 1 and 7. The efficiency of the studied extraction systems was quantified by distribution and synergic coefficients. For calculating these parameters, the rosmarinic acid concentration in the initial aqueous solution and in the raffinate have been measured by HPLC. The influences of extractants concentrations and solvent polarity on the efficiency of rosmarinic acid separation by synergic extraction with a mixture of Amberlite LA-2 and D2EHPA have been analyzed. In the reactive extraction system with a constant concentration of Amberlite LA-2 in the organic phase, the increase of D2EHPA concentration leads to decrease of the synergic coefficient. This is because the increase of D2EHPA concentration prevents the formation of amine adducts and, consequently, affects the hydrophobicity of the interfacial complex with rosmarinic acid. For these reasons, the diminution of synergic coefficient is more important for dichloromethane. By maintaining a constant value of D2EHPA concentration and increasing the concentration of Amberlite LA-2, the synergic coefficient could become higher than 1, its highest values being reached for n-heptane. Depending on the solvent polarity and D2EHPA amount in the solvent phase, the synergic effect is observed for Amberlite LA-2 concentrations over 20 g/l dissolved in n-heptane. Thus, by increasing the concentration of D2EHPA from 5 to 40 g/l, the minimum concentration value of Amberlite LA-2 corresponding to synergism increases from 20 to 40 g/l for the solvent with lower polarity, namely, n-heptane, while there is no synergic effect recorded for dichloromethane. By analysing the influences of the main factors (organic phase polarity, extractant concentration in the mixture) on the efficiency of synergic extraction of rosmarinic acid, the most important synergic effect was found to correspond to the extractants mixture containing 5 g/l D2EHPA and 40 g/l Amberlite LA-2 dissolved in n-heptane.

Keywords: Amberlite LA-2, di(2-ethylhexyl) phosphoric acid, rosmarinic acid, synergic effect

Procedia PDF Downloads 265
111 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical

Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva

Abstract:

Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.

Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements

Procedia PDF Downloads 173
110 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements

Authors: Mohammad R. Bhuyan, Mohammad J. Khattak

Abstract:

Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.

Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement

Procedia PDF Downloads 143
109 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 104
108 Comparison of Gestational Diabetes Influence on the Ultrastructure of Rectus Abdominis Muscle in Women and Rats

Authors: Giovana Vesentini, Fernanda Piculo, Gabriela Marini, Debora Damasceno, Angelica Barbosa, Selma Martheus, Marilza Rudge

Abstract:

Problem statement: Skeletal muscle is highly adaptable, muscle fiber composition and size can respond to a variety of stimuli, such physiologic, as pregnancy, and metabolic abnormalities, as Diabetes mellitus. This study aimed to analyze the effects of pregnancy-associated diabetes on the rectus abdominis muscle (RA), and to compare this changes in rats and women. Methods: Female Wistar rats were maintained under controlled conditions and distributed in Pregnant (P) and Long-term mild pregnant diabetic (LTMd) (n=3 r/group). Diabetes in rats was induced by streptozotocin (100mg/Kg, sc) on the first day of life, for a hyperglycemic state between 120-300 mg/dL in adult life. Female rats were mated overnight, at day 21 of pregnancy were anesthetized, and killed for the harvesting of maternal RA. Pregnant women who attended the Diabetes Prenatal Care Clinic of Botucatu Medical School were distributed in Pregnant non-diabetic (Pnd) and Gestational Diabetic (GDM) (n=3 w/group). The diagnosis of GDM was established according to ADA’s criteria (2016). The harvesting of RA was during the cesarean section. Transversal cross-sections of the RA of both women and rats were analyzed by transmission electron microscopy. All procedures were approved by the Ethics Committee on Animal Experiments of the Botucatu Medical School (Protocol Number 1003/2013) and by the Botucatu Medical School Ethical Committee for Human Research in Medical Sciences (CAAE: 41570815.0.0000.5411). Results: The photomicrographs of the RA of rats revealed disorganized Z lines, thinning sarcomeres, and a usual quantity of intermyofibrillar mitochondria in the P group. The LTMd group showed swollen sarcoplasmic reticulum, dilated T tubes and areas with sarcomere disruption. The ultrastructural analysis of Pnd non-diabetic women in the RA showed well-organized myofibrils forming intact sarcomeres, organized Z lines and a normal distribution of intermyofibrillar mitochondria. The GDM group revealed increase in intermyofibrillar mitochondria, areas with sarcomere disruption and increased lipid droplets. Conclusion: Pregnancy and diabetes induce adaptations in the ultrastructure of the rectus abdominis muscle for both women and rats, changing the architectural design of these tissues. However, in rats these changes are more severe maybe because, besides the high blood glucose levels, the quadrupedal animal may suffer an excessive mechanical tension during pregnancy by gravity. Probably, these findings may suggest that these alterations are a risk factor that contributes to the development of muscle dysfunction in women with GDM and may motivate treatment strategies in these patients.

