Search results for: model predictive control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25368

Search results for: model predictive control

1068 Private Technology Parks–The New Engine for Innovation Development in Russia

Authors: K. Volkonitskaya, S. Lyapina

Abstract:

According to the National Monitoring Centre of innovation infrastructure, scientific and technical activities and regional innovation systems by December 2014. 166 technology parks were established in Russia. Comparative analysis of technological parks performance in Russia, the USA, Israel and the European Union countries revealed significant reduction of key performance indicators in Russian innovation infrastructure institutes. The largest deviations were determined in the following indicators: new products and services launched, number of companies and jobs, amount of venture capital invested. Lower performance indicators of Russian technology parks can be partly explained by slack demand for national high-tech products and services, lack of qualified specialists in the sphere of innovation management and insufficient cooperation between different innovation infrastructure institutes. In spite of all constraints in innovation segment of Russian economy in 2010-2012 private investors for the first time proceeded to finance building of technological parks. The general purpose of the research is to answer two questions: why despite the significant investment risks private investors continue to implement such comprehensive infrastructure projects in Russia and is business model of private technological park more efficient than strategies of state innovation infrastructure institutes? The goal of the research was achieved by analyzing business models of private technological parks in Moscow, Kaliningrad, Astrakhan and Kazan. The research was conducted in two stages: the on-line survey of key performance indicators of private and state Russian technological parks and in-depth interviews with top managers and investors, who have already build private technological parks in by 2014 or are going to complete investment stage in 2014-2016. The results anticipated are intended to identify the reasons of efficient and inefficient technological parks performance. Furthermore, recommendations for improving the efficiency of state technological and industrial parks were formulated. Particularly, the recommendations affect the following issues: networking with other infrastructural institutes, services and infrastructure provided, mechanisms of public-private partnership and investment attraction. In general intensive study of private technological parks performance and development of effective mechanisms of state support can have a positive impact on the growth rates of the number of Russian technological, industrial and science parks.

Keywords: innovation development, innovation infrastructure, private technology park, public-private partnership

Procedia PDF Downloads 418
1067 The History Of Mental Health In The Middle East: Analytical Literature Review

Authors: Mohamad Musa

Abstract:

The history of mental health practices and services in the Middle East region has been deeply intertwined with its rich cultural, religious, and societal context. Tracing back to ancient times, mental health approaches were heavily influenced by the traditions of major monotheistic religions, with a strong emphasis on spiritual and traditional healing methods. As psychiatric institutions and Western medicine gradually gained a foothold in the region during the 20th century, a notable shift occurred. However, the integration of Western psychiatric practices faced significant challenges due to cultural barriers and deeply rooted beliefs. Families and communities often turned to traditional healers and religious practices as their initial recourse for mental health concerns, viewing Western interventions with skepticism and hesitation. Historically, mental health services in the Middle East have been overshadowed by a focus on physical health and the biomedical model. Mental illness carried substantial stigma, with individuals and families often reluctant to disclose mental health struggles due to fears of societal ostracization and discrimination. This stigma posed a significant barrier to accessing and accepting formal mental health support. Later in the 20th century, governments in the Middle East began recognizing the need for modernizing mental health services and integrating them into the broader healthcare system. However, this process was hindered by several factors, including limited resources, inadequate training for healthcare professionals, and ongoing conflicts and instability in certain regions, which disrupted the delivery of mental health services. As the 21st century progressed, several Middle Eastern nations, particularly those in the Arabian Gulf region, began implementing national mental health strategies and legislative reforms to address the growing need for comprehensive mental health care. These efforts aimed to destigmatize mental illness, protect the rights of individuals with mental health conditions, and promote public awareness and education. Despite these positive developments, the historical legacy of stigma, cultural barriers, and limited resources continues to pose challenges in the provision of accessible and culturally responsive mental health services across the diverse populations of the Middle East.

Keywords: mental health, history, middle east, literature review

Procedia PDF Downloads 20
1066 Force Sensor for Robotic Graspers in Minimally Invasive Surgery

Authors: Naghmeh M. Bandari, Javad Dargahi, Muthukumaran Packirisamy

Abstract:

Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production.

Keywords: force sensor, minimally invasive surgery, optical sensor, robotic surgery, tactile sensor

Procedia PDF Downloads 212
1065 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty

Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)

Abstract:

In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.

Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator

Procedia PDF Downloads 69
1064 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 28
1063 Invasion of Scaevola sericea (Goodeniaceae) in Cuba: Invasive Dynamic and Density-Dependent Relationship with the Native Species Tournefortia gnaphalodes (Boraginaceae)

Authors: Jorge Ferro-Diaz, Lazaro Marquez-Llauger, Jose Alberto Camejo-Lamas, Lazaro Marquez-Govea

Abstract:

The invasion of Scaevola sericea Vahl (Goodeniaceae) in Cuba is a recent process, this exotic invasive species was reported for the first time, in the national territory, by 2008. S. sericea is native to the coasts around the Indian Ocean and western Pacific, common on sandy beaches; it has expanded rapidly around the planet by either natural or anthropic causes, mainly due to its use in hotel gardening. Cuba is highly vulnerable to the colonization of these species, mainly due to tropical hurricanes which have increased in the last decades; it also affects other native species such as Tournefortia gnaphalodes (L.) R. Br. (Boraginaceae) that show invasive manifestations because of the unbalanced state of demographic processes of littoral vegetation, which has been studied by authors during the last 10 years. The fast development of Cuban tourism has encouraged the use of exotic species in gardening that invade large sectors of sandy coasts. Taking into account the importance of assessing the impacts dimensions and adopting effective control measures, a monitoring program for the invasion of S. sericea in Cuba was undertaken. The program has been implemented since 2013 and the main objective was to identify invasive patterns and interactions with other native species of coastal vegetation. This experience also aimed to validate the design and propose a standardized monitoring protocol to be applied throughout the country. In the Cuban territory, 12 sites were chosen, where there were established 24 permanent plots of 100 m2; measurements were taken twice a year taking into consideration variables such as abundance, plant height, soil cover, flora and companion vegetation, density and frequency; other physical variables of the beaches were also measured. Similarly, for associated individuals of T. gnaphalodes, the same variables were measured. The results of these first four years allowed us to document patterns of S. sericea invasion, highlighting the use of adventitious roots to enhance their colonization, and to characterize demographic indicators, ecosystem affections, and interactions with native plants. A density-dependent relationship with T. gnaphalodes was documented, finding a controlling effect on S. sericea, so that a manipulation experiment was applied to evaluate possible management actions to be incorporated in the Plans of the protected areas involved. With these results, it was concluded, for the evaluated sites, that S. sericea has had an invasion dynamics ruled by effects of coastal dynamics, more intense in beaches with affectations to the native vegetation, and more controlled in beaches with more preserved vegetation. It was found that when S. sericea is established, the mechanism that most reinforces its invasion is the use of adventitious roots, used to expand the patches and colonize beach sectors. It was also found that when the density of T. gnaphalodes increases, it detains the expansion of S. sericea and reduces its colonization possibilities, behaving as a natural controller of its biological invasion. The results include a proposal of a new Monitoring Protocol for Scaevola sericea in Cuba, with the possibility of extending its implementation to other countries in the region.

Keywords: biological invasion, exotic invasive species, plant interactions, Scaevola sericea

Procedia PDF Downloads 208
1062 Investigation of Preschool Children's Mathematics Concept Acquisition in Terms of Different Variables

Authors: Hilal Karakuş, Berrin Akman

Abstract:

Preschool years are considered as critical years because of shaping the future lives of individuals. All of the knowledge, skills, and concepts are acquired during this period. Also, basis of academic skills is based on this period. As all of the developmental areas are the fastest in that period, the basis of mathematics education should be given in this period, too. Mathematics is seen as a difficult and abstract course by the most people. Therefore, the enjoyable side of mathematics should be presented in a concrete way in this period to avoid any bias of children for mathematics. This study is conducted to examine mathematics concept acquisition of children in terms of different variables. Screening model is used in this study which is carried out in a quantity way. The study group of this research consists of total 300 children, selected from each class randomly in groups of five, who are from public and private preschools in Çankaya, which is district of Ankara, in 2014-2015 academic year and attending children in the nursery classes and preschool institutions are connected to the Ministry of National Education. The study group of the research was determined by stage sampling method. The schools, which formed study group, are chosen by easy sampling method and the children are chosen by simple random method. Research data were collected with Bracken Basic Concept Scale–Revised Form and Child’s Personal Information Form generated by the researcher in order to get information about children and their families. Bracken Basic Concept Scale-Revised Form consists of 11 sub-dimensions (color, letter, number, size, shape, comparison, direction-location, and quantity, individual and social awareness, building- material) and 307 items. Subtests related to the mathematics were used in this research. In the “Child Individual Information Form” there are items containing demographic information as followings: age of children, gender of children, attending preschools educational intuitions for children, school attendance, mother’s and father’s education levels. At the result of the study, while it was found that children’s mathematics skills differ from age, state of attending any preschool educational intuitions , time of attending any preschool educational intuitions, level of education of their mothers and their fathers; it was found that it does not differ by the gender and type of school they attend.

Keywords: preschool education, preschool period children, mathematics education, mathematics concept acquisitions

Procedia PDF Downloads 336
1061 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 362
1060 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency

Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee

Abstract:

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.

Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system

Procedia PDF Downloads 416
1059 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 47
1058 Microfungi on Sandy Beaches: Potential Threats for People Enjoying Lakeside Recreation

Authors: Tomasz Balabanski, Anna Biedunkiewicz

Abstract:

Research on basic bacteriological and physicochemical parameters conducted by state institutions (Provincial Sanitary and Epidemiological Station and District Sanitary and Epidemiological Station) are limited to bathing waters under constant sanitary and epidemiological supervision. Unfortunately, no routine or monitoring tests are carried out for the presence of microfungi. This also applies to beach sand used for recreational purposes. The purpose of the planned own research was to determine the diversity of the mycobiota present on supervised and unsupervised sandy beaches, on the shores of lakes, of municipal baths used for recreation. The research material consisted of microfungi isolated from April to October 2019 from sandy beaches of supervised and unsupervised lakes located within the administrative boundaries of the city of Olsztyn (North-Eastern Poland, Europe). Four lakes, out of the fifteen available (Tyrsko, Kortowskie, Skanda, and Ukiel), whose bathing waters are subjected to routine bacteriological tests, were selected for testing. To compare the diversity of the mycobiota composition on the surface and below the sand mixing layer, samples were taken from two depths (10 cm and 50 cm), using a soil auger. Micro-fungi from sand samples were obtained by surface inoculation on an RBC medium from the 1st dilution (1:10). After incubation at 25°C for 96-144 h, the average number of CFU/dm³ was counted. Morphologically differing yeast colonies were passaged into Sabouraud agar slants with gentamicin and incubated again. For detailed laboratory analyses, culture methods (macro- and micro-cultures) and identification methods recommended in diagnostic mycological laboratories were used. The conducted research allowed obtaining 140 yeast isolates. The total average population ranged from 1.37 × 10⁻² CFU/dm³ before the bathing season (April 2019), 1.64 × 10⁻³ CFU/dm³ in the season (May-September 2019), and 1.60 × 10⁻² CFU/dm³ after the end of the season (October 2019). More microfungi were obtained from the surface layer of sand (100 isolates) than from the deeper layer (40 isolates). Reported microfungi may circulate seasonally between individual elements of the lake ecosystem. From the sand/soil from the catchment area beaches, they can get into bathing waters, stopping periodically on the coastal phyllosphere. The sand of the beaches and the phyllosphere are a kind of filter for the water reservoir. The presence of microfungi with various pathogenicity potential in these places is of major epidemiological importance. Therefore, full monitoring of not only recreational waters but also sandy beaches should be treated as an element of constant control by appropriate supervisory institutions, allowing recreational areas for public use so that the use of these places does not involve the risk of infection. Acknowledgment: 'Development Program of the University of Warmia and Mazury in Olsztyn', POWR.03.05.00-00-Z310/17, co-financed by the European Union under the European Social Fund from the Operational Program Knowledge Education Development. Tomasz Bałabański is a recipient of a scholarship from the Programme Interdisciplinary Doctoral Studies in Biology and Biotechnology (POWR.03.05.00-00-Z310/17), which is funded by the 'European Social Fund'.

Keywords: beach, microfungi, sand, yeasts

Procedia PDF Downloads 88
1057 Incentive-Based Motivation to Network with Coworkers: Strengthening Professional Networks via Online Social Networks

Authors: Jung Lee

Abstract:

The last decade has witnessed more people than ever before using social media and broadening their social circles. Social media users connect not only with their friends but also with professional acquaintances, primarily coworkers, and clients; personal and professional social circles are mixed within the same social media platform. Considering the positive aspect of social media in facilitating communication and mutual understanding between individuals, we infer that social media interactions with co-workers could indeed benefit one’s professional life. However, given privacy issues, sharing all personal details with one’s co-workers is not necessarily the best practice. Should one connect with coworkers via social media? Will social media connections with coworkers eventually benefit one’s long-term career? Will the benefit differ across cultures? To answer, this study examines how social media can contribute to organizational communication by tracing the foundation of user motivation based on social capital theory, leader-member exchange (LMX) theory and expectancy theory of motivation. Although social media was originally designed for personal communication, users have shown intentions to extend social media use for professional communication, especially when the proper incentive is expected. To articulate the user motivation and the mechanism of the incentive expectation scheme, this study applies those three theories and identify six antecedents and three moderators of social media use motivation including social network flaunt, shared interest, perceived social inclusion. It also hypothesizes that the moderating effects of those constructs would significantly differ based on the relationship hierarchy among the workers. To validate, this study conducted a survey of 329 active social media users with acceptable levels of job experiences. The analysis result confirms the specific roles of the three moderators in social media adoption for organizational communication. The present study contributes to the literature by developing a theoretical modeling of ambivalent employee perceptions about establishing social media connections with co-workers. This framework shows not only how both positive and negative expectations of social media connections with co-workers are formed based on expectancy theory of motivation, but also how such expectations lead to behavioral intentions using career success model. It also enhances understanding of how various relationships among employees can be influenced through social media use and such usage can potentially affect both performance and careers. Finally, it shows how cultural factors induced by social media use can influence relations among the coworkers.

