Search results for: teacher learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7755

Search results for: teacher learning

5355 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 140
5354 Distance Learning in Vocational Mass Communication Courses during COVID-19 in Kuwait: A Media Richness Perspective of Students’ Perceptions

Authors: Husain A. Murad, Ali A. Dashti, Ali Al-Kandari

Abstract:

The outbreak of Coronavirus during the Spring semester of 2020 brought new challenges for the teaching of vocational mass communication courses at universities in Kuwait. Using the Media Richness Theory (MRT), this study examines the response of 252 university students on mass communication programs. A questionnaire regarding their perceptions and preferences concerning modes of instruction on vocational courses online, focusing on the four factors of MRT: immediacy of feedback, capacity to include personal focus, conveyance of multiple cues, and variety of language. The outcomes show that immediacy of feedback predicted all criterion variables: suitability of distance learning (DL) for teaching vocational courses, sentiments of students toward DL, perceptions of easiness of evaluation of DL coursework, and the possibility of retaking DL courses. Capacity to include personal focus was another positive predictor of the criterion variables. It predicted students’ sentiments toward DL and the possibility of retaking DL courses. The outcomes are discussed in relation to implications for using DL, as well as constructing an agenda for DL research.

Keywords: distance learning, media richness theory, traditional learning, vocational media courses

Procedia PDF Downloads 75
5353 Computer Assisted Instructions for a Better Achievement in and Attitude towards Agricultural Economics

Authors: Abiodun Ezekiel Adesina, Alice M. Olagunju

Abstract:

This study determined the effects of Computer Assisted Instructions (CAI) and Academic Self-Concepts (ASC) on pre-service teachers’ achievement in AE concepts in CoE in Southwest, Nigeria. The study adopted pretest-posttest, control group, quasi-experimental design. Six CoE with e-library facilities were purposively selected. Two hundred and thirty-two intact 200 level Agricultural education students offering introduction to AE course across the six CoE were participants. The participants were assigned to three groups (D&PM, 77, TM, 73 and control, 82). Treatment lasted eight weeks. The AE achievement test (r=0.76), pre-service teachers’ ASC Scale (r=0.81); instructional guides for tutorial (r=0.76), drill and practice (r=0.81) and conventional lecture modes (r=0.83), and teacher performance assessment sheet were used for data collection. Data were analysed using analysis of covariance and Scheffe post-hoc at 0.05 level of significance. The participants were 55.6% female with mean age of 20.8 years. Treatment had significant main effects on pre-service teachers’ achievement (F(2,207)=60.52; η²=0.21; p < 0.05). Participants in D&PM (x̄ =27.83) had the best achievement compared to those in TM (x̄ =25.41) and control (x̄ =18.64) groups. ASC had significant main effect on pre-service teachers’ achievement (F(1,207)=22.011; η²=0.166; p < 0.05). Participants with high ASC (x̄ =27.52) had better achievement compared to those with low ASC (x̄ =22.37). The drill and practice and tutorial instructional modes enhanced students’ achievement in Agricultural Economics concepts. Therefore, the two instructional modes should be adopted for improved learning outcomes in agricultural economics concepts among pre-service teachers.

Keywords: achievement in agricultural economics concepts, colleges of education in southwestern Nigeria, computer-assisted instruction, drill and practice instructional mode, tutorial instructional mode

Procedia PDF Downloads 203
5352 Innovative Business Education Pedagogy: A Case Study of Action Learning at NITIE, Mumbai

Authors: Sudheer Dhume, T. Prasad

Abstract:

There are distinct signs of Business Education losing its sheen. It is more so in developing countries. One of the reasons is the value addition at the end of 2 year MBA program is not matching with the requirements of present times and expectations of the students. In this backdrop, Pedagogy Innovation has become prerequisite for making our MBA programs relevant and useful. This paper is the description and analysis of innovative Action Learning pedagogical approach adopted by a group of faculty members at NITIE Mumbai. It not only promotes multidisciplinary research but also enhances integration of the functional areas skillsets in the students. The paper discusses the theoretical bases of this pedagogy and evaluates the effectiveness of it vis-à-vis conventional pedagogical tools. The evaluation research using Bloom’s taxonomy framework showed that this blended method of Business Education is much superior as compared to conventional pedagogy.

