Search results for: brain tumor classification
1517 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 3711516 The Investigation of the Active Constituents, Danshen for Angiogenesis
Authors: Liang Zhou, Xiaojing Zhu, Yin Lu
Abstract:
Danshen can induce the angiogenesis in advanced ischemic heart disease while inhibiting the angiogenesis in cancer. Additionally, Danshen mainly contains two groups of ingredients: the hydrophilic phenolic acids (danshensu, caffeic acid and salvianolic acid B), and the lipophilic tanshinones (dihydrotanshinone I, tanshinone II A, and cryptotanshinone). The lipophilic tanshinones reduced the VEGF- and bFGF-induced proliferation of HUVECs in dose-dependent manner, but cannot perform in others. Conversely, caffeic acid and salvianolic acid B had the opposite effect. Danshensu inhibited the VEGF- and bFGF-induced migration of HUVECs, and others were not. Most of them interrupted the forming capillary-like structures of HUVECs, except the danshensu and caffeic acid. Oppositely, caffeic acid enhanced the ability of forming capillary-like structures of HUVECs. Ultimately, the lipophilic tanshinones, danshensu and salvianolic acid B inhibited the angiogenesis, whereas the caffeic acid induced the angiogenesis. These data provide useful information for the classification of ingredients of Danshen for angiogenesis.Keywords: angiogenesis, Danshen, HUVECs, ingredients
Procedia PDF Downloads 3961515 Towards Overturning the Dismal Mathematics Performance in Schools by Capitalizing on the Overlooked Cognitive Prowess for Adolescents to Learn Mathematics
Authors: Dudu Ka Ruth Mkhize
Abstract:
Adolescents are at the front and centre of poor mathematics performance in schools. Literature has concluded in some countries that there is a permanent and perpetual mathematics crisis in schools of the persistent poor performance in mathematics by teens. There is no shortage of interventions and research to solve this problem. However, none has capitalised on the cognitive prowess of adolescents, which was revealed at the turn of the century by the introduction of neuroimaging technologies such as structural and functional magnetic resonance imaging (sMRI and fMRI). This research found that brain growth during adolescence results in enhanced cognitive abilities essential for mathematics learning. This paper is based on the four-year case study of rural high school adolescents who had a negative attitude towards mathematics and hence were failing mathematics. But through a ten-day intervention where teaching revolved around invoking their cognitive ability, their attitude and motivation for mathematics changed for the better. The paper concludes that despite educational psychology being part of teacher education as well as education systems, there are numerous overlooked gems of psychological theories which have the potential to enhance academic achievement for youth in schools. A recommendation is made to take cues from positive psychology, whose establishment was a rejection of the dominance of the disease model in psychology. Similarly, the general perspective of poor mathematics performance can take a u-turn towards the cognitive ability acquired by adolescents because of their developmental stage.Keywords: adolescence, cognitive growth, mathematics performance
Procedia PDF Downloads 681514 TransDrift: Modeling Word-Embedding Drift Using Transformer
Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur
Abstract:
In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.Keywords: NLP applications, transformers, Word2vec, drift, word embeddings
Procedia PDF Downloads 911513 Comparing the Efficacy of Quantitative Electroencephalogram-Based Neurofeedback Therapy Program versus Organizational Skills Training Program to Reduce the Core Symptoms among Children Group of ADHD
Authors: Radwa R. El-Saadany , Medhat Abu Zeid, Tarek Omar, Marwa S. Maqsoud
Abstract:
Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders characterized by attention deficit, hyperactivity, and impulsivity. Neurofeedback (NF) is one of the neurotherapy treatments that cause brain wave changes. Method: The current pseudo-experimental study with a pre–post-test design was conducted on a population of children with attention deficit hyperactivity disorder (ADHD).The sample size comprised of (30) children selected by random sampling method and assigned to two therapeutic groups: First therapeutic group received a neurofeedback program. Based on QEEG, it reached (10) children. The second therapeutic group received an organization skills training program, it reached (10) and the control group that did not receive programs, it reached (10) children. Results: There are significant differences between pre- and post-assessments among therapeutic groups in reducing the three core symptoms of ADHD in favor of post measurement. There are no significant differences between post-assessment and follow up measurement of the therapeutic groups.Keywords: QEEG-based neurofeedback therapy program, organizational skills training program, attention deficit hyperactivity disorder