Keywords: the social network, workplace, social capital, motivation

Procedia PDF Downloads 110
1056 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings

Authors: Annette Cosgrove

Abstract:

The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.

Keywords: TEL, DTL, digital teaching, digital assessment

Procedia PDF Downloads 50
1055 Do the Health Benefits of Oil-Led Economic Development Outweigh the Potential Health Harms from Environmental Pollution in Nigeria?

Authors: Marian Emmanuel Okon

Abstract:

Introduction: The Niger Delta region of Nigeria has a vast reserve of oil and gas, which has globally positioned the nation as the sixth largest exporter of crude oil. Production rapidly rose following oil discovery. In most oil producing nations of the world, the wealth generated from oil production and export has propelled economic advancement, enabling the development of industries and other relevant infrastructures. Therefore, it can be assumed that majority of the oil resource such as Nigeria’s, has the potential to improve the health of the population via job creation and derived revenues. However, the health benefits of this economic development might be offset by the environmental consequences of oil exploitation and production. Objective: This research aims to evaluate the balance between the health benefits of oil-led economic development and harmful environmental consequences of crude oil exploitation in Nigeria. Study Design: A pathway has been designed to guide data search and this study. The model created will assess the relationship between oil-led economic development and population health development via job creation, improvement of education, development of infrastructure and other forms of development as well as through harmful environmental consequences from oil activities. Data/Emerging Findings: Diverse potentially suitable datasets which are at different geographical scales have been identified, obtained or applied for and the dataset from the World Bank has been the most thoroughly explored. This large dataset contains information that would enable the longitudinal assessment of both the health benefits and harms from oil exploitation in Nigeria as well as identify the disparities that exist between the communities, states and regions. However, these data do not extend far back enough in time to capture the start of crude oil production. Thus, it is possible that the maximum economic benefits and health harms could be missed. To deal with this shortcoming, the potential for a comparative study with countries like United Kingdom, Morocco and Cote D’ivoire has also been taken into consideration, so as to evaluate the differences between these countries as well as identify the areas of improvement in Nigeria’s environmental and health policies. Notwithstanding, these data have shown some differences in each country’s economic, environmental and health state over time as well as a corresponding summary statistics. Conclusion: In theory, the beneficial effects of oil exploitation to the health of the population may be substantial as large swaths of the ‘wider determinants’ of population heath are influenced by the wealth of a nation. However, if uncontrolled, the consequences from environmental pollution and degradation may outweigh these benefits. Thus, there is a need to address this, in order to improve environmental and population health in Nigeria.

Keywords: environmental pollution, health benefits, oil-led economic development, petroleum exploitation

Procedia PDF Downloads 311
1054 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip

Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar

Abstract:

Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.

Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation

Procedia PDF Downloads 164
1053 Slipping Through the Net: Women’s Experiences of Maternity Services and Social Support in the UK During the COVID-19 Pandemic

Authors: Freya Harding, Anne Gatuguta, Chi Eziefula

Abstract:

Introduction Research shows the quality of experiences of pregnancy, birth, and postpartum impacts the health and well-being of the mother and baby. This is recognised by the WHO in their recommendations ‘Intrapartum care for a positive childbirth experience’. The COVID-19 pandemic saw the transformation of the NHS Maternity services to prevent the transmission of COVID-19. Physical and social isolation may have affected women’s experiences of pregnancy, birth and postpartum; especially those of healthcare. Examples of such changes made to the NHS include both the reduction in volume of face-to-face consultations and restrictions to visitor time in hospitals. One notable detriment due to these changes was the absence of a partner during certain stages of birth. The aim of this study was to explore women’s experiences of pregnancy, birth, and postnatal period during the COVID-19 pandemic in the UK. Methods We collected qualitative data from women who had given birth during the COVID-19 pandemic. In-depth, semi-structured interviews were conducted with twelve participants recruited from mother and baby groups in Southeast England. Data were audio-recorded, transcribed verbatim, and analysed thematically using both inductive and deductive approaches. Ethics permission was granted from Brighton and Sussex Medical School (ER/BSMS9A83/1). Results Interviews were conducted with 12 women who gave birth between May 2020 and February 2021. Ages of the participants ranged between 28 and 42 years, most of which were white British, with one being Asian British. All participants were heterosexual and either married or co-habiting with their partner. Five participants worked in the NHS, and all participants had professional occupations. Women felt inadequately supported both socially and medically. An appropriate sense of control over their own birthing experience was lacking. Safety mechanisms, such as in-person visits from the midwife, had no suitable alternatives in place. Serious health issues were able to “slip through the net.” Mental health conditions in some of those interviewed worsened or developed. Similarly, reduced support from partners during birth and during the immediate postpartum period at the hospital, coupled with reduced ward staffing, resulted in some traumatic experiences; particularly for women who had undergone caesarean section. However, some unexpected positive effects were reported; one example being that partners were able to spend more time with their baby due to furlough schemes and working from home. Similarly, emergency care was not felt to have been compromised. Overall, six themes emerged: (1) Self-reported traumatic experiences, (2) Challenges of caring for a baby with reduced medical and social support, (3) Unexpected benefits to the parenting experience, (4) The effects of a sudden change in medical management (5) Poor communication from healthcare professionals (6) Social change; with subthemes of support accessing medical care, the workplace, family and friends, and antenatal & baby groups. Conclusions The results indicate that the healthcare system was unable to adequately deliver maternity care to facilitate positive pregnancy, birth, and postnatal experiences during the heights of the pandemic. The poor quality of such experiences has been linked an increased risk of long-term health complications in both the mother and child.

Keywords: pregnancy, birth, postpartum, postnatal, COVID-19, maternity, social support, qualitative, pandemic

Procedia PDF Downloads 119
1052 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 177
1051 The Influence of Perceived Quality, Customer Satisfaction and Brand Attitude to Brand Loyalty of Adult Magazine in Indonesia (A Case Study of Maxim Magazine)

Authors: Robert Ab Butarbutar, Sutan Musa Buyana

Abstract:

Purpose: The purpose of this study is to empirically test the correlation between several variables: perceived quality, overall customer satisfaction and brand attitude to brand loyalty on Maxim magazine in Indonesia. Since the room of adult magazine in Indonesia is restricted, the study of this category has became so interesting to reveal how those variables occur. Design/ methodology/ approach: The combination of exploratory, descriptive and causal research design used in this study. Non-probability sampling, specifically purposive sampling used to determine 160 respondents. Path analysis used to examine the contribution of antecedents variables, perceived quality, overall satisfaction and brand attitude in contribution to brand loyalty. Additional respondents serve for in-depth interview to enrich findings from questionnaire that directly distributed. Findings: The research shows that perceived quality positively contribute to overall satisfaction and brand attitude. Overall satisfaction also positively influence brand attitude and brand loyalty. Finally, brand attitude directly impact to brand loyalty. Despite the hypothesis testing, qualitative research also shows specific behavior of Indonesian customer in consuming adult magazine. Research limitation/implication: This research limited to adult male (18 years at minimum) and who live in big city as Jakarta. Broader geographical coverage is advisable for further research. This study also serves a call for additional empirical research into different product category that targeted to adult male, Since the research of this segment is quite scarce. Managerial Implications: Since findings show perceived quality positively impact and strong contribute to overall satisfaction and brand attitude, it implies for adult magazine to be driven by quality of content. The selection of model, information of current lifestyle of urban male became prioritizes in developing perceived quality. Differentiation also emerges as critical issues since consumer difficult to differentiate significantly one magazine to another. The way magazine deliver its content toward distinctive communication is highly recommended. Furthermore, brand loyalty faces big challenge. Interactivity toward events and social media become critically important. Originality/ value: perceived quality plays as prerequisite to develop overall satisfaction and brand attitude. Finding shows customer difficult to differentiate among adult magazines. Therefore, brand loyalty become a big challenge for company.

Keywords: perceived quality, overall satisfaction, brand attitude, adult magazine

Procedia PDF Downloads 397
1050 Kinematical Analysis of Normal Children in Different Age Groups during Gait

Authors: Nawaf Al Khashram, Graham Arnold, Weijie Wang

Abstract:

Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—The aim of this study is to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider age group when analyzing the patients with lower limb disorders before any clinical treatment.

