Search results for: medicinal plants extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4616

Search results for: medicinal plants extract

2186 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis

Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem

Abstract:

Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic aspect-based sentiment analysis approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.

Keywords: sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity

Procedia PDF Downloads 163
2185 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.

Keywords: EEG, epilepsy, phase correlation, seizure

Procedia PDF Downloads 309
2184 The Sawdust Cultivation of Lentinula edodes with Broussonetia kazinoki

Authors: Yeun Sug Jeong, Yeongseon Jang, Rhim Ryoo, Donha Choi, Sung-Suk Lee, Kang-Hyeon Ka

Abstract:

Broussonetia kazinoki (paper mulberry) is a plant native to Asia, and it grows at the foot of a mountain. Its bark is used as a raw material of Hanji, traditional Korean paper, and fruit is used as a medicinal material. However, inside the bark (woody part) is not used and discarded. We tried to use it for Lentinula edodes (oak mushroom) cultivation. It is commonly cultivated using oak trees and sawdust, but it could be grown with other trees. The woody part of paper mulberry was ground and mixed with oak sawdust by five different ratios. The 1.2 kg cylindrical bag media were prepared and water contents were adjusted to 65%. The media were autoclaved at 100℃ for 60 min and 121℃ for 90 min. Two strains of oak mushroom, NIFoS 2462 and NIFoS 2778 were inoculated and cultivated for 90 days in dark condition, and 40 days in light condition. Compared to the control, the mycelial growth period was long and the hardness of the media was low when paper mulberry sawdust was added. After incubation period, fruiting was stimulated at 18℃ and more than 85% humidity. After each flush, there was a resting period of 2 weeks. In the first flush, mushrooms were small, and a lot of small mushrooms were harvested. On the other hand, no mushrooms of 5 g or less were harvested in the secondary flush. The highest productivity was obtained in a 3:1 ratio of paper mulberry and oak sawdust. The size of NIFoS 2778 was uniform in each condition. On the other hand, NIFoS 2462 had smaller mushrooms in the media containing paper mulberry sawdust, but the appearance was not significantly different. This study showed that paper mulberry wood could be used to grow oak mushrooms and some oak sawdust could be substituted.

Keywords: Broussonetia kazinoki, cultivation, Lentinula edodes, oak mushroom

Procedia PDF Downloads 221
2183 A Preliminary Study for Building an Arabic Corpus of Pair Questions-Texts from the Web: Aqa-Webcorp

Authors: Wided Bakari, Patrce Bellot, Mahmoud Neji

Abstract:

With the development of electronic media and the heterogeneity of Arabic data on the Web, the idea of building a clean corpus for certain applications of natural language processing, including machine translation, information retrieval, question answer, become more and more pressing. In this manuscript, we seek to create and develop our own corpus of pair’s questions-texts. This constitution then will provide a better base for our experimentation step. Thus, we try to model this constitution by a method for Arabic insofar as it recovers texts from the web that could prove to be answers to our factual questions. To do this, we had to develop a java script that can extract from a given query a list of html pages. Then clean these pages to the extent of having a database of texts and a corpus of pair’s question-texts. In addition, we give preliminary results of our proposal method. Some investigations for the construction of Arabic corpus are also presented in this document.

Keywords: Arabic, web, corpus, search engine, URL, question, corpus building, script, Google, html, txt

Procedia PDF Downloads 324
2182 Control of Fungal Growth in Sweet Orange and Mango Juices by Justica flava and Afromomum melegueta Extracts

Authors: Adferotimi Banso

Abstract:

A laboratory investigation was conducted to determine the effect of Justica flava and Aframonium melegueta on the growth of Aspergillus niger, Rhizopus stolonifer and Fusarium species in sweet orange and mango juices. Aqueous extract (3%v/v) of Justica flava and Aframonium melegueta reduced the growth of the fungi, a combination of 2% (v/v) each of Justica flava and Aframonium melegueta extracts reduced the growth better. Partial purification of aqueous extracts of Justica flava and Aframonium melegueta showed that ethyl acetate fraction of the extracts exhibited the highest level of inhibition of growth of the test fungi compared with diethyl ether and n-hexane fractions. The results suggest that extracts of Justica flava and Aframonium melegueta may be important substitutes for conventional chemical preservatives in the processing of fruit juices.

