Search results for: finite elements method
20356 Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses
Authors: Seung-Won Lee, JongSoo Lee, Won-Jik Yang, Hyung-Joon Kim
Abstract:
A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods, an IDA method and a CSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states.Keywords: seismic fragility curve, incremental dynamic analysis, capacity spectrum method, reinforced concrete moment frame
Procedia PDF Downloads 42520355 The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers
Authors: Aawag Mohsen Al-Awag, Wesam Salah Alaloul, M. S. Liew
Abstract:
Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems.Keywords: construction industry, industrialized building system, barriers, advantages and disadvantages, construction, sustainability, Malaysia
Procedia PDF Downloads 10720354 Experimental and Analytical Study of Various Types of Shear Connector Used for Cold-Formed Steel-Ferrocement Composite Beam
Authors: Talal Alhajri, Mahmood M. Tahir, Khaled Alenezi, Mohamad Ragaee
Abstract:
This work presents the experimental tests carried out to evaluate the behaviour of different types of shear connectors proposed for cold formed steel (CFS) section integrated with ferrocement slab as potential used for composite beam. Ten push-out test specimens of cold-formed steel lipped channel sections connected with ferrocement slab were tested. Three types of shear connectors were studied comprised of bolts, self-drilling-screw and bar angle. The connection behavior is analysed in terms of its load-slip relationship and the failure mode. The parametric studies were performed to investigate the effect on the shear connector’s capacity by varying the number of layers of wire mesh used in ferrocement slab and types of shear connector used. An analytical analysis using ANSYS program and theoretical analysis (Eurocode 4) were carried out to verify the experiment results. The results show that the experimental, theoretical, and numerical values proved to have good agreement with each other.Keywords: cold-formed steel, composite beam, ferrocement, finite element method, push-out test, shear connector
Procedia PDF Downloads 36820353 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed
Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar
Abstract:
The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement
Procedia PDF Downloads 30520352 X-Ray Crystallographic, Hirshfeld Surface Analysis and Docking Study of Phthalyl Sulfacetamide
Authors: Sanjay M. Tailor, Urmila H. Patel
Abstract:
Phthalyl Sulfacetamide belongs to well-known member of antimicrobial sulfonamide family. It is a potent antitumor drug. Structural characteristics of 4-amino-N-(2quinoxalinyl) benzene-sulfonamides (Phthalyl Sulfacetamide), C14H12N4O2S has been studied by method of X-ray crystallography. The compound crystallizes in monoclinic space group P21/n with unit cell parameters a= 7.9841 Ǻ, b= 12.8208 Ǻ, c= 16.6607 Ǻ, α= 90˚, β= 93.23˚, γ= 90˚and Z=4. The X-ray based three-dimensional structure analysis has been carried out by direct methods and refined to an R-value of 0.0419. The crystal structure is stabilized by intermolecular N-H…N, N-H…O and π-π interactions. The Hirshfeld surfaces and consequently the fingerprint analysis have been performed to study the nature of interactions and their quantitative contributions towards the crystal packing. An analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are the key elements in building different supramolecular architectures. Docking is used for virtual screening for the prediction of the strongest binders based on various scoring functions. Docking studies are carried out on Phthalyl Sulfacetamide for better activity, which is important for the development of a new class of inhibitors.Keywords: phthalyl sulfacetamide, crystal structure, hirshfeld surface analysis, docking
Procedia PDF Downloads 35120351 Influence of Water Reservoir Parameters on the Climate and Coastal Areas
Authors: Lia Matchavariani
Abstract:
Water reservoir construction on the rivers flowing into the sea complicates the coast protection, seashore starts to degrade causing coast erosion and disaster on the backdrop of current climate change. The instruments of the impact of a water reservoir on the climate and coastal areas are its contact surface with the atmosphere and the area irrigated with its water or humidified with infiltrated waters. The Black Sea coastline is characterized by the highest ecological vulnerability. The type and intensity of the water reservoir impact are determined by its morphometry, type of regulation, level regime, and geomorphological and geological characteristics of the adjoining area. Studies showed the impact of the water reservoir on the climate, on its comfort parameters is positive if it is located in the zone of insufficient humidity and vice versa, is negative if the water reservoir is found in the zone with abundant humidity. There are many natural and anthropogenic factors determining the peculiarities of the impact of the water reservoir on the climate, which can be assessed with maximum accuracy by the so-called “long series” method, which operates on the meteorological elements (temperature, wind, precipitations, etc.) with the long series formed with the stationary observation data. This is the time series, which consists of two periods with statistically sufficient duration. The first period covers the observations up to the formation of the water reservoir and another period covers the observations accomplished during its operation. If no such data are available, or their series is statistically short, “an analog” method is used. Such an analog water reservoir is selected based on the similarity of the environmental conditions. It must be located within the zone of the designed water reservoir, under similar environmental conditions, and besides, a sufficient number of observations accomplished in its coastal zone.Keywords: coast-constituent sediment, eustasy, meteorological parameters, seashore degradation, water reservoirs impact