Keywords: gestational diabetes, muscle dysfunction, pregnancy, rectus abdominis

Procedia PDF Downloads 269
107 Human Immuno-Deficiency Virus Co-Infection with Hepatitis B Virus and Baseline Cd4+ T Cell Count among Patients Attending a Tertiary Care Hospital, Nepal

Authors: Soma Kanta Baral

Abstract:

Background: Since 1981, when the first AIDS case was reported, worldwide, more than 34 million people have been infected with HIV. Almost 95 percent of the people infected with HIV live in developing countries. As HBV & HIV share similar routes of transmission by sexual intercourse or drug use by parenteral injection, co-infection is common. Because of the limited access to healthcare & HIV treatment in developing countries, HIV-infected individuals are present late for care. Enumeration of CD4+ T cell count at the time of diagnosis has been useful to initiate the therapy in HIV infected individuals. The baseline CD4+ T cell count shows high immunological variability among patients. Methods: This prospective study was done in the serology section of the Department of Microbiology over a period of one year from august 2012 to July 2013. A total of 13037 individuals subjected for HIV test were included in the study comprising of 4982 males & 8055 females. Blood sample was collected by vein puncture aseptically with standard operational procedure in clean & dry test-tube. All blood samples were screened for HIV as described by WHO algorithm by Immuno-chromatography rapid kits. Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. After informed consent, HIV positive individuals were screened for HBsAg by Immuno-chromatography rapid kits (Hepacard). Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. EDTA blood samples were collected from the HIV sero-positive individuals for baseline CD4+ T count. Then, CD4+ T cells count was determined by using FACS Calibur Flow Cytometer (BD). Results: Among 13037 individuals screened for HIV, 104 (0.8%) were found to be infected comprising of 69(66.34%) males & 35 (33.65%) females. The study showed that the high infection was noted in housewives (28.7%), active age group (30.76%), rural area (56.7%) & in heterosexual route (80.9%) of transmission. Out of total HIV infected individuals, distribution of HBV co-infection was found to be 6(5.7%). All co- infected individuals were married, male, above the age of 25 years & heterosexual route of transmission. Baseline CD4+ T cell count of HIV infected patient was found higher (mean CD4+ T cell count; 283cells/cu.mm) than HBV co-infected patients (mean CD4+ T cell count; 91 cells/cu.mm). Majority (77.2%) of HIV infected & all co-infected individuals were presented in our center late (CD4+ T cell count;< 350/cu. mm) for diagnosis and care. Majority of co- infected 4 (80%) were late presented with advanced AIDS stage (CD4+ count; <200/cu.mm). Conclusions: The study showed a high percentage of HIV sero-positive & co- infected individuals. Baseline CD4+ T cell count of majority of HIV infected individuals was found to be low. Hence, more sustained and vigorous awareness campaigns & counseling still need to be done in order to promote early diagnosis and management.

Keywords: HIV/AIDS, HBsAg, co-infection, CD4+

Procedia PDF Downloads 192
106 Ethanolamine Detection with Composite Films

Authors: S. A. Krutovertsev, A. E. Tarasova, L. S. Krutovertseva, O. M. Ivanova

Abstract:

The aim of the work was to get stable sensitive films with good sensitivity to ethanolamine (C2H7NO) in air. Ethanolamine is used as adsorbent in different processes of gas purification and separation. Besides it has wide industrial application. Chemical sensors of sorption type are widely used for gas analysis. Their behavior is determined by sensor characteristics of sensitive sorption layer. Forming conditions and characteristics of chemical gas sensors based on nanostructured modified silica films activated by different admixtures have been studied. As additives molybdenum containing polyoxometalates of the eighteen series were incorporated in silica films. The method of hydrolythic polycondensation from tetraethyl orthosilicate solutions was used for forming such films in this work. The method’s advantage is a possibility to introduce active additives directly into an initial solution. This method enables to obtain sensitive thin films with high specific surface at room temperature. Particular properties make polyoxometalates attractive as active additives for forming of gas-sensitive films. As catalyst of different redox processes, they can either accelerate the reaction of the matrix with analyzed gas or interact with it, and it results in changes of matrix’s electrical properties Polyoxometalates based films were deposited on the test structures manufactured by microelectronic planar technology with interdigitated electrodes. Modified silica films were deposited by a casting method from solutions based on tetraethyl orthosilicate and polyoxometalates. Polyoxometalates were directly incorporated into initial solutions. Composite nanostructured films were deposited by drop casting method on test structures with a pair of interdigital metal electrodes formed at their surface. The sensor’s active area was 4.0 x 4.0 mm, and electrode gap was egual 0.08 mm. Morphology of the layers surface were studied with Solver-P47 scanning probe microscope (NT-MDT, Russia), the infrared spectra were investigated by a Bruker EQUINOX 55 (Germany). The conditions of film formation varied during the tests. Electrical parameters of the sensors were measured electronically in real-time mode. Films had highly developed surface with value of 450 m2/g and nanoscale pores. Thickness of them was 0,2-0,3 µm. The study shows that the conditions of the environment affect markedly the sensors characteristics, which can be improved by choosing of the right procedure of forming and processing. Addition of polyoxometalate into silica film resulted in stabilization of film mass and changed markedly of electrophysical characteristics. Availability of Mn3P2Mo18O62 into silica film resulted in good sensitivity and selectivity to ethanolamine. Sensitivity maximum was observed at weight content of doping additive in range of 30–50% in matrix. With ethanolamine concentration changing from 0 to 100 ppm films’ conductivity increased by 10-12 times. The increase of sensor’s sensitivity was received owing to complexing reaction of tested substance with cationic part of polyoxometalate. This fact results in intramolecular redox reaction which sharply change electrophysical properties of polyoxometalate. This process is reversible and takes place at room temperature.

Keywords: ethanolamine, gas analysis, polyoxometalate, silica film

Procedia PDF Downloads 190
105 Using Teachers' Perceptions of Science Outreach Activities to Design an 'Optimum' Model of Science Outreach

Authors: Victoria Brennan, Andrea Mallaburn, Linda Seton

Abstract:

Science outreach programmes connect school pupils with external agencies to provide activities and experiences that enhance their exposure to science. It can be argued that these programmes not only aim to support teachers with curriculum engagement and promote scientific literacy but also provide pivotal opportunities to spark scientific interest in students. In turn, a further objective of these programmes is to increase awareness of career opportunities within this field. Although outreach work is also often described as a fun and satisfying venture, a plethora of researchers express caution to how successful the processes are to increases engagement post-16 in science. When researching the impact of outreach programmes, it is often student feedback regarding the activities or enrolment numbers to particular science courses post-16, which are generated and analysed. Although this is informative, the longevity of the programme’s impact could be better informed by the teacher’s perceptions; the evidence of which is far more limited in the literature. In addition, there are strong suggestions that teachers can have an indirect impact on a student’s own self-concept. These themes shape the focus and importance of this ongoing research project as it presents the rationale that teachers are under-used resources when it comes to considering the design of science outreach programmes. Therefore, the end result of the research will consist of a presentation of an ‘optimum’ model of outreach. The result of which should be of interest to the wider stakeholders such as universities or private or government organisations who design science outreach programmes in the hope to recruit future scientists. During phase one, questionnaires (n=52) and interviews (n=8) have generated both quantitative and qualitative data. These have been analysed using the Wilcoxon non-parametric test to compare teachers’ perceptions of science outreach interventions and thematic analysis for open-ended questions. Both of these research activities provide an opportunity for a cross-section of teacher opinions of science outreach to be obtained across all educational levels. Therefore, an early draft of the ‘optimum’ model of science outreach delivery was generated using both the wealth of literature and primary data. This final (ongoing) phase aims to refine this model using teacher focus groups to provide constructive feedback about the proposed model. The analysis uses principles of modified Grounded Theory to ensure that focus group data is used to further strengthen the model. Therefore, this research uses a pragmatist approach as it aims to focus on the strengths of the different paradigms encountered to ensure the data collected will provide the most suitable information to create an improved model of sustainable outreach. The results discussed will focus on this ‘optimum’ model and teachers’ perceptions of benefits and drawbacks when it comes to engaging with science outreach work. Although the model is still a ‘work in progress’, it provides both insight into how teachers feel outreach delivery can be a sustainable intervention tool within the classroom and what providers of such programmes should consider when designing science outreach activities.