Keywords: aqueous, fraction, mango, orange, purification, sweet

Procedia PDF Downloads 351
2181 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 75
2180 Inhibition of Pipelines Corrosion Using Natural Extracts

Authors: Eman Alzahrani, Hala M. Abo-Dief, Ashraf T. Mohamed

Abstract:

The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.

Keywords: inhibition, natural extract, oil pipelines corrosion, sulphur compounds

Procedia PDF Downloads 509
2179 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 347
2178 Behavior of Polymeric Mortars: An Analysis from the Point of View of Application in Severe Conditions

Authors: J. P. Gorninski, J. M. L. Reis

Abstract:

This present work was aimed to develop polymeric mortars having as binder two polyester resins namely isophtalic and orthophtalic polyester. The inorganic phase was composed by medium-size river sand and fly ash fíller, a by-product of the burning of coal in power plants. The compositions in this study are high performance mortars and were assessed by mechanical properties, through compressive strength and flexural strength, by durability strength when exposed to the cyclical variation of temperature from -400C to +300C and by the chemical aggression test. The composites displayed good performance when exposed to cyclical temperature variations and chemical solutions. The mechanical strength values reached the 100 MPa, the flexural strength yielded values of about twenty percent of mechanical strength.

Keywords: polymer mortar, mechanical strength, cyclical temperatures, chemical strength, sustainability

Procedia PDF Downloads 395
2177 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features

Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.

Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction

Procedia PDF Downloads 383
2176 Energy Efficient Recycling of In-Plant Fines

Authors: H. Ahmed, A. Persson, L. Sundqvist, B. Biorkman

Abstract:

Numerous amounts of metallurgical dusts and sludge containing iron as well as some other valuable elements such as Zn, Pb and C are annually produced in the steelmaking industry. These alternative iron ore resources (fines) with unsatisfying physical and metallurgical properties are difficult to recycle. However, agglomerating these fines to be further used as a feed stock for existing iron and steel making processes is practiced successfully at several plants but for limited extent. In the present study, briquettes of integrated steelmaking industry waste materials (namely, BF-dust and sludge, BOF-dust and sludge) were used as feed stock to produce direct reduced iron (DRI). Physical and metallurgical properties of produced briquettes were investigated by means of TGA/DTA/QMS in combination with XRD. Swelling, softening and melting behavior were also studied using heating microscope.

Keywords: iron and steel wastes, recycling, self-reducing briquettes, thermogravimetry

Procedia PDF Downloads 398
2175 Thermodynamic Optimization of an R744 Based Transcritical Refrigeration System with Dedicated Mechanical Subcooling Cycle

Authors: Mihir Mouchum Hazarika, Maddali Ramgopal, Souvik Bhattacharyya

Abstract:

The thermodynamic analysis shows that the performance of the R744 based transcritical refrigeration cycle drops drastically for higher ambient temperatures. This is due to the peculiar s-shape of the isotherm in the supercritical region. However, subcooling of the refrigerant at the gas cooler exit enhances the performance of the R744 based system. The present study is carried out to analyze the R744 based transcritical system with dedicated mechanical subcooling cycle. Based on this proposed cycle, the thermodynamic analysis is performed, and optimum operating parameters are determined. The amount of subcooling and the pressure ratio in the subcooling cycle are the parameters which are needed to be optimized to extract the maximum COP from this proposed cycle. It is expected that this study will be helpful in implementing the dedicated subcooling cycle with R744 based transcritical system to improve the performance.

Keywords: optimization, R744, subcooling, transcritical

Procedia PDF Downloads 308
2174 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 165
2173 Inhibitory Effect on TNF-Alpha Release of Dioscorea membranacea and Its Compounds

Authors: Arunporn Itharat, Srisopa Ruangnoo, Pakakrong Thongdeeying

Abstract:

The rhizomes of Dioscorea membranacea (DM) has long been used in Thai Traditional medicine to treat cancer and inflammatory conditions such as rheumatism. The objective of this study was to investigate anti-inflammatory activity by determining the inhibitory effect on LPS-induced TNF-α from RAW264.7 cells of crude extracts and pure isolated compounds from DM. Three known dihydrophenantrene compounds were isolated by a bioassay guided isolation method from DM ethanolic extract [2,4 dimethoxy-5,6-dihydroxy-9,10-dihydrophenanthrene (1) and 5-hydroxy-2,4,6-trimethoxy-9,10-dihydrophenanthrene(2) and 5,6,2 -trihydroxy 3,4-methoxy, 9,10- dihydrophenanthrene (3)]. 1 showed the highest inhibitory effect on PGE2, followed by 3 and 1 (IC50 = 2.26, 4.97 and >20 μg/ml or 8.31,17.25 and > 20 µM respectively). These findings suggest that this plant showed anti-inflamatory effects by displaying an inhibitory effect on TNF-α release, hence, this result supports the usage of Thai traditional medicine to treat inflammation related diseases.

Keywords: Dioscorea membranacea, anti-inflammatory activity, TNF-Alpha , dihidrophenantrene compound

Procedia PDF Downloads 503
2172 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: decision making, markov chain, optimization, waste water

Procedia PDF Downloads 416
2171 Efficient Subsurface Mapping: Automatic Integration of Ground Penetrating Radar with Geographic Information Systems

Authors: Rauf R. Hussein, Devon M. Ramey

Abstract:

Integrating Ground Penetrating Radar (GPR) with Geographic Information Systems (GIS) can provide valuable insights for various applications, such as archaeology, transportation, and utility locating. Although there has been progress toward automating the integration of GPR data with GIS, fully automatic integration has not been achieved yet. Additionally, manually integrating GPR data with GIS can be a time-consuming and error-prone process. In this study, actual, real-world GPR applications are presented, and a software named GPR-GIS 10 is created to interactively extract subsurface targets from GPR radargrams and automatically integrate them into GIS. With this software, it is possible to quickly and reliably integrate the two techniques to create informative subsurface maps. The results indicated that automatic integration of GPR with GIS can be an efficient tool to map and view any subsurface targets in their appropriate location in a 3D space with the needed precision. The findings of this study could help GPR-GIS integrators save time and reduce errors in many GPR-GIS applications.

Keywords: GPR, GIS, GPR-GIS 10, drone technology, automation

Procedia PDF Downloads 92
2170 Ozonation as an Effective Method to Remove Pharmaceuticals from Biologically Treated Wastewater of Different Origin

Authors: Agne Jucyte Cicine, Vytautas Abromaitis, Zita Rasuole Gasiunaite, I. Vybernaite-Lubiene, D. Overlinge, K. Vilke

Abstract:

Pharmaceutical pollution in aquatic environments has become a growing concern. Various active pharmaceutical ingredient (API) residues, hormones, antibiotics, or/and psychiatric drugs, have already been discovered in different environmental compartments. Due to existing ineffective wastewater treatment technologies to remove APIs, an underestimated amount can enter the ecosystem by discharged treated wastewater. Especially, psychiatric compounds, such as carbamazepine (CBZ) and venlafaxine (VNX), persist in effluent even post-treatment. Therefore, these pharmaceuticals usually exceed safe environmental levels and pose risks to the aquatic environment, particularly to sensitive ecosystems such as the Baltic Sea. CBZ, known for its chemical stability and long biodegradation time, accumulates in the environment, threatening aquatic life and human health through the food chain. As the use of medication rises, there is an urgent need for advanced wastewater treatment to reduce pharmaceutical contamination and meet future regulatory requirements. In this study, we tested advanced oxidation technology using ozone to remove two commonly used psychiatric drugs (carbamazepine and venlafaxine) from biologically treated wastewater effluent. Additionally, general water quality parameters (suspended matter (SPM), dissolved organic carbon (DOC), chemical oxygen demand (COD), and bacterial presence were analyzed. Three wastewater treatment plants (WWTPs) representing different anthropogenic pressures were selected: 1) resort, 2) resort and residential, and 3) residential, industrial, and resort. Wastewater samples for the experiment were collected during the summer season after mechanical and biological treatment and ozonated for 5, 10, and 15 minutes. The initial dissolved ozone concentration of 7,3±0,7 mg/L was held constant during all the experiments. Pharmaceutical levels in this study exceeded the predicted no-effect concentration (PNEC) of 500 and 90 ng L⁻¹ for CBZ and VNX, respectively, in all WWTPs, except CBZ in WWTP 1. Initial CBZ contamination was found to be lower in WWTP 1 (427.4 ng L⁻¹), compared with WWTP 2 (1266.5 ng L⁻¹) and 3 (119.2 ng L⁻¹). VNX followed a similar trend with concentrations of 341.2 ng L⁻¹, 361.4 ng L⁻¹, and 390.0 ng L⁻¹, respectively, for WWTPs 1, 2, and 3. It was determined that CBZ was not detected in the effluent after 5 minutes of ozonation in any of the WWTPs. Contrarily, VNX was still detected after 5, 10, and 15 minutes of treatment with ozone, however, under the limits of quantification (LOD) (<5ng L⁻¹). Additionally, general pollution of SPM, DOC, COD, and bacterial contamination was reduced notably after 5 minutes of treatment with ozone, while no bacterial growth was obtained. Although initial pharmaceutical levels exceeded PNECs, indicating ongoing environmental risks, ozonation demonstrated high efficiency in reducing pharmaceutical and general contamination in wastewater with different pollution matrices.

