Search results for: quality challenge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12146

Search results for: quality challenge

9746 Low-Emission Commuting with Micro Public Transport: Investigation of Travel Times and CO₂ Emissions

Authors: Marcel Ciesla, Victoria Oberascher, Sven Eder, Stefan Kirchweger, Wolfgang E. Baaske, Gerald Ostermayer

Abstract:

The omnipresent trend towards sustainable mobility is a major challenge, especially for commuters in rural areas. The use of micro public transport systems is expected to significantly reduce pollutant emissions, as several commuters travel the first mile together with a single pick-up bus instead of their own car. In this paper, different aspects of such a micro public transport system are analyzed. The main findings of the investigations should be how the travel times of commuters change and how many CO₂ emissions can be saved if some of the commuters use public transport instead of their own vehicle.

Keywords: micro public transport, green transportation, sustainable mobility, low-emission commuting

Procedia PDF Downloads 476
9745 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
9744 Ground Water Pollution Investigation around Çorum Stream Basin in Turkey

Authors: Halil Bas, Unal Demiray, Sukru Dursun

Abstract:

Water and ground water pollution at the most of the countries is important problem. Investigation of water pollution source must be carried out to save fresh water. Because fresh water sources are very limited and recent sources are not enough for increasing population of world. In this study, investigation was carried out on pollution factors effecting the quality of the groundwater in Çorum Stream Basin in Turkey. Effect of geological structure of the region and the interaction between the stream and groundwater was researched. For the investigation, stream and groundwater sampling were performed at rainy and dry seasons to see if there is a change on quality parameters. The results were evaluated by the computer programs and then graphics, distribution maps were prepared. Thus, degree of the quality and pollution were tried to understand. According to analysis results, because the results of streams and the ground waters are not so close to each other we can say that there is no interaction between the stream and the groundwater. As the irrigation water, the stream waters are generally in the range between C3S1 region and the ground waters are generally in the range between C3S1 and C4S2 regions according to US Salinity Laboratory Diagram. According to Wilcox diagram stream waters are generally good-permissible and ground waters are generally good permissible, doubtful to unsuitable and unsuitable type. Especially ground waters are doubtful to unsuitable and unsuitable types in dry season. It may be assumed that as the result of relative increase in concentration of salt minerals. Especially samples from groundwater wells bored close to gypsium bearing units have high hardness, electrical conductivity and salinity values. Thus for drinking and irrigation these waters are determined as unsuitable. As a result of these studies, it is understood that the groundwater especially was effected by the lithological contamination rather than the anthropogenic or the other types of pollution. Because the alluvium is covered by the silt and clay lithology it is not affected by the anthropogenic and the other foreign factors. The results of solid waste disposal site leachate indicate that this site would have a risk potential for pollution in the future. Although the parameters did not exceed the maximum dangerous values it does not mean that they will not be dangerous in the future, and this case must be taken into account.

Keywords: Çorum, environment, groundwater, hydrogeology, geology, pollution, quality, stream

Procedia PDF Downloads 501
9743 The Effects of L-Arginine Supplementation on Clinical Symptoms, Quality of Life, and Anal Internal Sphincter Pressure in Patients with Chronic Anal Fissure

Authors: Masoumeh Khailghi Sikaroudi, Mohsen Masoodi, Fazad Shidfar, Meghdad Sedaghat

Abstract:

Background: The hypertonicity of internal anal sphincter resting pressure is one of the main reasons for chronic anal fissures. The aim of this study is to assess the effect of oral administration of L-arginine on anal fissure symptom improvement by relaxation of the internal anal sphincter. Method: Seventy-six chronic anal fissure patients (age: 18-65 years) took part in this randomized, double-blind, placebo-controlled trial study from February 2019 to October 2020 at Rasoul-e-Akram Hospital, Tehran, Iran. Participants were allocated into treatment (L-arginine) or placebo groups. They took a 1000 mg capsule three times a day for one month and were followed up at the end of the first and third months after receiving the intervention. Clinical symptoms, anal sphincter resting pressure, and quality of life (QoL) were completed at baseline and the end of the study. Result: The analysis of data was shown significant improvement in bleeding, fissure size, and pain within each group; however, this effect was more seen in the arginine group compared to the control group at the end of the study (P-values<0.001). Following that, a significant increase in QoL was seen just in patients who were treated with arginine (P-value=0.006). Also, the comparison of anal pressures to baseline and between groups at the end of the study showed a significant reduction in sphincter pressure in treated patients (P-value<0.001, =0.049; respectively). Conclusion: Oral administration of 3000 mg L-arginine can heal chronic anal fissures by reducing anal internal sphincter pressure with fewer side effects. However, a long-term study with more follow-up is recommended.