Keywords: action learning, blooms taxonomy, business education, innovation, pedagogy

Procedia PDF Downloads 270
5351 A Collaborative Learning Model in Engineering Science Based on a Cyber-Physical Production Line

Authors: Yosr Ghozzi

Abstract:

The Cyber-Physical Systems terminology has been well received by the industrial community and specifically appropriated in educational settings. Indeed, our latest educational activities are based on the development of experimental platforms on an industrial scale. In fact, we built a collaborative learning model because of an international market study that led us to place ourselves at the heart of this technology. To align with these findings, a competency-based approach study was conducted, and program content was revised by reflecting the projectbased approach. Thus, this article deals with the development of educational devices according to a generated curriculum and specific educational activities while respecting the repository of skills adopted from what constitutes the educational cyber-physical production systems and the laboratories that are compliant and adapted to them. The implementation of these platforms was systematically carried out in the school's workshops spaces. The objective has been twofold, both research and teaching for the students in mechatronics and logistics of the electromechanical department. We act as trainers and industrial experts to involve students in the implementation of possible extension systems around multidisciplinary projects and reconnect with industrial projects for better professional integration.

Keywords: education 4.0, competency-based learning, teaching factory, project-based learning, cyber-physical systems, industry 4.0

Procedia PDF Downloads 107
5350 An iTunes U App for Development of Metacognition Skills Delivered in the Enrichment Program Offered to Gifted Students at the Secondary Level

Authors: Maha Awad M. Almuttairi

Abstract:

This research aimed to measure the impact of the use of a mobile learning (iTunes U) app for the development of metacognition skills delivered in the enrichment program offered to gifted students at the secondary level in Jeddah. The author targeted a group of students on an experimental scale to evaluate the achievement. The research sample consisted of a group of 38 gifted female students. The scale of evaluation of the metacognition skills used to measure the performance of students in the enrichment program was as follows: Satisfaction scale for the assessment of the technique used and the final product form after completion of the program. Appropriate statistical treatment used includes Paired Samples T-Test Cronbach’s alpha formula and eta squared formula. It was concluded in the results the difference of α≤ 0.05, which means the performance of students in the skills of metacognition in favor of using iTunes U. In light of the conclusion of the experiment, a number of recommendations and suggestions were present; the most important benefit of mobile learning applications is to provide enrichment programs for gifted students in the Kingdom of Saudi Arabia, as well as conducting further research on mobile learning and gifted student teaching.

Keywords: enrichment program, gifted students, metacognition skills, mobile learning

Procedia PDF Downloads 118
5349 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan

Abstract:

Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.

Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic

Procedia PDF Downloads 254
5348 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 139
5347 Learning Programming for Hearing Impaired Students via an Avatar

Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause

Abstract:

Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.

Keywords: hearing-impaired students, isolation, self-esteem, learning difficulties

Procedia PDF Downloads 145
5346 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 145
5345 Learners as Consultants: Knowledge Acquisition and Client Organisations-A Student as Producer Case Study

Authors: Barry Ardley, Abi Hunt, Nick Taylor

Abstract:

As a theoretical and practical framework, this study uses the student-as-producer approach to learning in higher education, as adopted by the Lincoln International Business School, University of Lincoln, UK. Students as producer positions learners as skilled and capable agents, able to participate as partners with tutors in live research projects. To illuminate the nature of this approach to learning and to highlight its critical issues, the authors report on two guided student consultancy projects. These were set up with the assistance of two local organisations in the city of Lincoln, UK. Using the student as a producer model to deliver the projects enabled learners to acquire and develop a range of key skills and knowledge not easily accessible in more traditional educational settings. This paper presents a systematic case study analysis of the eight organising principles of the student-as-producer model, as adopted by university tutors. The experience of tutors implementing students as producers suggests that the model can be widely applied to benefit not only the learning and teaching experiences of higher education students and staff but additionally a university’s research programme and its community partners.