Keywords: Baltic Sea, ozonation, pharmaceuticals, wastewater treatment plants

Procedia PDF Downloads 21
2169 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: evolving learning, knowledge extraction, knowledge graph, text mining

Procedia PDF Downloads 459
2168 The Genus Bacillus, Effect on Commercial Crops of Colombia

Authors: L. C. Sánchez, L. C. Corrales, A. G. Lancheros, E. Castañeda, Y. Ariza, L. S. Fuentes, L. Sierra, J. L. Cuervo

Abstract:

The importance of environment friendly alternatives in agricultural processes is the reason why the research group Ceparium, the Colegio Mayor de Cundinamarca University, Colombia, investigated the genus Bacillus and its applicability for improving crops of economic importance in Colombia. In this investigation, we presented a study in which the genus Bacillus plays a leading role as beneficial microorganism. The objective was to identify the biochemical potential of three indigenous species of Bacillus, which were able to carry out actions for biological control against pathogens and pests or promoted growth to improve productivity of crops in Colombia. The procedures were performed in three phases: first, the production of biomass of an indigenous strain and a reference strain starting from culture media for production of spores and toxins were made. Spore count was done in a Neubauer chamber, concentrations of spores of Bacillus sphaericus were prepared and a bioassay was done at the Laboratory of Entomology at the University Jorge Tadeo Lozano of Plutella xylostella larvae, insect pest of crucifers in several Colombian regions. The second phase included the extraction in the liquid state fermentation, a secondary metabolite that has antibiosis action against fungi, call iturin B, and was obtained from strains of Bacillus subtilis. The molecule was identified using High Resolution Chromatography (HPLC) and its biocontrol effect on Fusarium sp fungus causes vascular wilt in economically important plant varieties, was confirmed using testing of antagonism in Petri dish. In the third phase, an initial procedure in that let recover and identify microorganisms of the genus Bacillus from the rhizosphere in two aromatic herbs, Rosmarinus officinalis and Thymus vulgaris L. was used. Subsequently, testing of antagonism against Fusarium sp were made and an assay was done under greenhouse conditions to observe biocontrol and growth promoting action by comparing growth in length and dry weight. In the first experiment, native Bacillus sphaericus was lethal to 92% Plutella xylostella larvae in 10 DDA. In the second experiment, iturin B was identified and biological control of Fusarium sp was demonstrated. In the third study, all strains demonstrated biological control and the B14 strain identified as Bacillus megaterium increased root length and productivity of the two plants in terms of weight. It was concluded that the native microorganisms of the genus Bacillus has a great biochemical potential that provides a beneficial interactions with plants, improve their growth and development and therefore a greater impact on production.

Keywords: genus bacillus, biological control, PGPRs, biochemical potential

Procedia PDF Downloads 436
2167 Advances in Sesame Molecular Breeding: A Comprehensive Review

Authors: Micheale Yifter Weldemichael

Abstract:

Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.

Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering

Procedia PDF Downloads 43
2166 A New Alpha-Amylase Inhibitor Isolated from the Stem Bark of Anthocleista Djalonensis

Authors: Oseyemi O. Olubomehin, Edith O. Ajaiyeoba, Kio A. Abo, Eleonora D. Goosen

Abstract:

Diabetes is a major degenerative disease of global concern and it is the third most lethal disease of mankind, accounting for about 3.2 million deaths annually. Lowering postprandial hyperglycemia by inhibition of carbohydrate hydrolyzing enzyme such as alpha-amylase is one of the therapeutic approaches to treat Type 2 Diabetes. Alpha-amylase inhibitors from plants have been found to be effective in managing postprandial hyperglycemia. In continuation of our anti-diabetic activities of this plant, bioassay-guided fractionation and isolation using 0.1-1.0 mg/mL furnished djalonenol, a monoterpene diol with a significant 53.7% α-amylase inhibition (p<0.001) from the stem bark which was comparable to acarbose which gave a 54.9% inhibition. Spectral characterization using Infra-red, Gas Chromatogrphy-Mass spectrometry, 1D and 2D NMR of the isolated compound was done to elucidate the structure of the compound.

Keywords: alpha-amylase inhibitor, hyperglycemia, postprandial, diabetes

Procedia PDF Downloads 461
2165 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 454
2164 Development and Evaluation of Antimicrobial Herbal Mouthwash Including Methanolic Extracts of Beautea monosperma and Cordia obliqua

Authors: Reenu Yadav, S. K. Yadav

Abstract:

Herbal therapy has been used for daily oral health care to prevent, treat or cure oral conditions from halitosis to periodontal diseases. The importance of mouth and teeth cleanliness has been recognized from the earliest days of civilization to the 21st century. In the present study, leaves and seeds of Cordia obliqua and barks and twigs of Beautea monosperma, which is used traditionally for oral diseases was evaluated for its antimicrobial activity. The antimicrobial activity tests indicated that the methanolic extract exhibited stronger activities against the commonly encountered oral bacterial and fungal pathogens. The mouthwash formulation prepared and it is compared with marketed formulation HiOra. The results indicated that the herbal mouthwash could inhibit the growth of oral pathogens and may prevent plaque and other periodontal diseases caused by dental pathogens.

Keywords: herbal mouthwash, bio medicine, life sciences, herbal extracts

Procedia PDF Downloads 350
2163 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 462
2162 Genomic Analysis of Whole Genome Sequencing of Leishmania Major

Authors: Fatimazahrae Elbakri, Azeddine Ibrahimi, Meryem Lemrani, Dris Belghyti

Abstract:

Leishmaniasis represents a major public health problem because of the number of cases recorded each year and the wide distribution of the disease. It is a parasitic disease of flagellated protozoa transmitted by the bite of certain species of sandfly, causing a spectrum of clinical pathology in humans ranging from disfiguring skin lesions to fatal visceral leishmaniasis. Cutaneous leishmaniasis due to Leishmania major is a polymorphic disease; in fact, the infection can be asymptomatic, localized, or disseminated. The objective of this work is to determine the genomic diversity that contributes to clinical variability by trying to identify the variation in chromosome number and to extract SNPs and SNPs and InDels; it is based on four sequences (WGS) of Leishmania major available on NCBI in Fastq form, from three countries: Tunisia, Algeria, and Israel, the analysis is set up from a pipeline to facilitate the discovery of genetic diversity, in particular SNP and chromosomal somy.

Keywords: Leshmania major, cutaneous Leishmania, NGS, genomic, somy, variant calling

Procedia PDF Downloads 80
2161 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 256
2160 Critical Evaluation of Long Chain Hydrocarbons with Biofuel Potential from Marine Diatoms Isolated from the West Coast of India

Authors: Indira K., Valsamma Joseph, I. S. Bright

Abstract:

Introduction :Biofuels could replace fossil fuels and reduce our carbon footprint on the planet by technological advancements needed for sustainable and economic fuel production. Micro algae have proven to be a promising source to meet the current energy demand because of high lipid content and production of high biomass rapidly. Marine diatoms, which are key contributors in the biofuel sector and also play a significant role in primary productivity and ecology with high biodiversity and genetic and chemical diversity, are less well understood than other microalgae for producing hydrocarbons. Method :The marine diatom samples selected for hydrocarbon analysis were a total of eleven, out of which 9 samples were from the culture collection of NCAAH, and the remaining two of them were isolated by serial dilution method to get a pure culture from a mixed culture of microalgae obtained from the various cruise stations (350&357) FORV Sagar Sampada along the west coast of India. These diatoms were mass cultured in F/2 media, and the biomass harvested. The crude extract was obtained from the biomass by homogenising with n-hexane, and the hydrocarbons was further obtained by passing the crude extract through 500mg Bonna Agela SPE column and the quantitative analysis was done by GCHRMS analysis using HP-5 column and Helium gas was used as a carrier gas(1ml/min). The injector port temperature was 2400C, the detector temperature was 2500C, and the oven was initially kept at 600C for 1 minute and increased to 2200C at the rate of 60C per minute, and the analysis of a mixture of long chain hydrocarbons was done .Results:In the qualitative analysis done, the most potent hydrocarbon was found to be Psammodictyon Panduriforme (NCAAH-9) with a hydrocarbon mass of 37.27mg/g of the biomass and 2.1% of the total biomass 0f 1.395g and the other potent producer is Biddulphia(NCAAH 6) with hydrocarbon mass of 25.4mg/g of biomass and percentage of hydrocarbon is 1.03%. In the quantitative analysis by GCHRMS, the long chain hydrocarbons found in most of the marine diatoms were undecane, hexadecane, octadecane 3ethyl 5,2 ethyl butyl, Eicosane7hexyl, hexacosane, heptacosane, heneicosane, octadecane 3 methyl, triacontane. The exact mass of the long chain hydrocarbons in all the marine diatom samples was found to be Nonadecane 12C191H40, Tritriacontane,13-decyl-13-heptyl 12C501H102, Octadecane,3ethyl-5-(2-ethylbutyl 12C261H54, tetratetracontane 12C441H89, Eicosane, 7-hexyl 12C261H54. Conclusion:All the marine diatoms screened produced long chain hydrocarbons which can be used as diesel fuel with good cetane value example, hexadecane, undecane. All the long chain hydrocarbons can further undergo catalytic cracking to produce short chain alkanes which can give good octane values and can be used as gasoline. Optimisation of hydrocarbon production with the most potent marine diatom yielded long chain hydrocarbons of good fuel quality.

Keywords: biofuel, hydrocarbons, marine diatoms, screening

Procedia PDF Downloads 79
2159 Mayan Culture and Attitudes towards Sustainability

Authors: Sarah Ryu

Abstract:

Agricultural methods and ecological approaches employed by the pre-colonial Mayans may provide valuable insights into forest management and viable alternatives for resource sustainability in the face of major deforestation across Central and South America.Using a combination of observation data collected from the modern indigenous inhabitants near Mixco in Guatemala and historical data, this study was able to create a holistic picture of how the Maya maintained their ecosystems. Surveys and observations were conducted in the field, over a period of twelve weeks across two years. Geographic and archaeological data for this area was provided by Guatemalan organizations such as the Universidad de San Carlos de Guatemala. Observations of current indigenous populations around Mixco showed that they adhered to traditional Mayan methods of agriculture, such as terrace construction and arboriculture. Rather than planting one cash crop as was done by the Spanish, indigenous peoples practice agroforestry, cultivating forests that would provide trees for construction material, wild plant foods, habitat for game, and medicinal herbs. The emphasis on biodiversity prevented deforestation and created a sustainable balance between human consumption and forest regrowth. Historical data provided by MayaSim showed that the Mayans successfully maintained their ecosystems from about 800BCE to 700CE. When the Mayans practiced natural resource conservation and cultivated a harmonious relationship with the forest around them, they were able to thrive and prosper alongside nature. Having lasted over a thousand years, the Mayan empire provides a valuable lesson in sustainability and human attitudes towards the environment.

Keywords: biodiversity, forestry, mayan, sustainability

Procedia PDF Downloads 177
2158 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay

Procedia PDF Downloads 240
2157 Time-Frequency Modelling and Analysis of Faulty Rotor

Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen

Abstract:

In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults.

Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub

Procedia PDF Downloads 350