Procedia PDF Downloads 4920350 Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems
Authors: Harendra Singh, Rajesh Pandey
Abstract:
The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems.Keywords: non-linear fractional variational problems, Rayleigh-Ritz method, convergence analysis, error analysis
Procedia PDF Downloads 30320349 Postmodernism and Metanarrative: Deconstruction of Narrative in a Song of Ice and Fire Fantasy TV Series
Authors: Narjes Azimi
Abstract:
It has been a while that narrative and storytelling turned to be the inevitable part of media. The narrative has so many aspects and among those entire aspects, the fantasy genre is consciously challenging one as fantasy readers are used to reading narratives like good versus evil plot. This paper will analyze the ASOIF TV series as a Meta narrative cultural production that deconstructs the elements of a traditional narrative. This study will shade on a grand narrative perspective from poststructuralism point of view. The theoretical framework is structuralism and post structuralism. Lyotard and Barthes are two main poststructuralists and focus of the study. Lyotard grand narrative elements will analyze in this research study. Fantasy genre generated a number of outstanding authors that explore innovative perspectives. Among all these leading authors George R.R Martin is one of the best. George R. R. Martin’s Fantasy a Song of Ice and Fire picturized the brutal world that seven kingdoms struggling for the power. Since 2011 this production has been followed and watched by millions of audiences all around the world. The methodology is the textual analysis of selected scenes. Martin’s distinctive fantasy style which makes it different from other fantasies, yet this shift does not negate how the previous fantasy writers represent the mentioned concepts of war, and etc., but Martin’ fantasy and left the mature audiences full of uncertainty.Keywords: narrative theory, metanarrative, deconstruction, post-structuralism, Lyotard, Barthes
Procedia PDF Downloads 30020348 Aspects of Semiotics in Contemporary Design: A Case Study on Dice Brand
Authors: Laila Zahran Mohammed Alsibani
Abstract:
The aim of the research is to understand the aspects of semiotics in contemporary designs by redesigning an Omani donut brand with localized cultural identity. To do so, visual identity samples of Dice brand of donuts in Oman has been selected to be a case study. This study conducted based on semiotic theory by using mixed method research tools which are: documentation analysis, interview and survey. The literature review concentrates on key areas of semiotics in visual elements used in the brand designs. Also, it spotlights on the categories of semiotics in visual design. In addition, this research explores the visual cues in brand identity. The objectives of the research are to investigate the aspects of semiotics in providing meaning to visual cues and to identify visual cues for each visual element. It is hoped that this study will have the contribution to a better understanding of the different ways of using semiotics in contemporary designs. Moreover, this research can be a review of further studies in understanding and explaining current and future design trends. Future research can also focus on how brand-related signs are perceived by consumers.Keywords: brands, semiotics, visual arts, visual communication
Procedia PDF Downloads 16420347 Early Detection of Kidney Failure by Using a Distinct Technique for Sweat Analysis
Authors: Saba. T. Suliman, Alaa. H. Osman, Sara. T. Ahmed, Zeinab. A. Mustafa, Akram. I. Omara, Banazier. A. Ibraheem
Abstract:
Diagnosis by sweat is one of the emerging methods whereby sweat can identify many diseases in the human body. Sweat contains many elements that help in the diagnostic process. In this research, we analyzed sweat samples by using a Colorimeter device to identify the disease of kidney failure in its various stages. This analysis is a non-invasive method where the sample is collected from outside the body, and then this sample is analyzed. Urea refers to the disease of kidney failure when its quantity is high in the blood and then in the sweat, and by experience, we found that the amount of urea for males differs from its quantity for females, where there is a noticeable increase for males in normal and pathological cases. In this research, we took many samples from a normal group that does not suffer from renal failure and another who suffers from the disease to compare the percentage of urea, and after analysis, we found that the urea percentage is high in people with kidney failure disease. with an accuracy of results of 85%.Keywords: sweat analysis, kidney failure, urea, non-invasive, eccrine glands, mineral composition, sweat test
Procedia PDF Downloads 4720346 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage
Abstract:
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square
Procedia PDF Downloads 38620345 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 50420344 A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea
Authors: L. I. Izhar, T. Stathaki, K. Howell
Abstract:
Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved.Keywords: Blaschko’s lines, image registration, morphoea, thermal imaging
Procedia PDF Downloads 31520343 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid
Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop
Abstract:
The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet
Procedia PDF Downloads 35720342 Comparison of Allowable Stress Method and Time History Response Analysis for Seismic Design of Buildings
Authors: Sayuri Inoue, Naohiro Nakamura, Tsubasa Hamada
Abstract:
The seismic design method of buildings is classified into two types: static design and dynamic design. The static design is a design method that exerts static force as seismic force and is a relatively simple design method created based on the experience of seismic motion in the past 100 years. At present, static design is used for most of the Japanese buildings. Dynamic design mainly refers to the time history response analysis. It is a comparatively difficult design method that input the earthquake motion assumed in the building model and examine the response. Currently, it is only used for skyscrapers and specific buildings. In the present design standard in Japan, it is good to use either the design method of the static design and the dynamic design in the medium and high-rise buildings. However, when actually designing middle and high-rise buildings by two kinds of design methods, the relatively simple static design method satisfies the criteria, but in the case of a little difficult dynamic design method, the criterion isn't often satisfied. This is because the dynamic design method was built with the intention of designing super high-rise buildings. In short, higher safety is required as compared with general buildings, and criteria become stricter. The authors consider applying the dynamic design method to general buildings designed by the static design method so far. The reason is that application of the dynamic design method is reasonable for buildings that are out of the conventional standard structural form such as emphasizing design. For the purpose, it is important to compare the design results when the criteria of both design methods are arranged side by side. In this study, we performed time history response analysis to medium-rise buildings that were actually designed with allowable stress method. Quantitative comparison between static design and dynamic design was conducted, and characteristics of both design methods were examined.Keywords: buildings, seismic design, allowable stress design, time history response analysis, Japanese seismic code
Procedia PDF Downloads 16020341 The Impact of Human Resources Management on the Job Security of Self-Initiated Expatriates after the Brexit
Authors: Yllka Hysaj, Ylberina Hysaj Arifi
Abstract:
Recently, with BREXIT taking place, organizations and employees have been affected in the way of job and employment security. Career-oriented human resources management (HRM) practices are likely to facilitate self-initiated expatriates’ adjustment to the host country. This was related to the career security (job security and employment security), which were missing in their home country and seemed to be important elements to adjust to the host country. The aim of this study is to assess whether the perception of career security by Frances self-initiated expatriates (SIEs) have changed in the wake of the referendum result. Quantitative research method will be used, and the data will be collected through electronic questionnaires. Data will be analyzed through Statistical Package for the Social Sciences (SPSS). The study variables will include an adjustment to the host country, HRM practices, employability, and job security. Predicted results consist that career-oriented HRM practices are positively related to the adjustment to the host country, employability, and job security. However, with Brexit, there might be a negative relationship between career-oriented HRM practices and job security.Keywords: migration, self-initiated expatriates, Brexit, job security
Procedia PDF Downloads 17120340 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements
Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks
Abstract:
Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.Keywords: aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing
Procedia PDF Downloads 33320339 Breaking Stress Criterion that Changes Everything We Know About Materials Failure
Authors: Ali Nour El Hajj
Abstract:
Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering
Procedia PDF Downloads 8720338 Roadmaps as a Tool of Innovation Management: System View
Authors: Matich Lyubov
Abstract:
Today roadmaps are becoming commonly used tools for detecting and designing a desired future for companies, states and the international community. The growing popularity of this method puts tasks such as identifying basic roadmapping principles, creation of concepts and determination of the characteristics of the use of roadmaps depending on the objectives as well as restrictions and opportunities specific to the study area on the agenda. However, the system approach, e.g. the elements which are recognized to be major for high-quality roadmapping, remains one of the main fields for improving the methodology and practice of their development as limited research was devoted to the detailed analysis of the roadmaps from the view of system approach. Therefore, this article is an attempt to examine roadmaps from the view of the system analysis, to compare areas, where, as a rule, roadmaps and systems analysis are considered the most effective tools. To compare the structure and composition of roadmaps and systems models the identification of common points between construction stages of roadmaps and system modeling and the determination of future directions for research roadmaps from a systems perspective are of special importance.Keywords: technology roadmap, roadmapping, systems analysis, system modeling, innovation management
Procedia PDF Downloads 31320337 Proactive Change or Adaptive Response: A Study on the Impact of Digital Transformation Strategy Modes on Enterprise Profitability From a Configuration Perspective
Authors: Jing-Ma
Abstract:
Digital transformation (DT) is an important way for manufacturing enterprises to shape new competitive advantages, and how to choose an effective DT strategy is crucial for enterprise growth and sustainable development. Rooted in strategic change theory, this paper incorporates the dimensions of managers' digital cognition, organizational conditions, and external environment into the same strategic analysis framework and integrates the dynamic QCA method and PSM method to study the antecedent grouping of the DT strategy mode of manufacturing enterprises and its impact on corporate profitability based on the data of listed manufacturing companies in China from 2015 to 2019. We find that the synergistic linkage of different dimensional elements can form six equivalent paths of high-level DT, which can be summarized as the proactive change mode of resource-capability dominated as well as adaptive response mode such as industry-guided resource replenishment. Capacity building under complex environments, market-industry synergy-driven, forced adaptation under peer pressure, and the managers' digital cognition play a non-essential but crucial role in this process. Except for individual differences in the market industry collaborative driving mode, other modes are more stable in terms of individual and temporal changes. However, it is worth noting that not all paths that result in high levels of DT can contribute to enterprise profitability, but only high levels of DT that result from matching the optimization of internal conditions with the external environment, such as industry technology and macro policies, can have a significant positive impact on corporate profitability.Keywords: digital transformation, strategy mode, enterprise profitability, dynamic QCA, PSM approach
Procedia PDF Downloads 2720336 Reliability-Based Method for Assessing Liquefaction Potential of Soils
Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty
Abstract:
This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated.Keywords: liquefaction, reliability analysis, chalos area, civil and structural engineering
Procedia PDF Downloads 47320335 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes
Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang
Abstract:
The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations
Procedia PDF Downloads 25120334 Characterization of Laminar Flow and Power Consumption in Agitated Vessel with Curved Blade Agitator
Authors: Amine Benmoussa, Mohamed Bouanini, Mebrouk Rebhi
Abstract:
Stirring is one of the unifying processes which form part of the mechanical unit operations in process technology such chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore determining the level of mixing and overall behavior and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective are the knowledge of the hydrodynamic behavior and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role.Keywords: agitated vessels, curved blade agitator, laminar flow, finite volume method
Procedia PDF Downloads 29020333 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model
Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim
Abstract:
Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature and the right vertical wall is maintained at a constant cold temperature, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL's finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number, the modified thermal conductivity ratio, the inter-phase heat transfer coefficien and the time independent. The results presented for values of the governing parameters in terms of streamlines in both fluid/porous layer, isotherms of fluid and solid porous layer, isotherms of fluid layer, and average Nusselt number.Keywords: unsteady natural convection, thermal non-equilibrium model, Darcy model
Procedia PDF Downloads 37920332 Modeling and Characterization of the SiC Single Crystal Growth Process
Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski
Abstract:
In the present study numerical simulations silicon carbide single crystal growth process in Physical Vapor Transport reactor are addressed. Silicon Carbide is a perspective material for many applications in modern electronics. One of the main challenges for wider applications of SiC is high price of high quality mono crystals. Improvement of silicon carbide manufacturing process has a significant influence on the product price. Better understanding of crystal growth allows for optimization of the process, and it can be achieved by numerical simulations. In this work Virtual Reactor software was used to simulate the process. Predicted geometrical properties of the final product and information about phenomena occurring inside process reactor were obtained. The latter is especially valuable because reactor chamber is inaccessible during the process due to high temperature inside the reactor (over 2000˚C). Obtained data was used for improvement of the process and reactor geometry. Resultant crystal quality was also predicted basing on crystallization front shape evolution and threading dislocation paths. Obtained results were confronted with experimental data and the results are in good agreement.Keywords: Finite Volume Method, semiconductors, Physical Vapor Transport, silicon carbide
Procedia PDF Downloads 53420331 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle
Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir
Abstract:
Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.Keywords: separation flow, backward facing step, heat transfer, laminar flow
Procedia PDF Downloads 47420330 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.Keywords: bed topography, FBM, LBM, shallow water, simulations
Procedia PDF Downloads 10220329 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads
Authors: Seyed Sadegh Naseralavi
Abstract:
This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation
Procedia PDF Downloads 28920328 MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University
Authors: Eyasu Gemech, Kassa Michael, Mulugeta Atnafu
Abstract:
A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts.Keywords: MATLAB supported collaborative method, MATLAB supported learning, collaborative method, conceptual understanding, functions of two variables
Procedia PDF Downloads 28220327 Forecasting Amman Stock Market Data Using a Hybrid Method
Authors: Ahmad Awajan, Sadam Al Wadi
Abstract:
In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series
Procedia PDF Downloads 134