Keywords: educational partnerships, science education, science outreach, teachers

Procedia PDF Downloads 103
104 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber

Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay

Abstract:

Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.

Keywords: asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanizate

Procedia PDF Downloads 197
103 Generation & Migration Of Carbone Dioxid In The Lower Cretaceous Bahi Sandstone Reservoir Within The En-naga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex.Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub – basin), three main developed structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represents a good example for the deep over pressure potential in (En Naga sub - basin). The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large.

Keywords: 1) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co2 generation and migration to the bahi sandstone reservoir

Procedia PDF Downloads 42
102 Determining Factors of Suspended Glass Systems with Pre-Stress Cable Truss

Authors: Cemil Atakara, Hüseyin Eryaman

Abstract:

The use of glass as an envelope of a building has been increasing in the twentieth century. For more transparency and dematerialization new glass facade types have emerged in the past two decades which depends on point fixed glazing system (PFGS). The aim of this study is to analyze of the PFGS systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. This new system is desired because it enhances the transparency of the façade and it minimizes the component of the frames or of the profiles. This PFGS led to new structural elements which use cables, rods, trusses when designing a glass building facades, this structural element called the suspended glass system with pre-stressed cable truss (SGSPCT) which has been used for the first time in 1980 in Serres building. The twenty glass buildings which are designed in different systems have been analyzed during this study. After these analyses five selected SGSPCT building analyzed deeply and one skeletal frame building selected from Lefkosa redesigned according to the analysis results. These selected buildings have been included of various cable-truss system typologies and degree. The methodology of this study is building analysis method and literature survey with the help of books, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings and case building have been detailed analyzed with their architectural drawings, photographs and details. A gridshell structure can be compared with a shell structure; it consists of discrete members connecting nodal points. As these nodal points lie on the surface of an imaginary shell, their shapes function almost identically. Difference between shell and gridshell structures can be found in the fact that, due to their free-form and thus, due to the presence of bending forces, gridshells are required to resist loading through their cross-section. This research is divided into parts. A general study about the glass building and cable-glass and grid shell system will be done in the first chapters. Structural analyses and detailed analyses with schematic drawings with the plans, sections of the selected buildings will be explained in the second part. The third part it consists of the advantages and disadvantages of the use of the SGSPCT and Grid Shell in architecture. The study consists of four chapters including the introduction chapter. The general information of the SGSPCT and glazing system has been mentioned in the first chapter. Structural features, typologies, transparency principle and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of case building have been done according to their schematic drawings with the plans, sections in the third chapter. After third chapter SGSPCT discussed on to the case building and selected buildings. SGSPCT systems have been compared with their advantages and disadvantages to the other systems. Advantages of cable-truss systems and SGSPCT have been concluded that the use of glass substrates in the last chapter.

Keywords: cable truss, glass, grid shell, transparency

Procedia PDF Downloads 387
101 Explosive Clad Metals for Geothermal Energy Recovery

Authors: Heather Mroz

Abstract:

Geothermal fluids can provide a nearly unlimited source of renewable energy but are often highly corrosive due to dissolved carbon dioxide (CO2), hydrogen sulphide (H2S), Ammonia (NH3) and chloride ions. The corrosive environment drives material selection for many components, including piping, heat exchangers and pressure vessels, to higher alloys of stainless steel, nickel-based alloys and titanium. The use of these alloys is cost-prohibitive and does not offer the pressure rating of carbon steel. One solution, explosion cladding, has been proven to reduce the capital cost of the geothermal equipment while retaining the mechanical and corrosion properties of both the base metal and the cladded surface metal. Explosion cladding is a solid-state welding process that uses precision explosions to bond two dissimilar metals while retaining the mechanical, electrical and corrosion properties. The process is commonly used to clad steel with a thin layer of corrosion-resistant alloy metal, such as stainless steel, brass, nickel, silver, titanium, or zirconium. Additionally, explosion welding can join a wider array of compatible and non-compatible metals with more than 260 metal combinations possible. The explosion weld is achieved in milliseconds; therefore, no bulk heating occurs, and the metals experience no dilution. By adhering to a strict set of manufacturing requirements, both the shear strength and tensile strength of the bond will exceed the strength of the weaker metal, ensuring the reliability of the bond. For over 50 years, explosion cladding has been used in the oil and gas and chemical processing industries and has provided significant economic benefit in reduced maintenance and lower capital costs over solid construction. The focus of this paper will be on the many benefits of the use of explosion clad in process equipment instead of more expensive solid alloy construction. The method of clad-plate production with explosion welding as well as the methods employed to ensure sound bonding of the metals. It will also include the origins of explosion cladding as well as recent technological developments. Traditionally explosion clad plate was formed into vessels, tube sheets and heads but recent advances include explosion welded piping. The final portion of the paper will give examples of the use of explosion-clad metals in geothermal energy recovery. The classes of materials used for geothermal brine will be discussed, including stainless steels, nickel alloys and titanium. These examples will include heat exchangers (tube sheets), high pressure and horizontal separators, standard pressure crystallizers, piping and well casings. It is important to educate engineers and designers on material options as they develop equipment for geothermal resources. Explosion cladding is a niche technology that can be successful in many situations, like geothermal energy recovery, where high temperature, high pressure and corrosive environments are typical. Applications for explosion clad metals include vessel and heat exchanger components as well as piping.

Keywords: clad metal, explosion welding, separator material, well casing material, piping material

Procedia PDF Downloads 139
100 Tunable Graphene Metasurface Modeling Using the Method of Moment Combined with Generalised Equivalent Circuit

Authors: Imen Soltani, Takoua Soltani, Taoufik Aguili

Abstract:

Metamaterials crossover classic physical boundaries and gives rise to new phenomena and applications in the domain of beam steering and shaping. Where electromagnetic near and far field manipulations were achieved in an accurate manner. In this sense, 3D imaging is one of the beneficiaries and in particular Denis Gabor’s invention: holography. But, the major difficulty here is the lack of a suitable recording medium. So some enhancements were essential, where the 2D version of bulk metamaterials have been introduced the so-called metasurface. This new class of interfaces simplifies the problem of recording medium with the capability of tuning the phase, amplitude, and polarization at a given frequency. In order to achieve an intelligible wavefront control, the electromagnetic properties of the metasurface should be optimized by means of solving Maxwell’s equations. In this context, integral methods are emerging as an important method to study electromagnetic from microwave to optical frequencies. The method of moment presents an accurate solution to reduce the problem of dimensions by writing its boundary conditions in the form of integral equations. But solving this kind of equations tends to be more complicated and time-consuming as the structural complexity increases. Here, the use of equivalent circuit’s method exhibits the most scalable experience to develop an integral method formulation. In fact, for allaying the resolution of Maxwell’s equations, the method of Generalised Equivalent Circuit was proposed to convey the resolution from the domain of integral equations to the domain of equivalent circuits. In point of fact, this technique consists in creating an electric image of the studied structure using discontinuity plan paradigm and taken into account its environment. So that, the electromagnetic state of the discontinuity plan is described by generalised test functions which are modelled by virtual sources not storing energy. The environmental effects are included by the use of an impedance or admittance operator. Here, we propose a tunable metasurface composed of graphene-based elements which combine the advantages of reflectarrays concept and graphene as a pillar constituent element at Terahertz frequencies. The metasurface’s building block consists of a thin gold film, a dielectric spacer SiO₂ and graphene patch antenna. Our electromagnetic analysis is based on the method of moment combined with generalised equivalent circuit (MoM-GEC). We begin by restricting our attention to study the effects of varying graphene’s chemical potential on the unit cell input impedance. So, it was found that the variation of complex conductivity of graphene allows controlling the phase and amplitude of the reflection coefficient at each element of the array. From the results obtained here, we were able to determine that the phase modulation is realized by adjusting graphene’s complex conductivity. This modulation is a viable solution compared to tunning the phase by varying the antenna length because it offers a full 2π reflection phase control.