Keywords: L-arginine, anal fissure, sphincter pressure, clinical symptoms, quality of life

Procedia PDF Downloads 72
9742 Development Strategies for Building Smart Cities: The Case of Kalampaka, Greece

Authors: Christos Stamopoulos

Abstract:

Nowadays, the technological evolution has brought changes and new requirements not only on human’s life but also on the environment in which they live. Cities have begun to be organized in new ways which comply with contemporary living standards. The aim of this paper was to present the characteristics and to introduce good construction strategies of smart cities around the world. Also, a case study of the city of Kalampaka and its residents was surveyed. More specifically, residents’ knowledge about smart cities and their opinion for future progress was examined. Statistical analysis showed that residents’ knowledge about smart cities was fairly good (48% knew the phrase 'smart city'). However, respondents believe that the appearance of the city of Kalampaka needs improvement in many areas (the 75% are disappointed with the current appearance of the city). Furthermore, regression analysis showed that the value of the environmental sustainability is greatly influenced by the energy saving, as well as, innovation has an impact on the level of quality of life, while older people seem satisfied with administration’s efforts for development.

Keywords: development, economy, environment, governance, quality of life, smart city

Procedia PDF Downloads 336
9741 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria

Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde

Abstract:

An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.

Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component

Procedia PDF Downloads 117
9740 Evaluation of the Efficacy and Tolerance of Gabapentin in the Treatment of Neuropathic Pain

Authors: A. Ibovi Mouondayi, S. Zaher, R. Assadi, K. Erraoui, S. Sboul, J. Daoudim, S. Bousselham, K. Nassar, S. Janani

Abstract:

INTRODUCTION: Neuropathic pain (NP) caused by damage to the somatosensory nervous system has a significant impact on quality of life and is associated with a high economic burden on the individual and society. The treatment of neuropathic pain consists of the use of a wide range of therapeutic agents, including gabapentin, which is used in the treatment of neuropathic pain. OBJECTIF: The objective of this study was to evaluate the efficacy and tolerance of gabapentin in the treatment of neuropathic pain. MATERIAL AND METHOD: This is a monocentric, cross-sectional, descriptive, retrospective study conducted in our department over a period of 19 months from October 2020 to April 2022. The missing parameters were collected during phone calls of the patients concerned. The diagnostic tool adopted was the DN4 questionnaire in the dialectal Arabic version. The impact of NP was assessed by the visual analog scale (VAS) on pain, sleep, and function. The impact of PN on mood was assessed by the "Hospital anxiety, and depression scale HAD" score in the validated Arabic version. The exclusion criteria were patients followed up for depression and other psychiatric pathologies. RESULTS: A total of 67 patients' data were collected. The average age was 64 years (+/- 15 years), with extremes ranging from 26 years to 94 years. 58 women and 9 men with an M/F sex ratio of 0.15. Cervical radiculopathy was found in 21% of this population, and lumbosacral radiculopathy in 61%. Gabapentin was introduced in doses ranging from 300 to 1800 mg per day with an average dose of 864 mg (+/- 346) per day for an average duration of 12.6 months. Before treatment, 93% of patients had a non-restorative sleep quality (VAS>3). 54% of patients had a pain VAS greater than 5. The function was normal in only 9% of patients. The mean anxiety score was 3.25 (standard deviation: 2.70), and the mean HAD depression score was 3.79 (standard deviation: 1.79). After treatment, all patients had improved the quality of their sleep (p<0.0001). A significant difference was noted in pain VAS, function, as well as anxiety and depression, and HAD score. Gabapentin was stopped for side effects (dizziness and drowsiness) and/or unsatisfactory response. CONCLUSION: Our data demonstrate a favorable effect of gabapentin on the management of neuropathic pain with a significant difference before and after treatment on the quality of life of patients associated with an acceptable tolerance profile.