Procedia PDF Downloads 771512 Patterns of Malignant and Benign Breast Lesions in Hail Region: A Retrospective Study at King Khalid Hospital
Authors: Laila Seada, Ashraf Ibrahim, Amjad Al Shammari
Abstract:
Background and Objectives: Breast carcinoma is the most common cancer of females in Hail region, accounting for 31% of all diagnosed cancer cases followed by thyroid carcinoma (25%) and colorectal carcinoma (13%). Methods: In the present retrospective study, all cases of breast lesions received at the histopathology department in King Khalid Hospital, Hail, during the period from May 2011 to April 2016 have been retrieved from department files. For all cases, a trucut biopsy, lumpectomy, or modified radical mastectomy was available for histopathologic diagnosis, while 105/140 (75%) had, as well, preoperative fine needle aspirates (FNA). Results: 49 cases out of 140 (35%) breast lesions were carcinomas: 44/49 (89.75%) was invasive ductal, 2/49(4.1%) invasive lobular carcinomas, 1/49(2.05%) intracystic low grade papillary carcinoma and 2/49 (4.1%) ductal carcinoma in situ (DCIS). Mean age for malignant cases was 45.06 (+/-10.58): 32.6% were below the age of 40 and 30.6 below 50 years, 18.3% below 60 and 16.3% below 70 years. For the benign group, mean age was 32.52 (+/10.5) years. Benign lesions were in order of frequency: 34 fibroadenomas, 14 fibrocystic disease, 12 chronic mastitis, five granulomatous mastitis, three intraductal papillomas, and three benign phyllodes tumor. Tubular adenoma, lipoma, skin nevus, pilomatrixoma, and breast reduction specimens constituted the remaining specimens. Conclusion: Breast lesions are common in our series and invasive carcinoma accounts for more than 1/3rd of the lumps, with 63.2% incidence in pre-menopausal ladies, below the age of 50 years. FNA as a non-invasive procedure, proved to be an effective tool in diagnosing both benign and malignant/suspicious breast lumps and should continue to be used as a first assessment line of palpable breast masses.Keywords: age incidence, breast carcinoma, fine needle aspiration, hail region
Procedia PDF Downloads 2791511 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 1021510 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 2941509 Creative Potential of Children with Learning Disabilities
Authors: John McNamara
Abstract:
Growing up creative is an important idea in today’s classrooms. As education seeks to prepare children for their futures, it is important that the system considers traditional as well as non-traditional pathways. This poster describes the findings of a research study investigating creative potential in children with learning disabilities. Children with learning disabilities were administered the Torrance Test of Creative Problem Solving along with subtests from the Comprehensive Test of Phonological Processing. A quantitative comparative analysis was computed using paired-sample t-tests. Results indicated statistically significant difference between children’s creative problem-solving skills and their reading-based skills. The results lend support to the idea that children with learning disabilities have inherent strengths in the area of creativity. It can be hypothesized that the success of these children may be associated with the notion that they are using a type of neurological processing that is not otherwise used in academic tasks. Children with learning disabilities, a presumed left-side neurological processing problem, process information with the right side of the brain – even with tasks that should be processed with the left side (i.e. language). In over-using their right hemisphere, it is hypothesized that children with learning disabilities have well-developed right hemispheres and, as such, have strengths associated with this type of processing, such as innovation and creativity. The current study lends support to the notion that children with learning disabilities may be particularly primed to succeed in areas that call on creativity and creative thinking.Keywords: learning disabilities, educational psychology, education, creativity
Procedia PDF Downloads 701508 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 801507 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region
Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher
Abstract:
The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.Keywords: irrigation suitability, TDS, salinity, SAR