Keywords: graphene, method of moment combined with generalised equivalent circuit, reconfigurable metasurface, reflectarray, terahertz domain

Procedia PDF Downloads 154
99 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 210
98 Assessment of the Living Conditions of Female Inmates in Correctional Service Centres in South West Nigeria

Authors: Ayoola Adekunle Dada, Tolulope Omolola Fateropa

Abstract:

There is no gain saying the fact that the Nigerian correctional services lack rehabilitation reformation. Owing to this, some so many inmates, including the female, become more emotionally bruised and hardened instead of coming out of the prison reformed. Although female inmates constitute only a small percentage worldwide, the challenges resulting from women falling under the provision of the penal system have prompted ficial and humanitarian bodies to consider female inmateas as vulnerable persons who need particular social work measures that meet their specific needs. Female inmates’condition may become worseinprisondue to the absence of the standard living condition. A survey of 100 female inmates will be used to determine the assessment of the living condition of the female inmates within the contexts in which they occur. Employing field methods from Medical Sociology and Law, the study seeks to make use of the collaboration of both disciplines for a comprehensive understanding of the scenario. Its specific objectives encompassed: (1) To examine access and use of health facilities among the female inmates;(2) To examine the effect of officers/warders attitude towards female inmates;(3)To investigate the perception of the female inmates towards the housing facilities in the centre and; (4) To investigate the feeding habit of the female inmates. Due to the exploratory nature of the study, the researchers will make use of mixed-method, such qualitative methods as interviews will be undertaken to complement survey research (quantitative). By adopting the above-explained inter-method triangulation, the study will not only ensure that the advantages of both methods are exploited but will also fulfil the basic purposes of research. The sampling for this study will be purposive. The study aims at sampling two correctional centres (Ado Ekiti and Akure) in order to generate representative data for the female inmates in South West Nigeria. In all, the total number of respondents will be 100. A cross-section of female inmates will be selected as respondents using a multi-stage sampling technique. 100 questionnaires will be administered. A semi structured (in-depth) interviews will be conducted among workers in the two selected correctional centres, respectively, to gain further insight on the living conditions of female inmates, which the survey may not readily elicit. These participants will be selected purposively in respect to their status in the organisation. Ethical issues in research on human subjects will be given due consideration. Such issues rest on principles of beneficence, non-maleficence, autonomy/justice and confidentiality. In the final analysis, qualitative data will be analyzed using manual content analysis. Both the descriptive and inferential statistics will be used for analytical purposes. Frequency, simple percentage, pie chart, bar chart, curve and cross-tabulations will form part of the descriptive analysis.

Keywords: assessment, health facilities, inmates, perception, living conditions

Procedia PDF Downloads 73
97 Quantitative Analysis of Camera Setup for Optical Motion Capture Systems

Authors: J. T. Pitale, S. Ghassab, H. Ay, N. Berme

Abstract:

Biomechanics researchers commonly use marker-based optical motion capture (MoCap) systems to extract human body kinematic data. These systems use cameras to detect passive or active markers placed on the subject. The cameras use triangulation methods to form images of the markers, which typically require each marker to be visible by at least two cameras simultaneously. Cameras in a conventional optical MoCap system are mounted at a distance from the subject, typically on walls, ceiling as well as fixed or adjustable frame structures. To accommodate for space constraints and as portable force measurement systems are getting popular, there is a need for smaller and smaller capture volumes. When the efficacy of a MoCap system is investigated, it is important to consider the tradeoff amongst the camera distance from subject, pixel density, and the field of view (FOV). If cameras are mounted relatively close to a subject, the area corresponding to each pixel reduces, thus increasing the image resolution. However, the cross section of the capture volume also decreases, causing reduction of the visible area. Due to this reduction, additional cameras may be required in such applications. On the other hand, mounting cameras relatively far from the subject increases the visible area but reduces the image quality. The goal of this study was to develop a quantitative methodology to investigate marker occlusions and optimize camera placement for a given capture volume and subject postures using three-dimension computer-aided design (CAD) tools. We modeled a 4.9m x 3.7m x 2.4m (LxWxH) MoCap volume and designed a mounting structure for cameras using SOLIDWORKS (Dassault Systems, MA, USA). The FOV was used to generate the capture volume for each camera placed on the structure. A human body model with configurable posture was placed at the center of the capture volume on CAD environment. We studied three postures; initial contact, mid-stance, and early swing. The human body CAD model was adjusted for each posture based on the range of joint angles. Markers were attached to the model to enable a full body capture. The cameras were placed around the capture volume at a maximum distance of 2.7m from the subject. We used the Camera View feature in SOLIDWORKS to generate images of the subject as seen by each camera and the number of markers visible to each camera was tabulated. The approach presented in this study provides a quantitative method to investigate the efficacy and efficiency of a MoCap camera setup. This approach enables optimization of a camera setup through adjusting the position and orientation of cameras on the CAD environment and quantifying marker visibility. It is also possible to compare different camera setup options on the same quantitative basis. The flexibility of the CAD environment enables accurate representation of the capture volume, including any objects that may cause obstructions between the subject and the cameras. With this approach, it is possible to compare different camera placement options to each other, as well as optimize a given camera setup based on quantitative results.