Keywords: neuropathic pain, chronic pain, treatment, gabapentin

Procedia PDF Downloads 94
9739 Model of Production and Marketing Strategies in Alignment with Business Strategy using QFD Approach

Authors: Hamed Saremi, Suzan Taghavy, Shahla Saremi

Abstract:

In today's competitive world, organizations are expected to surpass the competitors and benefit from the resources and benefits. Therefore, organizations need to improve the current performance is felt more than ever that this requires to identify organizational optimal strategies, and consider all strategies simultaneously. In this study, to enhance competitive advantage and according to customer requirements, alignment between business, production and marketing strategies, House of Quality (QFD) approach has been used and zero-one linear programming model has been studied. First, the alignment between production and marketing strategies with business strategy, independent weights of these strategies is calculated. Then with using QFD approach the aligned weights of optimal strategies in each production and marketing field will be obtained and finally the aligned marketing strategies selection with the purpose of allocating budget and specialist human resource to marketing functions will be done that lead to increasing competitive advantage and benefit.

Keywords: strategy alignment, house of quality deployment, production strategy, marketing strategy, business strategy

Procedia PDF Downloads 435
9738 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell

Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene

Abstract:

The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.

Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental

Procedia PDF Downloads 135
9737 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: string classification, data quality, feature selection, probability distribution, string length

Procedia PDF Downloads 318
9736 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: cooperative networks, normalized capacity, sensing time

Procedia PDF Downloads 633
9735 Association between Obstetric Factors with Affected Areas of Health-Related Quality of Life of Pregnant Women

Authors: Cinthia G. P. Calou, Franz J. Antezana, Ana I. O. Nicolau, Eveliny S. Martins, Paula R. A. L. Soares, Glauberto S. Quirino, Dayanne R. Oliveira, Priscila S. Aquino, Régia C. M. B. Castro, Ana K. B. Pinheiro

Abstract:

Introduction: As an integral part of the health-disease process, gestation is a period in which the social insertion of women can influence, in a positive or negative way, the course of the pregnancy-puerperal cycle. Thus, evaluating the quality of life of this population can redirect the implementation of innovative practices in the quest to make them more effective and real for the promotion of a more humanized care. This study explores the associations between the obstetric factors with affected areas of health-related quality of life of pregnant women with habitual risk. Methods: This is a cross-sectional, quantitative study conducted in three public facilities and a private service that provides prenatal care in the city of Fortaleza, Ceara, Brazil. The sample consisted of 261 pregnant women who underwent low-risk prenatal care and were interviewed from September to November 2014. The collection instruments were a questionnaire containing socio-demographic and obstetric variables, in addition to the Brazilian version of the Mother scale Generated Index (MGI) characterized by being a specific and objective instrument, consisting of a single sheet and subdivided into three stages. It allows identifying the areas of life of the pregnant woman that are most affected, which could go unnoticed by the pre-formulated measurement instruments. The obstetric data, as well as the data concerning the application of the MGI scale, were compiled and analyzed through the statistical program Statistical Package for the Social Sciences (SPSS), version 20.0. After the compilation, a descriptive analysis was carried out. Then, associations were made between some variables. The tests applied were the Pearson Chi-Square and the Fisher's exact test. The odds ratio was also calculated. These associations were considered statistically significant when the p (probability) value was less than or equal to a level of 5% (α = 0.05) in the tests performed. Results: The variables that negatively reflected the quality of life of the pregnant women and presented a significant association with the polaciuria were: gestational age (p = 0.022) and parity (p = 0.048). Episodes of nausea and vomiting also showed significant with gestational age correlation (p = 0.0001). Evaluating the crossing of stress, we observed a significant association with parity (p = 0.0001). In turn, emotional lability revealed dependence on the variable type of delivery (p = 0.009). Conclusion: The health professionals involved in the assistance to the pregnant woman can understand how the process of gestation is experienced, considering all its peculiar transformations; to meet their individual needs, stimulating their autonomy and their power of choice, envisaging the achievement of a better quality of life related to health in the perspective of health promotion.

