Search results for: accuracy improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7883

Search results for: accuracy improvement

5453 Uncommon Causes of Acute Abdominal Pain: A Pictorial Essay

Authors: Mahesh Hariharan, Rajan Balasubramaniam, Sharath Kumar Shetty, Shanthala Yadavalli, Mohammed Ahetasham, Sravya Devarapalli

Abstract:

Acute abdomen is one of the most common clinical conditions requiring a radiological investigation. Ultrasound is the primary modality of choice which can diagnose some of the common causes of acute abdomen. However, sometimes the underlying cause for the pain is far more complicated than expected to mandate a high degree of suspicion to suggest further investigation with contrast-enhanced computed tomography or magnetic resonance imaging. Here, we have compiled a comprehensive series of selected cases to highlight the conditions which can be easily overlooked unless carefully sought for. This also emphasizes the importance of multimodality approach to arrive at the final diagnosis with an increased overall diagnostic accuracy which in turn improves patient management and prognosis.

Keywords: acute abdomen, contrast-enhanced computed tomography scan, magnetic resonance imaging, plain radiographs, ultrasound

Procedia PDF Downloads 365
5452 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 510
5451 Spatial Audio Player Using Musical Genre Classification

Authors: Jun-Yong Lee, Hyoung-Gook Kim

Abstract:

In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.

Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing

Procedia PDF Downloads 429
5450 Identification of Wiener Model Using Iterative Schemes

Authors: Vikram Saini, Lillie Dewan

Abstract:

This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.

Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model

Procedia PDF Downloads 406
5449 Examination of Occupational Health and Safety Practices in Ghana

Authors: Zakari Mustapha, Clinto Aigbavboa, Wellinton Didi Thwala

Abstract:

Occupational Health and Safety (OHS) issues has been a major challenge to the Ghanaian government. The purpose of the study was to examine OHS practices in Ghana. The study looked at various views from different scholars about OHS practices in order to achieve the objective of the study. Literature review was conducted on OHS in Ghana. Findings from the study shows Ministry of Roads and Transport (MRT) and Ministry of Water Resources, Works and Housing (MWRWH) are two government ministries in charge of construction and implementation of the construction sector policy. The Factories, Offices and Shops Act 1970, Act 328 and the Mining Regulations 1970 LI 665 are the two major edicts. The study presents a strong background on OHS practices in Ghana and contribute to the body of knowledge on the solution to the current trends and challenges of OHS in the construction sector.

Keywords: ILO convention, OHS challenges, OHS practices, OHS improvement

Procedia PDF Downloads 370
5448 Ensuring a Sustainable National Development Through Entrepreneurship Education in Nigerian Tertiary Institutions

Authors: Adeyemi Oluremi Olubusuyi

Abstract:

In most of the developed countries, entrepreneurship education has been and will continue to be, a great economic stimulator. Entrepreneurship advantages cannot be overemphasized in any society that desires sustainable national development because it creates new technologies, production and services; which in turn encourage improved productivity and rapid economic growth. Economic growth will invariably have positive influences on the health, thereby leading to sound body systems, increase in the lifespan, improvement in social status and standard condition of living. Promoting an effective application of entrepreneurship education principle will, in no small measure, propel Nigeria to the much desired enviable national development level which the country is currently yearning for. The focus of this paper is to discuss entrepreneurship education with reference to its concept, nature, objectives and development approaches.

Keywords: entreprenuership, entrepreneurship education, national development, tertiary institutions

Procedia PDF Downloads 116
5447 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: dynamic force identification, dynamic responses, sub-structure, time domain

Procedia PDF Downloads 363
5446 Force Feedback Enabled Syringe for Aspiration and Biopsy

Authors: Pelin Su Firat, Sohyung Cho

Abstract:

Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.

Keywords: biopsy, syringe, force sensors, haptic feedback

Procedia PDF Downloads 76
5445 Mosaic Augmentation: Insights and Limitations

Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz

Abstract:

The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.

Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny

Procedia PDF Downloads 130
5444 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis

Authors: Mahdi Bazarganigilani

Abstract:

Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.

Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning

Procedia PDF Downloads 214
5443 Using Tyre Ash as Ground Resistance Improvement Material-Health and Environmental Perspective

Authors: George Eduful, Dominic Yeboah, Kingsford Joseph A. Atanga

Abstract:

The use of tyre ash as backfill material for ground electrode has been found to provide ultra-low and stable ground resistance value for grounding systems. However, health and environmental concerns have been expressed regarding its application. To address these concerns, the paper investigates chemical contents of the tyre ash and compares them to levels considered non-hazardous to health and the environment. It was found that the levels of the pollutant agents in the tyre ash were within the recommended safety margins. The rate of ground electrode corrosion in tyre ash material was also investigated. It was found that the effect of corrosion and the life of electrode can be extended if the tyre ash is mixed with cement. For best results, a ratio of 10 portions of tyre ash to 1 portion of cement is recommended.

Keywords: tyre ash, scrapped tyre, ground resistance reducing agent, rate of corrosion

Procedia PDF Downloads 408
5442 Electroencephalogram Signals Controlling a Parallax Boe-Bot Robot

Authors: Nema M. Salem, Hanan A. Altukhaifi, Amal Mukhtar, Reemaz K. Hetaimish

Abstract:

Recently, BCI field of research has gained a lot of interest. Apart from motor neuroprosthetics, many studies showed the possibility of controlling a virtual environment of a videogame using the acquired electroencephalogram signals (EEG) from the gamer. In addition, another study had successfully moved a farm tractor using the human’s EEG signals. This article utilizes the use of EEG signals, as a source of technology, in controlling a Parallax Boe-Bot robot. The commercial Emotive Epoc headset has been used in acquiring the EEG signals from rested subjects. Because the human's visual cortex can successfully differentiate between different colors, the red and green colors are used as visual stimuli for generating EEG signals using the Epoc. Arduino and Labview are used to translate the virtually pressed keys into instructions controlling the motion and rotation of the robot. Optimistic results have been achieved except for minor delay and accuracy in the robot’s response.

Keywords: BCI, Emotiv Epoc headset, EEG, Labview, Arduino applications, robot

Procedia PDF Downloads 524
5441 Localized Meshfree Methods for Solving 3D-Helmholtz Equation

Authors: Reza Mollapourasl, Majid Haghi

Abstract:

In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.

Keywords: radial basis functions, Hermite finite difference, Helmholtz equation, stability

Procedia PDF Downloads 103
5440 Modelling Railway Noise Over Large Areas, Assisted by GIS

Authors: Conrad Weber

Abstract:

The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.

Keywords: noise, modeling, GIS, rail

Procedia PDF Downloads 124
5439 Balancing Independence and Guidance: Cultivating Student Agency in Blended Learning

Authors: Yeo Leng Leng

Abstract:

Blended learning, with its combination of online and face-to-face instruction, presents a unique set of challenges and opportunities in terms of cultivating student agency. While it offers flexibility and personalized learning pathways, it also demands a higher degree of self-regulation and motivation from students. This paper presents the design of blended learning in a Chinese lesson and discusses the framework involved. It also talks about the Edtech tools adopted to engage the students. Some of the students’ works will be showcased. A qualitative case study research method was employed in this paper to find out more about students’ learning experiences and to give them a voice. The purpose is to seek improvement in the blended learning design of the Chinese lessons and to encourage students’ self-directed learning.

Keywords: blended learning, student agency, ed-tech tools, self-directed learning

Procedia PDF Downloads 83
5438 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 275
5437 Executive Stock Options, Business Ethics and Financial Reporting Quality

Authors: Philemon Rakoto

Abstract:

This paper tests the improvement of financial reporting quality when firms award stock options to their executives. The originality of this study is that we introduce the moderating effect of business ethics in the model. The sample is made up of 116 Canadian high-technology firms with available data for the fiscal year ending in 2012. We define the quality of financial reporting as the value relevance of accounting information as developed by Ohlson. Our results show that executive stock option award alone does not improve the quality of financial reporting. Rather, the quality improves when a firm awards stock options to its executives and investors perceive that the level of business ethics in that firm is high.