Procedia PDF Downloads 3721506 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4661505 Clinically-Based Improvement Project Focused on Reducing Risks Associated with Diabetes Insipidus, Syndrome of Inappropriate ADH, and Cerebral Salt Wasting in Paediatric Post-Neurosurgical and Traumatic Brain Injury Patients
Authors: Shreya Saxena, Felix Miller-Molloy, Phillipa Bowen, Greg Fellows, Elizabeth Bowen
Abstract:
Background: Complex fluid balance abnormalities are well-established post-neurosurgery and traumatic brain injury (TBI). The triple-phase response requires fluid management strategies reactive to urine output and sodium homeostasis as patients shift between Diabetes Insipidus (DI) and Syndrome of Inappropriate ADH (SIADH). It was observed, at a tertiary paediatric center, a relatively high prevalence of the above complications within a cohort of paediatric post-neurosurgical and TBI patients. An audit of the clinical practice against set institutional guidelines was undertaken and analyzed to understand why this was occurring. Based on those results, new guidelines were developed with structured educational packages for the specialist teams involved. This was then reaudited, and the findings were compared. Methods: Two independent audits were conducted across two time periods, pre and post guideline change. Primary data was collected retrospectively, including both qualitative and quantitative data sets from the CQUIN neurosurgical database and electronic medical records. All paediatric patients post posterior fossa (PFT) or supratentorial surgery or with a TBI were included. A literature review of evidence-based practice, initial audit data, and stakeholder feedback was used to develop new clinical guidelines and nursing standard operation procedures. Compliance against these newly developed guidelines was re-assessed and a thematic, trend-based analysis of the two sets of results was conducted. Results: Audit-1 January2017-June2018, n=80; Audit-2 January2020-June2021, n=30 (reduced operative capacity due to COVID-19 pandemic). Overall, improvements in the monitoring of both fluid balance and electrolyte trends were demonstrated; 51% vs. 77% and 78% vs. 94%, respectively. The number of clear fluid management plans documented postoperatively also increased (odds ratio of 4), leading to earlier recognition and management of evolving fluid-balance abnormalities. The local paediatric endocrine team was involved in the care of all complex cases and notified sooner for those considered to be developing DI or SIADH (14% to 35%). However, significant Na fluctuations (>12mmol in 24 hours) remained similar – 5 vs six patients – found to be due to complex pituitary hypothalamic pathology – and the recommended adaptive fluid management strategy was still not always used. Qualitative data regarding useability and understanding of fluid-balance abnormalities and the revised guidelines were obtained from health professionals via surveys and discussion in the specialist teams providing care. The feedback highlighted the new guidelines provided a more consistent approach to the post-operative care of these patients and was a better platform for communication amongst the different specialist teams involved. The potential limitation to our study would be the small sample size on which to conduct formal analyses; however, this reflects the population that we were investigating, which we cannot control. Conclusion: The revised clinical guidelines, based on audited data, evidence-based literature review and stakeholder consultations, have demonstrated an improvement in understanding of the neuro-endocrine complications that are possible, as well as increased compliance to post-operative monitoring of fluid balance and electrolytes in this cohort of patients. Emphasis has been placed on preventative rather than treatment of DI and SIADH. Consequently, this has positively impacted patient safety for the center and highlighted the importance of educational awareness and multi-disciplinary team working.Keywords: post-operative, fluid-balance management, neuro-endocrine complications, paediatric
Procedia PDF Downloads 921504 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 801503 Credit Risk Evaluation Using Genetic Programming
Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira
Abstract:
Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.Keywords: credit risk assessment, rule generation, genetic programming, feature selection
Procedia PDF Downloads 3531502 Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer's Disease
Authors: Huafeng Wei
Abstract:
Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs.Keywords: alzheimer, calcium, cognitive dysfunction, dementia, neurodegeneration, neurogenesis
Procedia PDF Downloads 1821501 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 5191500 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 321499 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems
Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun
Abstract:
Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.Keywords: application management, hardware management, power electronics, building blocks
Procedia PDF Downloads 5211498 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing
Procedia PDF Downloads 1411497 Mitochondrial DNA Copy Number in Egyptian Patients with Hepatitis C Virus Related Hepatocellular Carcinoma
Authors: Doaa Hashad, Amany Elyamany, Perihan Salem
Abstract:
Introduction: Hepatitis C virus infection (HCV) constitutes a serious dilemma that has an impact on the health of millions of Egyptians. Hepatitis C virus related hepatocellular carcinoma (HCV-HCC) is a crucial consequence of HCV that represents the third cause of cancer-related deaths worldwide. Aim of the study: assess the use of mitochondrial DNA (mtDNA) content as a non-invasive molecular biomarker in hepatitis c virus related hepatocellular carcinoma (HCV-HCC). Methods: A total of 135 participants were enrolled in the study. Volunteers were assigned to one of three groups equally; a group of HCV related cirrhosis (HCV-cirrhosis), a group of HCV-HCC and a control group of age- and sex- matched healthy volunteers with no evidence of liver disease. mtDNA was determined using a quantitative real-time PCR technique. Results: mtDNA content was lowest in HCV-HCC cases. No statistically significant difference was observed between the group of HCV-cirrhosis and the control group as regards mtDNA level. HCC patients with multi-centric hepatic lesions had significantly lower mtDNA content. On using receiver operating characteristic curve analysis, a cutoff of 34 was assigned for mtDNA content to distinguish between HCV-HCC and HCV-cirrhosis patients who are not yet complicated by malignancy. Lower mtDNA was associated with greater HCC risk on using healthy controls, HCV-cirrhosis, or combining both groups as a reference group. Conclusions: mtDNA content might constitute a non-invasive molecular biomarker that reflects tumor burden in HCV-HCC cases and could be used as a predictor of HCC risk in patients of HCV-cirrhosis. In addition, the non significant difference of mtDNA level between HCV-cirrhosis patients and healthy controls could eliminate the grey zone created by the use of AFP in some cirrhotic patients.Keywords: DNA copy number, HCC, HCV, mitochondrial
Procedia PDF Downloads 3261496 Net Zero Energy Schools: The Starting Block for the Canadian Energy Neutral K-12 Schools
Authors: Hamed Hakim, Roderic Archambault, Charles J. Kibert, Maryam Mirhadi Fard
Abstract:
Changes in the patterns of life in the late 20th and early 21st century have created new challenges for educational systems. Greening the physical environment of school buildings has emerged as a response to some of those challenges and led to the design of energy efficient K-12 school buildings. With the advancement in knowledge and technology, the successful construction of Net Zero Energy Schools, such as the Lady Bird Johnson Middle School demonstrates a cutting edge generation of sustainable schools, and solves the former challenge of attaining energy self-sufficient educational facilities. There are approximately twenty net zero energy K-12 schools in the U.S. of which about six are located in Climate Zone 5 and 6 based on ASHRAE climate zone classification. This paper aims to describe and analyze the current status of energy efficient and NZE schools in Canada. An attempt is made to study existing U.S. energy neutral strategies closest to the climate zones in Canada (zones 5 and 6) and identify the best practices for Canadian schools.Keywords: Canada K-12 schools, green school, energy efficient, net-zero energy schools
Procedia PDF Downloads 4041495 Corporate Governance and Corporate Sustainability: Evidence from a Developing Country
Authors: Edmund Gyimah
Abstract:
Using data from 146 annual reports of listed firms in Ghana for the period 2013-2020, this study presents indicative findings which inspire practical actions and future research. Firms which prepared and presented sustainability reports were excluded from this study for a coverage of corporate sustainability disclosures centred on annual reports. Also, corporate sustainability disclosures of the firms on corporate websites were not included in the study considering the tendency of updates which cannot easily be traced. The corporate sustainability disclosures in the annual reports since the commencement of the G4 Guidelines in 2013 have been below average for all the dimensions of sustainability and the general sustainability disclosures. Few traditional elements of the board composition such as board size and board independence could affect the corporate sustainability disclosures in the annual reports as well as the age of the firm, firm size, and industry classification of the firm. Sustainability disclosures are greater in sustainability reports than in annual reports, however, firms without sustainability reports should have a considerable amount of sustainability disclosures in their annual reports. Also, because of the essence of sustainability, this study suggests to firms to have sustainability committee perhaps, they could make a difference in disclosing the enough sustainability information even when they do not present sustainability information in stand-alone reports.Keywords: disclosures, sustainability, board, reports