Keywords: health-related quality of life, obstetric nursing, pregnant women, prenatal care

Procedia PDF Downloads 293
9734 Efficiency of PCR-RFLP for the Identification of Adulteries in Meat Formulation

Authors: Hela Gargouri, Nizar Moalla, Hassen Hadj Kacem

Abstract:

Meat adulteration affecting the safety and quality of food is becoming one of the main concerns of public interest across the world. The drastic consequences on the meat industry highlighted the urgent necessity to control the products' quality and to point out the complexity of both supply and processing circuits. Due to the expansion of this problem, the authentic testing of foods, particularly meat and its products, is deemed crucial to avoid unfair market competition and to protect consumers from fraudulent practices of meat adulteration. The adoption of authentication methods by the food quality-control laboratories is becoming a priority issue. However, in some developing countries, the number of food tests is still insignificant, although a variety of processed and traditional meat products are widely consumed. Little attention has been paid to provide an easy, fast, reproducible, and low-cost molecular test, which could be conducted in a basic laboratory. In the current study, the 359 bp fragment of the cytochrome-b gene was mapped by PCR-RFLP using firstly fresh biological supports (DNA and meat) and then turkey salami as an example of commercial processed meat. This technique has been established through several optimizations, namely: the selection of restriction enzymes. The digestion with BsmAI, SspI, and TaaI succeed to identify the seven included animal species when meat is formed by individual species and when the meat is a mixture of different origin. In this study, the PCR-RFLP technique using universal primer succeed to meet our needs by providing an indirect sequencing method identifying by restriction enzymes the specificities characterizing different species on the same amplicon reducing the number of potential tests.

Keywords: adulteration, animal species, authentication, meat, mtDNA, PCR-RFLP

Procedia PDF Downloads 112
9733 A Corporate Social Responsibility Project to Improve the Democratization of Scientific Education in Brazil

Authors: Denise Levy

Abstract:

Nuclear technology is part of our everyday life and its beneficial applications help to improve the quality of our lives. Nevertheless, in Brazil, most often the media and social networks tend to associate radiation to nuclear weapons and major accidents, and there is still great misunderstanding about the peaceful applications of nuclear science. The Educational Portal Radioatividades (Radioactivities) is a corporate social responsibility initiative that takes advantage of the growing impact of Internet to offer high quality scientific information for teachers and students throughout Brazil. This web-based initiative focusses on the positive applications of nuclear technology, presenting the several contributions of ionizing radiation in different contexts, such as nuclear medicine, agriculture techniques, food safety and electric power generation, proving nuclear technology as part of modern life and a must to improve the quality of our lifestyle. This educational project aims to contribute for democratization of scientific education and social inclusion, approaching society to scientific knowledge, promoting critical thinking and inspiring further reflections. The website offers a wide variety of ludic activities such as curiosities, interactive exercises and short courses. Moreover, teachers are offered free web-based material with full instructions to be developed in class. Since year 2013, the project has been developed and improved according to a comprehensive study about the realistic scenario of ICTs infrastructure in Brazilian schools and in full compliance with the best e-learning national and international recommendations.

Keywords: information and communication technologies, nuclear technology, science communication, society and education

Procedia PDF Downloads 326
9732 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region

Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher

Abstract:

The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.

Keywords: irrigation suitability, TDS, salinity, SAR

Procedia PDF Downloads 372
9731 Quantification of Lawsone and Adulterants in Commercial Henna Products

Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen

Abstract:

The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.

Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone

Procedia PDF Downloads 459
9730 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
9729 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management

Authors: M. Macchiaroli, L. Dolores, V. Pellecchia

Abstract:

With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.

Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff

Procedia PDF Downloads 118
9728 Environmental Performance Improvement of Additive Manufacturing Processes with Part Quality Point of View

Authors: Mazyar Yosofi, Olivier Kerbrat, Pascal Mognol

Abstract:

Life cycle assessment of additive manufacturing processes has evolved significantly since these past years. A lot of existing studies mainly focused on energy consumption. Nowadays, new methodologies of life cycle inventory acquisition came through the literature and help manufacturers to take into account all the input and output flows during the manufacturing step of the life cycle of products. Indeed, the environmental analysis of the phenomena that occur during the manufacturing step of additive manufacturing processes is going to be well known. Now it becomes possible to count and measure accurately all the inventory data during the manufacturing step. Optimization of the environmental performances of processes can now be considered. Environmental performance improvement can be made by varying process parameters. However, a lot of these parameters (such as manufacturing speed, the power of the energy source, quantity of support materials) affect directly the mechanical properties, surface finish and the dimensional accuracy of a functional part. This study aims to improve the environmental performance of an additive manufacturing process without deterioration of the part quality. For that purpose, the authors have developed a generic method that has been applied on multiple parts made by additive manufacturing processes. First, a complete analysis of the process parameters is made in order to identify which parameters affect only the environmental performances of the process. Then, multiple parts are manufactured by varying the identified parameters. The aim of the second step is to find the optimum value of the parameters that decrease significantly the environmental impact of the process and keep the part quality as desired. Finally, a comparison between the part made by initials parameters and changed parameters is made. In this study, the major finding claims by authors is to reduce the environmental impact of an additive manufacturing process while respecting the three quality criterion of parts, mechanical properties, dimensional accuracy and surface roughness. Now that additive manufacturing processes can be seen as mature from a technical point of view, environmental improvement of these processes can be considered while respecting the part properties. The first part of this study presents the methodology applied to multiple academic parts. Then, the validity of the methodology is demonstrated on functional parts.