Keywords: business ethics, Canada, high-tech firms, stock options, value relevance

Procedia PDF Downloads 491
5436 The Influence of Alginate Microspheres Modified with DAT on the Proliferation and Adipogenic Differentiation of ASCs

Authors: Shin-Yi Mao, Jiashing Yu

Abstract:

Decellularized adipose tissue (DAT) has received lots of attention as biological scaffolds recently. DAT that extracted from the extracellular matrix (ECM) of adipose tissues holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. In our study, 2-D DATsol film was fabricated to enhance cell adhesion, proliferation, and differentiation of ASCs in vitro. DAT was also used to modify alginate for improvement of cell adhesion. Alginate microspheres modified with DAT were prepared by Nisco. These microspheres could provide a highly supportive 3-D environment for ASCs. In our works, ASCs were immobilized in alginate microspheres modified with DAT to promoted cell adhesion and adipogenic differentiation. Accordingly, we hypothesize that tissue regeneration in vivo could be promoted with the aid of modified microspheres in future.

Keywords: adipose stem cells, decellularize adipose tissue, Alginate, microcarries

Procedia PDF Downloads 446
5435 Systematic Formulation Development and Evaluation of Self-Nanoemulsifying Systems of Rosuvastatin Employing QbD Approach and Chemometric Techniques

Authors: Sarwar Beg, Gajanand Sharma, O. P. Katare, Bhupinder Singh

Abstract:

The current studies entail development of self-nano emulsifying drug delivery systems (SNEDDS) of rosuvastatin, employing rational QbD-based approach for enhancing its oral bioavailability. SNEDDS were prepared using the blend of lipidic and emulsifying excipients, i.e., Peceol, Tween 80, and Transcutol HP. The prepared formulations evaluated for in vitro drug release, ex vivo permeation, in situ perfusion studies and in vivo pharmacokinetic studies in rats, which demonstrated 3-4 fold improvement in biopharmaceutical performance of the developed formulations. Cytotoxicity studies using MTT assay and histopathological studies in intestinal cells revealed the lack of cytotoxicity and thereby safety and efficacy of the developed formulations.

Keywords: SNEDDS, bioavailability, solubility, Quality by Design (QbD)

Procedia PDF Downloads 507
5434 Healthcare Data Mining Innovations

Authors: Eugenia Jilinguirian

Abstract:

In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.

Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database

Procedia PDF Downloads 69
5433 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink

Procedia PDF Downloads 535
5432 Improvement of an Arm and Shoulder Exoskeleton Using Gyro Sensor

Authors: D. Maneetham

Abstract:

The developed exoskeleton device has to control joints between shoulder and arm. Exoskeleton device can help patients with hemiplegia upper so that the patient can help themselves in their daily life. Exoskeleton device includes a robot arm wear that looks like the movement is similar to the normal arm. Exoskeleton arm is powered by the motor through the cable with a control system that developed to control the movement of the joint of a robot arm. The arm will include the shoulder, the elbow, and the wrist. The control system is used Arduino Mega 2560 controller and the operation of the DC motor through the relay module. The control system can be divided into two modes such as the manual control with the joystick mode and automatically control with the movement of the head by Gyro sensor. The controller is also designed to move between the shoulder and the arm movement from their original location. Results have shown that the controller gave the best performance and all movements can be controlled.

Keywords: exoskeleton arm, hemiplegia upper, shoulder and arm, stroke

Procedia PDF Downloads 356
5431 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)

Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg

Abstract:

One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.

Keywords: arsenic, fluoride, groundwater contamination, logistic regression

Procedia PDF Downloads 349
5430 Breakdown Voltage Measurement of High Voltage Transformers Oils Using an Active Microwave Resonator Sensor

Authors: Ahmed A. Al-Mudhafar, Ali A. Abduljabar, Hayder Jawad Albattat

Abstract:

This work suggests a new microwave resonator sensor (MRS) device for measuring the oil’s breakdown voltage of high voltage transformers. A precise high-sensitivity sensor is designed and manufactured based on a microstrip split ring resonator (SRR). To improve the sensor sensitivity, a RF amplifier of 30 dB gain is linked through a transmission line of 50Ω.The sensor operates at a microwave band (L) with a quality factor of 1.35x105 when it is loaded with an empty tube. In this work, the sensor has been tested with three samples of high voltage transformer oil of different ages (new, middle, and damaged) where the quality factor differs with each sample. A mathematical model was built to calculate the breakdown voltage of the transformer oils and the accuracy of the results was higher than 90%.