Keywords: consultancy, learning, student as producer, research

Procedia PDF Downloads 78
5344 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 150
5343 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 215
5342 The Transition from National Policy to Institutional Practice of Vietnamese English Language Teacher Education

Authors: Thi Phuong Lan Nguyen

Abstract:

The English Language Teacher Education (ELTE) in Vietnam is rapidly changing to address the new requirements of the globalization and socialization era. Although there has been a range of investments and innovation in policy and curriculum, tertiary educators and learners do not engage in the enactment. It is vital to understand the practices at the tertiary education level. The study is to understand the higher education curriculum development policy, both in theory and in practice across four representatives of ELTE institutions in the North of Vietnam. The lecturers’ perceptions about the extent to which the enacted curriculum is aligned with national standards will be explored. Nineteen policy documents, seventy surveys, and twelve interviews with lecturers and instructional leaders across these four Vietnamese Northern ELTE institutions have been analyzed to investigate how the policy shape the practice. The two most significant findings are (i) a low level of alignment between curriculum and soft-skills standards of the graduates required by the Vietnamese Ministry of Education and Training (MOET) and (ii) incoherence between current national policy and these institutions’ implementation. In order to address these gaps, it is strongly recommended that curriculum needs to be further developed, focusing more on the institutional outcomes, MOET’s standards, and the social demands in times of globalization. More importantly, professional development in ELTE is vital for a range of curriculum and educational policy stakeholders. The study helps to develop the English teaching profession in Vietnam in a systematic way, from policymakers to implementers, and from instructors to learners. Its significance lies in its relevance to English teaching careers, particularly within the researcher’s specific context, yet also remains relevant to ELTE in other parts of Vietnam and in other EFL (English as a Foreign Language) countries.

Keywords: curriculum, English language teaching education, policy implementation, standard, teaching practice

Procedia PDF Downloads 239
5341 Brazilian-Italian Comparative Study on EFL Teacher Training

Authors: Tatiana Belmonte dos Santos Rodrigues

Abstract:

This is a comparative study between the training process of teachers of English as a foreign language in a Brazilian institution and an Italian institution, analyzing the academic curriculum, which includes courses mandatory internship activities, among other curricular aspects, and investigating the motivations that lead pre-service teachers to pursue a teaching career. The two institutions involved in this research are considered the oldest in Brazil, the Federal University of Amazonas, created in 1909, and the oldest in Italy, the University of Bologna, created in 1088. The general problem, or guiding question of this research, therefore, is: What is the role of the academic curriculum in motivating and consolidating the teaching of English as a Foreign Language (EFL) as a professional career? The hypothesis be investigated is that the degree courses of the two institutions apply in their curricula the pedagogical contours described in Shulman (2005), essential for the consolidation of the specificities of professional teacher training, which would lead to the strengthening of motivation pre-service professors to remain in this professional career plan, both for those who have already entered the course with pre-established external or internal motivations and for those who entered without apparent motivation. This is qualitative research (CRESWELL, 2007), with the application of field research, where documental analysis of the academic curriculum was carried out together with interviews with preservice teachers of the two institutions and analysis through interpretivism (MERTENS, 2010). The curriculum was analyzed in the light of Shulman (2005) and the interviewees' motivational discourse were analyzed from the perspective of Lovely (2012)'s discoveries. At the end, the data was crossed to answer the guiding question of the research, generating the proposed comparative study.

Keywords: preservice teachers, academic curriculum, motivation, english as a foreign language

Procedia PDF Downloads 70
5340 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 171
5339 Quantitative and Qualitative Analysis: Predicting and Improving Students’ Summative Assessment Math Scores at the National College for Nuclear

Authors: Abdelmenen Abobghala, Mahmud Ahmed, Mohamed Alwaheshi, Anwar Fanan, Meftah Mehdawi, Ahmed Abuhatira

Abstract:

This research aims to predict academic performance and identify weak points in students to aid teachers in understanding their learning needs. Both quantitative and qualitative methods are used to identify difficult test items and the factors causing difficulties. The study uses interventions like focus group discussions, interviews, and action plans developed by the students themselves. The research questions explore the predictability of final grades based on mock exams and assignments, the student's response to action plans, and the impact on learning performance. Ethical considerations are followed, respecting student privacy and maintaining anonymity. The research aims to enhance student engagement, motivation, and responsibility for learning.

Keywords: prediction, academic performance, weak points, understanding, learning, quantitative methods, qualitative methods, formative assessments, feedback, emotional responses, intervention, focus group discussion, interview, action plan, student engagement, motivation, responsibility, ethical considerations

Procedia PDF Downloads 67
5338 Forecasting the Temperature at a Weather Station Using Deep Neural Networks

Authors: Debneil Saha Roy

Abstract:

Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast hori­zon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.

Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron

Procedia PDF Downloads 177
5337 Teaching Children about Their Brains: Evaluating the Role of Neuroscience Undergraduates in Primary School Education

Authors: Clea Southall

Abstract:

Many children leave primary school having formed preconceptions about their relationship with science. Thus, primary school represents a critical window for stimulating scientific interest in younger children. Engagement relies on the provision of hands-on activities coupled with an ability to capture a child’s innate curiosity. This requires children to perceive science topics as interesting and relevant to their everyday life. Teachers and pupils alike have suggested the school curriculum be tailored to help stimulate scientific interest. Young children are naturally inquisitive about the human body; the brain is one topic which frequently engages pupils, although it is not currently included in the UK primary curriculum. Teaching children about the brain could have wider societal impacts such as increasing knowledge of neurological disorders. However, many primary school teachers do not receive formal neuroscience training and may feel apprehensive about delivering lessons on the nervous system. This is exacerbated by a lack of educational neuroscience resources. One solution is for undergraduates to form partnerships with schools - delivering engaging lessons and supplementing teacher knowledge. The aim of this project was to evaluate the success of a short lesson on the brain delivered by an undergraduate neuroscientist to primary school pupils. Prior to entering schools, semi-structured online interviews were conducted with teachers to gain pedagogical advice and relevant websites were searched for neuroscience resources. Subsequently, a single lesson plan was created comprising of four hands-on activities. The activities were devised in a top-down manner, beginning with learning about the brain as an entity, before focusing on individual neurons. Students were asked to label a ‘brain map’ to assess prior knowledge of brain structure and function. They viewed animal brains and created ‘pipe-cleaner neurons’ which were later used to depict electrical transmission. The same session was delivered by an undergraduate student to 570 key stage 2 (KS2) pupils across five schools in Leeds, UK. Post-session surveys, designed for teachers and pupils respectively, were used to evaluate the session. Children in all year groups had relatively poor knowledge of brain structure and function at the beginning of the session. When asked to label four brain regions with their respective functions, older pupils labeled a mean of 1.5 (± 1.0) brain regions compared to 0.8 (± 0.96) for younger pupils (p=0.002). However, by the end of the session, 95% of pupils felt their knowledge of the brain had increased. Hands-on activities were rated most popular by pupils and were considered the most successful aspect of the session by teachers. Although only half the teachers were aware of neuroscience educational resources, nearly all (95%) felt they would have more confidence in teaching a similar session in the future. All teachers felt the session was engaging and that the content could be linked to the current curriculum. Thus, a short fifty-minute session can successfully enhance pupils’ knowledge of a new topic: the brain. Partnerships with an undergraduate student can provide an alternative method for supplementing teacher knowledge, increasing their confidence in delivering future lessons on the nervous system.

Keywords: education, neuroscience, primary school, undergraduate

Procedia PDF Downloads 211
5336 Model Canvas and Process for Educational Game Design in Outcome-Based Education

Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro

Abstract:

This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.

Keywords: constructive alignment, constructivist theory, educational game, outcome-based education

Procedia PDF Downloads 354
5335 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
5334 Analysing Tertiary Lecturers’ Teaching Practices and Their English Major Students’ Learning Practices with Information and Communication Technology (ICT) Utilization in Promoting Higher-Order Thinking Skills (HOTs)

Authors: Malini Ganapathy, Sarjit Kaur

Abstract:

Maximising learning with higher-order thinking skills with Information and Communications Technology (ICT) has been deep-rooted and emphasised in various developed countries such as the United Kingdom, the United States of America and Singapore. The transformation of the education curriculum in the Malaysia Education Development Plan (PPPM) 2013-2025 focuses on the concept of Higher Order Thinking (HOT) skills which aim to produce knowledgeable students who are critical and creative in their thinking and can compete at the international level. HOT skills encourage students to apply, analyse, evaluate and think creatively in and outside the classroom. In this regard, the National Education Blueprint (2013-2025) is grounded based on high-performing systems which promote a transformation of the Malaysian education system in line with the vision of Malaysia’s National Philosophy in achieving educational outcomes which are of world class status. This study was designed to investigate ESL students’ learning practices on the emphasis of promoting HOTs while using ICT in their curricula. Data were collected using a stratified random sampling where 100 participants were selected to take part in the study. These respondents were a group of undergraduate students who undertook ESL courses in a public university in Malaysia. A three-part questionnaire consisting of demographic information, students’ learning experience and ICT utilization practices was administered in the data collection process. Findings from this study provide several important insights on students’ learning experiences and ICT utilization in developing HOT skills.