Keywords: motion capture, cameras, biomechanics, gait analysis

Procedia PDF Downloads 293
96 Two-Dimensional Dynamics Motion Simulations of F1 Rare Wing-Flap

Authors: Chaitanya H. Acharya, Pavan Kumar P., Gopalakrishna Narayana

Abstract:

In the realm of aerodynamics, numerous vehicles incorporate moving components to enhance their performance. For instance, airliners deploy hydraulically operated flaps and ailerons during take-off and landing, while Formula 1 racing cars utilize hydraulic tubes and actuators for various components, including the Drag Reduction System (DRS). The DRS, consisting of a rear wing and adjustable flaps, plays a crucial role in overtaking manoeuvres. The DRS has two positions: the default position with the flaps down, providing high downforce, and the lifted position, which reduces drag, allowing for increased speed and aiding in overtaking. Swift deployment of the DRS during races is essential for overtaking competitors. The fluid flow over the rear wing flap becomes intricate during deployment, involving flow reversal and operational changes, leading to unsteady flow physics that significantly influence aerodynamic characteristics. Understanding the drag and downforce during DRS deployment is crucial for determining race outcomes. While experiments can yield accurate aerodynamic data, they can be expensive and challenging to conduct across varying speeds. Computational Fluid Dynamics (CFD) emerges as a cost-effective solution to predict drag and downforce across a range of speeds, especially with the rapid deployment of the DRS. This study employs the finite volume-based solver Ansys Fluent, incorporating dynamic mesh motions and a turbulent model to capture the complex flow phenomena associated with the moving rear wing flap. A dedicated section for the rare wing-flap is considered in the present simulations, and the aerodynamics of these sections closely resemble S1223 aerofoils. Before delving into the simulations of the rare wing-flap aerofoil, numerical results undergo validation using experimental data from an NLR flap aerofoil case, encompassing different flap angles at two distinct angles of attack was carried out. The increase in flap angle as increase in lift and drag is observed for a given angle of attack. The simulation methodology for the rare-wing-flap aerofoil case involves specific time durations before lifting the flap. During this period, drag and downforce values are determined as 330 N and 1800N, respectively. Following the flap lift, a noteworthy reduction in drag to 55 % and a decrease in downforce to 17 % are observed. This understanding is critical for making instantaneous decisions regarding the deployment of the Drag Reduction System (DRS) at specific speeds, thereby influencing the overall performance of the Formula 1 racing car. Hence, this work emphasizes the utilization of dynamic mesh motion methodology to predict the aerodynamic characteristics during the deployment of the DRS in a Formula 1 racing car.

Keywords: DRS, CFD, drag, downforce, dynamics mesh motion

Procedia PDF Downloads 72
95 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents

Authors: Amesh P, Suneesh A S, Venkatesan K A

Abstract:

The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.

Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment

Procedia PDF Downloads 140
94 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 20
93 Role of Empirical Evidence in Law-Making: Case Study from India

Authors: Kaushiki Sanyal, Rajesh Chakrabarti

Abstract:

In India, on average, about 60 Bills are passed every year in both Houses of Parliament – Lok Sabha and Rajya Sabha (calculated from information on websites of both Houses). These are debated in both Lok Sabha (House of Commons) and Rajya Sabha (Council of States) before they are passed. However, lawmakers rarely use empirical evidence to make a case for a law. Most of the time, they support a law on the basis of anecdote, intuition, and common sense. While these do play a role in law-making, without the necessary empirical evidence, laws often fail to achieve their desired results. The quality of legislative debates is an indicator of the efficacy of the legislative process through which a Bill is enacted. However, the study of legislative debates has not received much attention either in India or worldwide due to the difficulty of objectively measuring the quality of a debate. Broadly, three approaches have emerged in the study of legislative debates. The rational-choice or formal approach shows that speeches vary based on different institutional arrangements, intra-party politics, and the political culture of a country. The discourse approach focuses on the underlying rules and conventions and how they impact the content of the debates. The deliberative approach posits that legislative speech can be reasoned, respectful, and informed. This paper aims to (a) develop a framework to judge the quality of debates by using the deliberative approach; (b) examine the legislative debates of three Bills passed in different periods as a demonstration of the framework, and (c) examine the broader structural issues that disincentive MPs from scrutinizing Bills. The framework would include qualitative and quantitative indicators to judge a debate. The idea is that the framework would provide useful insights into the legislators’ knowledge of the subject, the depth of their scrutiny of Bills, and their inclination toward evidence-based research. The three Bills that the paper plans to examine are as follows: 1. The Narcotics Drugs and Psychotropic Substances Act, 1985: This act was passed to curb drug trafficking and abuse. However, it mostly failed to fulfill its purpose. Consequently, it was amended thrice but without much impact on the ground. 2. The Criminal Laws (Amendment) Act, 2013: This act amended the Indian Penal Code to add a section on human trafficking. The purpose was to curb trafficking and penalise traffickers, pimps, and middlemen. However, the crime rate remains high while the conviction rate is low. 3. The Surrogacy (Regulation) Act, 2021: This act bans commercial surrogacy allowing only relatives to act as surrogates as long as there is no monetary payment. Experts fear that instead of preventing commercial surrogacy, it would drive the activity underground. The consequences would be borne by the surrogate, who would not be protected by law. The purpose of the paper is to objectively analyse the quality of parliamentary debates, get insights into how MPs understand the evidence and deliberate on steps to incentivise them to use empirical evidence.

Keywords: legislature, debates, empirical, India

Procedia PDF Downloads 66
92 The Effects of Resident Fathers on the Children in South Africa: The Case of Selected Household in Golf View, Alice Town, Eastern Cape Province

Authors: Gabriel Acha Ekobi

Abstract:

Fathers play a crucial role in meeting family needs such as affection, protection, and socio-economic needs of children in the world in general and South Africa in particular. Fathers’ role in children’s lives is important in providing socialization, leadership skills, and teaching societal norms. Fathers influence is very significant for children’s well-being and development as it provides the child with moral lessons, guidance, and economic support. However, there is a paucity of information regarding the effects of fathers on children. In addition, despite legal frameworks such as the African Charter on the Rights and Welfare of the child (1999) introduced by the African Union to promote child rights nevertheless, it appears maltreatment, abuse, and poor health care continue to face children. Also, the Constitution of 1996 of the Republic of South Africa (Section 28 of the Bill of Rights) and the Children’s Act 38 of 2005 were introduced by the South African government to foster the rights of children. Nevertheless, these legal frameworks remain ineffective as children’s rights are still neglected by resident fathers. This paper explores the impact of resident fathers on children in the Golf View, Alice town of the Eastern Cape Province, South Africa. A qualitative research method and an exploratory research design were utilized, and 30 participants took part in the study. The participants comprised of single mothers or caregivers of children, resident fathers and social workers. Eighteen (18) single mothers or caregivers, 10 resident fathers, and two (2) social workers participated in the study. Data was collected using semi-structured and unstructured interviews and analysed thematically. Two main themes were identified: the role of fathers on children and the effects of resident fathers on children. The study found that the presence of fathers in the lives of children prevented psychosocial issues such as stress, depression, violence, and substance abuse. A father’s presence in a household was crucial in instilling moral values in children. This allowed them to build positive characters such as respect, kindness, humility, and compassion. Children with more involved fathers tend to have fewer impulse control problems, longer attention spans, and a higher level of sociability. The study concludes that the fathers’ role prevented anxiety, depression, and stress and led to the improvement of children’s education performance. Nevertheless, the absence of a father as a role model to act as a leader by instilling moral values hinders positive behaviours in children. This study recommended that occupational training and life skills programmes should be introduced by the government and other stakeholders to empower the fathers as this might provide the platform for them to bring up their children properly.

Keywords: children, fathering, household, resident, single parent

Procedia PDF Downloads 33
91 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 68
90 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 30