Keywords: additive manufacturing, environmental impact, environmental improvement, mechanical properties

Procedia PDF Downloads 288
9727 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies

Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru

Abstract:

Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.

Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil

Procedia PDF Downloads 375
9726 Designing a Low Power Consumption Mote in Wireless Sensor Network

Authors: Saidi Nabiha, Khaled Zaatouri, Walid Fajraoui, Tahar Ezzeddine

Abstract:

The market of Wireless Sensor Network WSN has a great potential and development opportunities. Researchers are focusing on optimization in many fields like efficient deployment and routing protocols. In this article, we will concentrate on energy efficiency for WSN because WSN nodes are habitually deployed in severe No Man’s Land with batteries are not rechargeable, so reducing energy consumption represents an important challenge to extend the life of the network. We will present the design of new WSN mote based on ultra low power STM32L microcontrollers and the ZIGBEE transceiver CC2520. We will compare it to existent motes and we will conclude that our mote is promising in energy consumption.

Keywords: component, WSN mote, power consumption, STM32L, sensors, CC2520

Procedia PDF Downloads 573
9725 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films

Procedia PDF Downloads 166
9724 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing

Authors: Reham K. El Sawah, N. S. M. El-Tayeb

Abstract:

This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.

Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure

Procedia PDF Downloads 177
9723 Recovery of Wastewater Treated of Boumerdes Step for Irrigation

Authors: N. Ouslimani, M. T. Abadlia, S. Yakoub, F. Tebbani

Abstract:

Water has always been synonymous with life and growth. Blue gold is first essential to the survival of the human being whose body consists of more than 65% with the development of industrialization and consumption patterns; volumes of wastewater discharges have increased considerably whether industrial or domestic, waste water must be purified before discharge. Treatment, therefore, aims to reduce the pollution load which contain. The resources in Algeria are limited and unevenly distributed. Thus, to meet all the water needs of the country and to preserve the waters of good quality drinking water supply, one solution would be to use them according to their quality and to irrigate crops for the food or be directed to the irrigation of green areas or sports complex. The purification performance of this STEP has been established since the pH analyzed pollution criteria (7.36) and temperature (16°C), MES (10 mg / l), electrical conductivity (1122 / µs / cm), DBO5 (6mg / l), DCO (15mg / l) meet the discharge standards. Arguably the purified water discharged out of the boumerdes STEP comply with Algerian regulations and can be reused in agriculture. COD biodegradability of the coefficient / BOD5 is 2.5 (less than 3) indicates that of the effluent are biodegradable hence their urban origin.

Keywords: irrigation, recovery, treated, wastewater

Procedia PDF Downloads 253
9722 AM/E/c Queuing Hub Maximal Covering Location Model with Fuzzy Parameter

Authors: M. H. Fazel Zarandi, N. Moshahedi

Abstract:

The hub location problem appears in a variety of applications such as medical centers, firefighting facilities, cargo delivery systems and telecommunication network design. The location of service centers has a strong influence on the congestion at each of them, and, consequently, on the quality of service. This paper presents a fuzzy maximal hub covering location problem (FMCHLP) in which travel costs between any pair of nodes is considered as a fuzzy variable. In order to consider the quality of service, we model each hub as a queue. Arrival rate follows Poisson distribution and service rate follows Erlang distribution. In this paper, at first, a nonlinear mathematical programming model is presented. Then, we convert it to the linear one. We solved the linear model using GAMS software up to 25 nodes and for large sizes due to the complexity of hub covering location problems, and simulated annealing algorithm is developed to solve and test the model. Also, we used possibilistic c-means clustering method in order to find an initial solution.