Procedia PDF Downloads 1881494 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 4161493 Calculate Product Carbon Footprint through the Internet of Things from Network Science
Authors: Jing Zhang
Abstract:
To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment
Procedia PDF Downloads 1161492 Preparation and Antioxidant Activity of Heterocyclic Indole Derivatives
Authors: Tunca Gul Altuntas, Aziz Baydar, Cemre Acar, Sezen Yılmaz, Tulay Coban
Abstract:
Free radicals, which are generated in many bioorganic redox processes, play a role in the pathogenesis of several diseases including cancer, arthritis, hemorrhagic shock, inflammatory, cardiovascular, neurodegenerative diseases and age-related degenerative brain diseases. Exposures of normal cell to free radical damages several structures, oxidizes nucleic acids, proteins, lipids, or DNA. Compounds interfere with the action of reactive oxygen species might be useful in prevention and treatment of these pathologies. A series of indole compounds containing piperazine ring were synthesized. Coupling of indole-2-carboxylic acid with monosubstituted piperazines was accomplished with 1,1’-carbonyldiimidazole (CDI) in a good yield. The structures of prepared compounds were verified in good agreement with their 1H NMR (nuclear magnetic resonance), MS (mass spectrophotometry), and IR (infrared spectrophotometry) characteristics. In this work, all synthetized indole derivatives were screened in vitro for their antioxidative potential against vitamin E (α-tocopherol) using different antioxidant assays such as superoxide anion formation, lipid peroxidation levels in rat liver, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) stable radical scavenging activity. The synthesized compounds showed various levels of inhibition compared to vitamin E. This may give promising results for the development of new antioxidant agents.Keywords: antioxidant, indoles, piperazines, reactive oxygen species
Procedia PDF Downloads 2311491 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion
Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam
Abstract:
Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites
Procedia PDF Downloads 3211490 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin
Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin
Abstract:
Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study
Procedia PDF Downloads 1301489 Behavioral Assessment of the Role of Brain 5-HT4 Receptors on the Memory and Cognitive Performance in a Rat Model of Alzheimer Disease
Authors: Siamak Shahidi, Nasrin Hashemi-Firouzi, Sara Soleimani-Asl, Alireza Komaki
Abstract:
Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory and cognitive performance. Recently, an involvement of the serotonergic system and their receptors are suspected in the AD progression. In the present behavioral study, the effects of BIMU (selective 5-HT4 receptor agonist) on cognition and memory in the rat model of AD was investigated. Material and Methods: The animal model of the AD was induced by intracerebroventricular (Icv) injection of amyloid beta (Aβ) in adult male Wistar rats. Animals were divided into experimental groups included control, sham, Aβ, Aβ +BIMU groups. The treatment substances were icv injected (1 μg/μL) for thirty consecutive days. Then, novel object recognition (NOR) and passive avoidance learning (PAL) tests were applied to investigate memory and cognitive performance. Results: Aβ decrease the discrimination index of NOR test. Also, it increases the time spent in the dark compartment during PAL test, as compared with sham and control groups. In addition, compared to Aβ groups, BIMU significantly increased the discrimination index of NOR test and decreased the time spent in the dark compartment of PAL test. Conclusion: These findings suggest that 5-HT4 receptor activation prevents progression of memory and cognitive impairment in a rat model of AD.Keywords: Alzheimer disease, cognition, memory, serotonin receptors
Procedia PDF Downloads 1321488 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 550