Keywords: age group, gait analysis, kinematics, normal children

Procedia PDF Downloads 107
1049 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 298
1048 Females’ Usage Patterns of Information and Communication Technologies (ICTs) in the Vhembe District, South Africa

Authors: Fulufhelo Oscar Maphiri-Makananise

Abstract:

The main purpose of this paper is to explore and provide substantiated evidence based on the usage patterns of Information and Communication Technologies (ICTs) by females in the Vhembe District in Limpopo-Province, South Africa. The study presents a broader picture and understanding about the usage of ICTs from female’s perspective. The significance of this study stems from the need to discover the role, relevance and usage patterns of ICTs such as smartphones, computers, laptops, and iPods, internet and social networking sites among females following the trends of new media technologies in the society. The main objective of the study was to investigate the usability and accessibility of ICTs to empower the Vhembe District females in South Africa. The study used quantitative research method together with elements of qualitative research to determine the major ideas, perceptions and usage patterns of ICTs by females in the District. Data collection involved structured and self-administered questionnaire with both closed-ended and open-ended questions. Two groups of respondents participated in this study. Media Studies female students (n=50) at the University of Venda provided their ideas and perceptions about the usefulness and usage patterns of ICTs such as smartphones, internet and computers at the university level, while the second group were (n=50) Makhado comprehensive school learners who also provided their perceptions and ideas about the use of ICTs at the high school level. Also, the study provides a more balanced, accurate and rational results on the pertinent issues that concern the use of ICTs by females in the Vhembe District. The researcher also believes that the findings of the study are useful as a guideline and model for ICT intervention that work as an empowerment to women in South Africa. The study showed that the main purpose of using ICTs by females was to search information for writing assignments, conducting research, dating, exchanging ideas and networking with friends and relatives that are also members of social networking sites and maintaining existing friends in real life. The study further revealed that most females were using ICTs for social purposes and accessing the internet than entertaining themselves. The finding also indicated a high number of females that used ICTs for e-learning (62%) and social purposes (85%). Moreover, the study centred on providing strong insightful information on the females’ usage patterns and their perceptions of ICTs in the Vhembe district of Limpopo province.

Keywords: female users, information and communication technologies, internet, usage patterns

Procedia PDF Downloads 199
1047 Decision Making on Smart Energy Grid Development for Availability and Security of Supply Achievement Using Reliability Merits

Authors: F. Iberraken, R. Medjoudj, D. Aissani

Abstract:

The development of the smart grids concept is built around two separate definitions, namely: The European one oriented towards sustainable development and the American one oriented towards reliability and security of supply. In this paper, we have investigated reliability merits enabling decision-makers to provide a high quality of service. It is based on system behavior using interruptions and failures modeling and forecasting from one hand and on the contribution of information and communication technologies (ICT) to mitigate catastrophic ones such as blackouts from the other hand. It was found that this concept has been adopted by developing and emerging countries in short and medium terms followed by sustainability concept at long term planning. This work has highlighted the reliability merits such as: Benefits, opportunities, costs and risks considered as consistent units of measuring power customer satisfaction. From the decision making point of view, we have used the analytic hierarchy process (AHP) to achieve customer satisfaction, based on the reliability merits and the contribution of such energy resources. Certainly nowadays, fossil and nuclear ones are dominating energy production but great advances are already made to jump into cleaner ones. It was demonstrated that theses resources are not only environmentally but also economically and socially sustainable. The paper is organized as follows: Section one is devoted to the introduction, where an implicit review of smart grids development is given for the two main concepts (for USA and Europeans countries). The AHP method and the BOCR developments of reliability merits against power customer satisfaction are developed in section two. The benefits where expressed by the high level of availability, maintenance actions applicability and power quality. Opportunities were highlighted by the implementation of ICT in data transfer and processing, the mastering of peak demand control, the decentralization of the production and the power system management in default conditions. Costs were evaluated using cost-benefit analysis, including the investment expenditures in network security, becoming a target to hackers and terrorists, and the profits of operating as decentralized systems, with a reduced energy not supplied, thanks to the availability of storage units issued from renewable resources and to the current power lines (CPL) enabling the power dispatcher to manage optimally the load shedding. For risks, we have razed the adhesion of citizens to contribute financially to the system and to the utility restructuring. What is the degree of their agreement compared to the guarantees proposed by the managers about the information integrity? From technical point of view, have they sufficient information and knowledge to meet a smart home and a smart system? In section three, an application of AHP method is made to achieve power customer satisfaction based on the main energy resources as alternatives, using knowledge issued from a country that has a great advance in energy mutation. Results and discussions are given in section four. It was given us to conclude that the option to a given resource depends on the attitude of the decision maker (prudent, optimistic or pessimistic), and that status quo is neither sustainable nor satisfactory.

Keywords: reliability, AHP, renewable energy resources, smart grids

Procedia PDF Downloads 430
1046 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 166
1045 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action

Authors: Elisabeth Unterfrauner, Christian Voigt

Abstract:

Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.

Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement

Procedia PDF Downloads 113
1044 Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads

Authors: Weirong Wang, Shenghong Huang, Xisheng Luo, Zhenyu Li

Abstract:

Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime.