Keywords: active resonator sensor, oil breakdown voltage, transformers oils, quality factor

Procedia PDF Downloads 274
5429 Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems

Authors: B. H. Aitchanov, Sh. K. Aitchanova, O. A. Baimuratov

Abstract:

This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use.

Keywords: digital dynamic pulse-frequency control systems, dynamic pulse-frequency modulation, control object, discrete filter, impulse device, microcontroller

Procedia PDF Downloads 496
5428 Development of the Family Capacity of Management of Patients with Autism Spectrum Disorder Diagnosis

Authors: Marcio Emilio Dos Santos, Kelly C. F. Dos Santos

Abstract:

Caregivers of patients diagnosed with ASD are subjected to high stress situations due to the complexity and multiple levels of daily activities that require the organization of events, behaviors and socioemotional situations, such as immediate decision making and in public spaces. The cognitive and emotional requirement needed to fulfill this caregiving role exceeds the regular cultural process that adults receive in their process of preparation for conjugal and parental life. Therefore, in many cases, caregivers present a high level of overload, poor capacity to organize and mediate the development process of the child or patient about their care. Aims: Improvement in the cognitive and emotional capacities related to the caregiver function, allowing the reduction of the overload, the feeling of incompetence and the characteristic level of stress, developing a more organized conduct and decision making more oriented towards the objectives and procedural gains necessary for the integral development of the patient with diagnosis of ASD. Method: The study was performed with 20 relatives, randomly selected from a total of 140 patients attended. The family members were submitted to the Wechsler Adult Intelligence Scale III intelligence test and the Family assessment Management Measure (FaMM) questionnaire as a previous evaluation. Therapeutic activity in a small group of family members or caregivers, with weekly frequency, with a minimum workload of two hours, using the Feuerstein Instrumental Enrichment Cognitive Development Program - Feuerstein Instrumental Enrichment for ten months. Reapplication of the previous tests to verify the gains obtained. Results and Discussion: There is a change in the level of caregiver overload, improvement in the results of the Family assessment Management Measure and highlight to the increase of performance in the cognitive aspects related to problem solving, planned behavior and management of behavioral crises. These results lead to the discussion of the need to invest in the integrated care of patients and their caregivers, mainly by enabling cognitively to deal with the complexity of Autism. This goes beyond the simple therapeutic orientation about adjustments in family and school routines. The study showed that when the caregiver improves his/her capacity of management, the results of the treatment are potentiated and there is a reduction of the level of the caregiver's overload. Importantly, the study was performed for only ten months and the number of family members attended in the study (n = 20) needs to be expanded to have statistical strength.

Keywords: caregiver overload, cognitive development program ASD caregivers, feuerstein instrumental enrichment, family assessment management measure

Procedia PDF Downloads 131
5427 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 122
5426 Automatic Calibration of Agent-Based Models Using Deep Neural Networks

Authors: Sima Najafzadehkhoei, George Vega Yon

Abstract:

This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.

Keywords: ABM, calibration, CNN, LSTM, epidemiology

Procedia PDF Downloads 29
5425 Evalution of the Impact on Improvement of Bank Manager Decision Making

Authors: Farzane Sadatnia, Bahram Fathi

Abstract:

Today, all public and private organizations have found that the management of the world for key information related to the activities of a staff and its main essence and philosophy, though they constitute the management information systems are very helpful in this respect the right to apply systems can save a lot in terms of economic organizations including reducing the time decision - making, improve the quality of decision making, and cost savings to bring information systems is a backup system that can never be instead of logic and human reasoning, which can be used in the series is spreading, providing resources, and provide the necessary facilities, provide better services for users, balanced budget allocation, determine strengths and weaknesses and previous plans to review the current decisions and especially the decision . Hence; in this study attempts to the effect of an information system on a review of the organization.

Keywords: information system, planning, organization, coordination, control

Procedia PDF Downloads 478
5424 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning

Procedia PDF Downloads 123