Keywords: fuzzy modeling, location, possibilistic clustering, queuing

Procedia PDF Downloads 394
9721 Growth Performance and Meat Quality of Cobb 500 Broilers Fed Phytase and Tannase Treated Sorghum-Based Diets

Authors: Magaya Rutendo P., Mutibvu Tonderai, Nyahangare emmanuel T., Ncube Sharai

Abstract:

This study aimed to evaluate the effects of phytase and tannase addition in broiler diets on growth performance and meat quality of broilers fed sorghum-based diets. Twelve experimental diets were formulated at three sorghum levels, which include 0, 50, and 100%, and 4 enzyme levels: No enzyme, 5000FTU phytase, 25TU tannase, and a combination of 5000FTU phytase plus 25TU tannase. Data on voluntary feed intake, average weekly weight gain and feed conversion ratio were recorded and used to assess growth performance. Meat technical and nutritional parameters were used to determine meat quality. Broilers fed total sorghum diets with phytase and tannase enzyme combination had the highest feed intake in the first (24.4 ± 0.04g/bird/day) and second weeks of life (23.0 ± 1.06g/bird/day), respectively. Complete sorghum diets with phytase (83.0 ± 0.88g/bird/day) and tannase (122.0 ± 0.88g/bird/day) showed the highest feed intake in the third and fourth weeks, respectively. Broilers fed 50% sorghum diets with tannase (135.3 ± 0.05g/bird/day) and complete maize diets with phytase (158.1 ± 0.88g/bird/day) had the highest feed intake during weeks five and six, respectively. Broilers fed a 50% sorghum diet without enzymes had the highest weight gain in the final week (606.5 ± 32.39g). Comparable feed conversion was observed in birds fed complete maize and 50% sorghum diets. Dietary treatment significantly influences the live body, carcass, liver, kidneys, abdominal fat pad weight, and intestinal length. However, it did not affect Pectoralis major meat nutritional and technical parameters.

Keywords: feed efficiency, sorghum, carcass, exogenous enzymes

Procedia PDF Downloads 55
9720 A Sense of Home: Study of Walk-up Apartment Housing Units In Yangon, Myanmar

Authors: Phyo Kyaw Kyaw

Abstract:

In the Yangon urban landscape, one could not help, but notice old buildings from the colonial period along with condominium developments recently, and many walk-up apartment buildings to accommodate the urbanization, growing population and social-economic status of Myanmar people. Walk-up apartments were built and popular after the British colonial period (around 1950s) and are still built up to today due to its cost-effectiveness and to accommodate low to mid-income residents in the metropolitan Yangon. Approximately 90% of apartment buildings are walk-up apartments. The common impression of walk-up apartments in Yangon appears to be old rectangular box shape, homogenous envelope and limited square feet dull interior small space. In other words, the buildings are full of constraints, lack of good user experiences, and they are not well-fitted in the modern days. Therefore, the resident suffers consequently many years, some may live in the apartment their entire lives. Thousands of people living in the walk-up apartment on a daily basis are being shaped by the space and its inadequate quality of living. Can it be called “Home” by the dwellers or is the place a temporary shelter?. Online semi-structured interviews of 15 apartments’ residents and online questionnaire surveys of 70 apartment residents are conducted. This research aims to explore what makes “Home” “A sense of Home” for walk-up apartment users in Yangon, Myanmar by studying subjective responses shaped by the interior and experience of the spaces in apartment to understand the perception of the residents and improve the quality of living. The result reflects the priority level of important factors in relation to the sense of home framework.

Keywords: home, living quality, space, perception, residents, walk-up apartment, Yangon

Procedia PDF Downloads 108
9719 Effects of Bile Acids and Lipase Supplementation in Low-Energy Diets on Growth Performance and Meat Quality in Broiler Chickens

Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti

Abstract:

The study aimed to investigate the effect of bile acids and lipase supplementation in low-energy diets on growth performance and meat quality of broilers. Seven hundred day-old Cobb-500 broiler chicks with an average initial body weight of 45.9 ± 0.3 g were assigned to 5 dietary treatments, with five replications of 28 birds each in a completely randomized design. The five treatments were as follows: (i) HE: broilers received a diet with high energy content; (ii) LE: broilers received a diet with low energy content and energy content reduced by 100 kcal/kg as compared to HE; (iii) LEB: broilers received a diet similar to the LE group supplemented with 300 g/ton bile acids; (iv) LEL: broilers received a diet similar to the LE group supplemented with 180 g/ton lipase enzyme and (v) LEBL: broilers received a diet similar to the LE group supplemented with both 300 g/ton bile acids and 180 g/ton lipase enzyme. The experimental period lasted for 35 days. Broilers fed HE had a lower (P < 0.05) body weight (BW) gain and lower feed intake (1-35 d), but during finisher period (21-35 d), BW gain was similar with other treatments. Feed conversion ratio (FCR) was lower in HE and higher in LEBL group (P < 0.05), while the LE, LEB, and LEL had intermediate values. At 35 d no difference occurred between treatment for water holding capacity and pH of breast and thigh muscles (P > 0.05). The relative weight of pancreas was higher (P < 0.05) in LEB treatment but lower (P < 0.05) in LEL treatment. In conclusion, bile acids and lipase supplementation at 300 g/ton and 150g/ton of feed in low-energy diets respectively had no effect on broiler performance and meat quality. However, FCR was improved in HE treatment.

Keywords: bile acids, energy, enzyme, growth

Procedia PDF Downloads 120
9718 Performance of Phytogreen Zone for BOD5 and SS Removal for Refurbishment Conventional Oxidation Pond in an Integrated Phytogreen System

Authors: A. R. Abdul Syukor, A. W. Zularisam, Z. Ideris, M. S. Mohd Ismid, H. M. Nakmal, S. Sulaiman, A. H. Hasmanie, M. R. Siti Norsita, M. Nasrullah

Abstract:

In this study, the effectiveness of integrated aquatic plants in phytogreen zone was studied and statistical analysis for the promotional integrated phytogreen system approached was discussed. It was found that the effectiveness of using aquatic plant such as Typha angustifolia sp., Lepironia articulata sp., Limnocharis flava sp., Monochoria vaginalis sp., Pistia stratiotes sp., and Eichhornia crassipes sp. in the conventional oxidation pond process in order to comply the standard A according to Malaysia Environmental Quality Act 1974 (Act 127); Environmental Quality (Sewage) Regulation 2009 for effluent discharge into inland water near the residential area was successfully shown. It was concluded that the integrated phytogreen system developed in this study has great potential for refurbishment wastewater in conventional oxidation pond.

Keywords: phytoremediation, integrated phytogreen system, sewage treatment plant, oxidation pond, aquatic plants

Procedia PDF Downloads 381
9717 A Comparative Study of the Challenges of E-Learning in Nigerian Universities

Authors: J. N. Anene, A. A. Bello, C. C. Anene

Abstract:

The paper carried out a comparative study of the challenges of e-learning in Nigerian universities. The purpose of the study was to determine if there was a significant difference in the challenges faced by students in e-learning in Nigerian Universities. A total of two hundred and twenty-eight students from nine universities constituted the sample for the study. A simple random sampling technique was employed in selecting thirty–two students from one of each university in the six geo-political zones of Nigeria. The questionnaire based on 'yes or no' and column charts constituted the instrument employed in the study. Percentages were used to analyse 'yes or no' while column charts were used to compare responds of the students. The finding of the study revealed that majority of students in all the universities under study claimed that their universities lacked appropriate software, that good quality educational content online was lacking, they also agreed that sustainability of e-learning was not prioritized, that they had no access to appropriate content for ICT-enhanced learning and training and that they had access to affordable and reliable computers. For lecturers, the computer certification should be the first on the list of promotion requirements. The finding of the study revealed that students from seven out of nine universities confirmed that their universities lack of appropriate software whereas the other two claimed that they have appropriate software. Also, out of nine universities, two disagreed to the fact that good quality educational content online lacked, whereas seven agreed that they lacked good quality educational content online. The finding of the study also revealed that most of the respondents in almost all the university under study agreed that sustainability of e-learning was not prioritized. The study recommended among other that the Nigerian Government should make concerted effort to provide the enablement for all lecturers and students to become computer literate. This should be done within a time frame, and at the end of the computer course, certificates should be issued, and no student should graduate in his or her field of study without passing the computer course.

Keywords: e-learning, developing countries, computer literacy, ICT

Procedia PDF Downloads 336