Keywords: first-principle, ionization, molecular dynamics, material mixture, Richtmyer-Meshkov instability

Procedia PDF Downloads 214
1043 Needs of Omani Children in First Grade during Their Transition from Kindergarten to Primary School: An Ethnographic Study

Authors: Zainab Algharibi, Julie McAdam, Catherine Fagan

Abstract:

The purpose of this paper is to shed light on how Omani children in the first grade experience their needs during their transition to primary school. Theoretically, the paper was built on two perspectives: Dewey's concept of continuity of experience and the boundary objects introduced by Vygotsky (CHAT). The methodology of the study is based on the crucial role of children’s agency which is a very important activity as an educational tool to enhance the child’s participation in the learning process and develop their ability to face various issues in their life. Thus, the data were obtained from 45 children in grade one from 4 different primary schools using drawing and visual narrative activities, in addition to researcher observations during the start of the first weeks of the academic year for the first grade. As the study dealt with children, all of the necessary ethical laws were followed. This paper is considered original since it seeks to deal with the issue of children's transition from kindergarten to primary school in Oman, if not in the Arab region. Therefore, it is expected to fill an important gap in this field and present a proposal that will be a door for researchers to enter this research field later. The analysis of drawing and visual narrative was performed according to the social semiotics approach in two phases. The first is to read out the surface message “denotation,” while the second is to go in-depth via the symbolism obtained from children while they talked and drew letters and signs. This stage is known as “signified”; a video was recorded of each child talking about their drawing and expressing themself. Then, the data were organised and classified according to a cross-data network. Regarding the researcher observation analyses, the collected data were analysed according to the model was developed for the "grounded theory". It is based on comparing the recent data collected from observations with data previously encoded by other methods in which children were drawing alongside the visual narrative in the current study, in order to identify the similarities and differences, and also to clarify the meaning of the accessed categories and to identify sub-categories of them with a description of possible links between them. This is a kind of triangulation in data collection. The study came up with a set of findings, the most vital being that the children's greatest interest goes to their social and psychological needs, such as friends, their teacher, and playing. Also, their biggest fears are a new place, a new teacher, and not having friends, while they showed less concern for their need for educational knowledge and skills.

Keywords: children’s academic needs, children’s social needs, transition, primary school

Procedia PDF Downloads 97
1042 Morphological and Molecular Evaluation of Dengue Virus Serotype 3 Infection in BALB/c Mice Lungs

Authors: Gabriela C. Caldas, Fernanda C. Jacome, Arthur da C. Rasinhas, Ortrud M. Barth, Flavia B. dos Santos, Priscila C. G. Nunes, Yuli R. M. de Souza, Pedro Paulo de A. Manso, Marcelo P. Machado, Debora F. Barreto-Vieira

Abstract:

The establishment of animal models for studies of DENV infections has been challenging, since circulating epidemic viruses do not naturally infect nonhuman species. Such studies are of great relevance to the various areas of dengue research, including immunopathogenesis, drug development and vaccines. In this scenario, the main objective of this study is to verify possible morphological changes, as well as the presence of antigens and viral RNA in lung samples from BALB/c mice experimentally infected with an epidemic and non-neuroadapted DENV-3 strain. Male BALB/c mice, 2 months old, were inoculated with DENV-3 by intravenous route. After 72 hours of infection, the animals were euthanized and the lungs were collected. Part of the samples was processed by standard technique for analysis by light and transmission electronic microscopies and another part was processed for real-time PCR analysis. Morphological analyzes of lungs from uninfected mice showed preserved tissue areas. In mice infected with DENV-3, the analyzes revealed interalveolar septum thickening with presence of inflammatory infiltrate, foci of alveolar atelectasis and hyperventilation, bleeding foci in the interalveolar septum and bronchioles, peripheral capillary congestion, accumulation of fluid in the blood capillary, signs of interstitial cell necrosis presence of platelets and mononuclear inflammatory cells circulating in the capillaries and/or adhered to the endothelium. In addition, activation of endothelial cells, platelets, mononuclear inflammatory cell and neutrophil-type polymorphonuclear inflammatory cell evidenced by the emission of cytoplasmic membrane prolongation was observed. DEN-like particles were seen in the cytoplasm of endothelial cells. The viral genome was recovered from 3 in 12 lung samples. These results demonstrate that the BALB / c mouse represents a suitable model for the study of the histopathological changes induced by DENV infection in the lung, with tissue alterations similar to those observed in human cases of DEN.