Keywords: English as a second language students, critical and creative thinking, learning, information and communication technology and higher order thinking skills

Procedia PDF Downloads 490
5333 Fostering Students' Engagement with Historical Issues Surrounding the Field of Graphic Design

Authors: Sara Corvino

Abstract:

The aim of this study is to explore the potential of inclusive learning and assessment strategies to foster students' engagement with historical debates surrounding the field of graphic design. The goal is to respond to the diversity of L4 Graphic Design students, at Nottingham Trent University, in a way that instead of 'lowering standards' can benefit everyone. This research tests, measures, and evaluates the impact of a specific intervention, an assessment task, to develop students' critical visual analysis skills and stimulate a deeper engagement with the subject matter. Within the action research approach, this work has followed a case study research method to understand students' views and perceptions of a specific project. The primary methods of data collection have been: anonymous electronic questionnaire and a paper-based anonymous critical incident questionnaire. NTU College of Business Law and Social Sciences Research Ethics Committee granted the Ethical approval for this research in November 2019. Other methods used to evaluate the impact of this assessment task have been Evasys's report and students' performance. In line with the constructivist paradigm, this study embraces an interpretative and contextualized analysis of the collected data within the triangulation analytical framework. The evaluation of both qualitative and quantitative data demonstrates that active learning strategies and the disruption of thinking patterns can foster greater students' engagement and can lead to meaningful learning.

Keywords: active learning, assessment for learning, graphic design, higher education, student engagement

Procedia PDF Downloads 177
5332 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 153
5331 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 113
5330 ePA-Coach: Design of the Intelligent Virtual Learning Coach for Senior Learners in Support of Digital Literacy in the Context of Electronic Patient Record

Authors: Ilona Buchem, Carolin Gellner

Abstract:

Over the last few years, the call for the support of senior learners in the development of their digital literacy has become prevalent, mainly due to the progression towards ageing societies paired with advances in digitalisation in all spheres of life, including e-health and electronic patient record (EPA). While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning focusing on knowledge acquisition and cognitive tasks, little research exists in learning models which target virtual mentoring and coaching with the help of pedagogical agents and address the social dimensions of learning. Research from studies with students in the context of formal education has already provided methods for designing intelligent virtual agents in support of personalised learning. However, this research has mostly focused on cognitive skills and has not yet been applied to the context of mentoring/coaching of senior learners, who have different characteristics and learn in different contexts. In this paper, we describe how insights from previous research can be used to develop an intelligent virtual learning coach (agent) for senior learners with a focus on building the social relationship between the agent and the learner and the key task of the agent to socialize learners to the larger context of digital literacy with a focus on electronic health records. Following current approaches to mentoring and coaching, the agent is designed not to enhance and monitor the cognitive performance of the learner but to serve as a trusted friend and advisor, whose role is to provide one-to-one guidance and support sharing of experiences among learners (peers). Based on literature review and synopsis of research on virtual agents and current coaching/mentoring models under consideration of the specific characteristics and requirements of senior learners, we describe the design framework which was applied to design an intelligent virtual learning coach as part of the e-learning system for digital literacy of senior learners in the ePA-Coach project founded by the German Ministry of Education and Research. This paper also presents the results from the evaluation study, which compared the use of the first prototype of the virtual learning coach designed according to the design framework with a voice narration in a multimedia learning environment with senior learners. The focus of the study was to validate the agent design in the context of the persona effect (Lester et al., 1997). Since the persona effect is related to the hypothesis that animated agents are perceived as more socially engaging, the study evaluated possible impacts of agent coaching in comparison with voice coaching on motivation, engagement, experience, and digital literacy.

Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records

Procedia PDF Downloads 117
5329 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data

Authors: Sachin Nagargoje

Abstract:

Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.