Keywords: BALB/c mice, dengue, histopathology, lung, ultrastructure

Procedia PDF Downloads 237
1041 Adopting New Knowledge and Approaches to Sustainable Urban Drainage in Saudi Arabia

Authors: Ali Alahmari

Abstract:

Urban drainage in Saudi Arabia is an increasingly challenging issue due to factors such as climate change and rapid urban expansion. The existing infrastructure, based on traditional drainage systems, is not always able to cope with the increased precipitation, sometimes leading to rainwater runoff and floods causing disturbances and damage to property. Therefore, there is a need to find new ways of managing drainage, such as Sustainable Urban Drainage Systems (SUDS). The research has highlighted the main driving forces behind the need for change, revealed by the participants, to the need to adopt new ideas and approaches for urban drainage. However, while moving towards this, certain factors that may hinder the aim of using the experiences of other countries and taking advantage of innovative solutions. The research illustrates an initial conceptual model for these factors emerging from the analysis. It identifies some of the fundamental issues affecting the resistance to change towards the adoption of the concept of sustainability in Saudi Arabia, with Riyadh city as a case study. This was by using a qualitative approach, whereby, through two phases of fieldwork during 2013 and 2014, twenty-six semi-structured interviews were conducted with a number of representative officials and professionals from key government departments and organisations related to urban drainage management. Grounded Theory approach was followed to analyse the qualitative data obtained. Resistance to change was classified to: firstly: individual inertia (e.g. familiarity with the conventional solutions and approaches, lack of awareness, and considering sustainability as a marginal matter in urban planning). This resulted in not paying the desired attention, and impact on planning and setting priorities for development. Secondly: institutionalised inertia (e.g. lack of technical and design specifications for other unconventional drainage solutions, lack of consideration by decision makers in other disciplines such as contributions from environmental and geographical studies, and routine work and bureaucracy). This contributes to the weakness of decision-making, weakness in the role of research, and a lack of human resources. It seems that attitudes towards change may have reduced the ability to move forward towards sustainable development, in addition to contributing towards difficulties in some aspects of the decision-making process. Thus, the chapter provides insights into the current situation in Saudi Arabia and contributes to understanding the decisions that are made regarding change.

Keywords: climate change, new knowledge and approaches, resistance to change, Saudi Arabia, SUDS, urban drainage, urban expansion

Procedia PDF Downloads 161
1040 The Emergence of Memory at the Nanoscale

Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann

Abstract:

Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.

Keywords: memories, memdevices, memristors, nonequilibrium states

Procedia PDF Downloads 79
1039 Postoperative Radiotherapy in Cancers of the Larynx: Experience of the Emir Abdelkader Cancer Center of Oran, about 89 Cases

Authors: Taleb Lotfi, Benarbia Maheidine, Allam Hamza, Boutira Fatima, Boukerche Abdelbaki

Abstract:

Introduction and purpose of the study: This is a retrospective single-center study with an analytical aim to determine the prognostic factors for relapse in patients treated with radiotherapy after total laryngectomy with lymph node dissection for laryngeal cancer at the Emir Abdelkader cancer center in Oran (Algeria). Material and methods: During the study period from January 2014 to December 2018, eighty-nine patients (n=89) with squamous cell carcinoma of the larynx were treated with postoperative radiotherapy. Relapse-free survival was studied in the univariate analysis according to pre-treatment criteria using Kaplan-Meier survival curves. We performed a univariate analysis to identify relapse factors. Statistically significant factors have been studied in the multifactorial analysis according to the Cox model. Results and statistical analysis: The average age was 62.7 years (40-86 years). It was a squamous cell carcinoma in all cases. Postoperatively, the tumor was classified as pT3 and pT4 in 93.3% of patients. Histological lymph node involvement was found in 36 cases (40.4%), with capsule rupture in 39% of cases, while the limits of surgical excision were microscopically infiltrated in 11 patients (12.3%). Chemotherapy concomitant with radiotherapy was used in 67.4% of patients. With a median follow-up of 57 months (23 to 104 months), the probabilities of relapse-free survival and five-year overall survival are 71.2% and 72.4%, respectively. The factors correlated with a high risk of relapse were locally advanced tumor stage pT4 (p=0.001), tumor site in case of subglottic extension (p=0.0003), infiltrated surgical limits R1 (p=0.001), l lymph node involvement (p=0.002), particularly in the event of lymph node capsular rupture (p=0.0003) as well as the time between surgery and adjuvant radiotherapy (p=0.001). However, in the subgroup analysis, the major prognostic factors for disease-free survival were subglottic tumor extension (p=0.001) and time from surgery to adjuvant radiotherapy (p=0.005). Conclusion: Combined surgery and postoperative radiation therapy are effective treatment modalities in the management of laryngeal cancer. Close cooperation of the entire cervicofacial oncology team is essential, expressed during a multidisciplinary consultation meeting, with the need to respect the time between surgery and radiotherapy.

Keywords: laryngeal cancer, laryngectomy, postoperative radiotherapy, survival

Procedia PDF Downloads 89