Keywords: semi-supervised learning, clustering, recall, coverage

Procedia PDF Downloads 122
5328 Open Educational Resources (OER): Deciding upon Openness

Authors: Eunice H. Li

Abstract:

This e-poster explores some of the issues that are linked to Open Educational Resources (OER). It describes how OER is explained by experts in the field and relates its value in attaining and using knowledge. ‘Open', 'open pedagogy', self-direction, freedom, and autonomy are the main issues identified for the discussion. All of these issues make essential contributions to OER in one way or another. Nevertheless, there are seemingly areas of contentions with regard to applying these concepts in teaching and learning practices. For this e-Poster, it is the teaching-learning aspects of OER that it is primarily concerned with. The basis for the discussion comes from a 2013 critique of OER presented by Jeremy Knox of the University of Edinburgh, tutor of the MSc in Digital Education Programme. This discussion is also supported by the analysis of other research work and papers in this area. The general view on OER is that it is a useful tool for the advancement of learner-centred models of education, but in whatever context, pedagogy cannot be diminished and overlooked. It should take into consideration how to deal with the issues identified above in order to allow learners to gain full benefit from OER.

Keywords: open, pedagogy, e-learning technologies, autonomy, knowledge

Procedia PDF Downloads 399
5327 Francophone University Students' Attitudes Towards English Accents in Cameroon

Authors: Eric Agrie Ambele

Abstract:

The norms and models for learning pronunciation in relation to the teaching and learning of English pronunciation are key issues nowadays in English Language Teaching in ESL contexts. This paper discusses these issues based on a study on the attitudes of some Francophone university students in Cameroon towards three English accents spoken in Cameroon: Cameroon Francophone English (CamFE), Cameroon English (CamE), and Hyperlectal Cameroon English (near standard British English). With the desire to know more about the treatment that these English accents receive among these students, an aspect that had hitherto received little attention in the literature, a language attitude questionnaire, and the matched-guise technique was used to investigate this phenomenon. Two methods of data analysis were employed: (1) the percentage count procedure, and (2) the semantic differential scale. The findings reveal that the participants’ attitudes towards the selected accents vary in degree. Though Hyperlectal CamE emerged first, CamE second and CamFE third, no accent, on average, received a negative evaluation. It can be deduced from this findings that, first, CamE is gaining more and more recognition and can stand as an autonomous accent; second, that the participants all rated Hyperlectal CamE higher than CamE implies that they would be less motivated in a context where CamE is the learning model. By implication, in the teaching of English pronunciation to francophone learners learning English in Cameroon, Hyperlectal Cameroon English should be the model.

Keywords: teaching pronunciation, English accents, Francophone learners, attitudes

Procedia PDF Downloads 197
5326 Enhancing Higher Education Teaching and Learning Processes: Examining How Lecturer Evaluation Make a Difference

Authors: Daniel Asiamah Ameyaw

Abstract:

This research attempts to investigate how lecturer evaluation makes a difference in enhancing higher education teaching and learning processes. The research questions to guide this research work states first as, “What are the perspectives on the difference made by evaluating academic teachers in order to enhance higher education teaching and learning processes?” and second, “What are the implications of the findings for Policy and Practice?” Data for this research was collected mainly through interviewing and partly documents review. Data analysis was conducted under the framework of grounded theory. The findings showed that for individual lecturer level, lecturer evaluation provides a continuous improvement of teaching strategies, and serves as source of data for research on teaching. At the individual student level, it enhances students learning process; serving as source of information for course selection by students; and by making students feel recognised in the educational process. At the institutional level, it noted that lecturer evaluation is useful in personnel and management decision making; it assures stakeholders of quality teaching and learning by setting up standards for lecturers; and it enables institutions to identify skill requirement and needs as a basis for organising workshops. Lecturer evaluation is useful at national level in terms of guaranteeing the competencies of graduates who then provide the needed manpower requirement of the nation. Besides, it mentioned that resource allocation to higher educational institution is based largely on quality of the programmes being run by the institution. The researcher concluded, that the findings have implications for policy and practice, therefore, higher education managers are expected to ensure that policy is implemented as planned by policy-makers so that the objectives can successfully be achieved.

Keywords: academic quality, higher education, lecturer evaluation, teaching and learning processes

Procedia PDF Downloads 143