Search results for: artificial microRNA approach
13125 Structural Testing and the Finite Element Modelling of Anchors Loaded Against Partially Confined Surfaces
Authors: Ali Karrech, Alberto Puccini, Ben Galvin, Davide Galli
Abstract:
This paper summarises the laboratory tests, numerical models and statistical approach developed to investigate the behaviour of concrete blocks loaded in shear through metallic anchors. This research is proposed to bridge a gap in the state of the art and practice related to anchors loaded against partially confined concrete surfaces. Eight concrete blocks (420 mm x 500 mm x 1000 mm) with 150 and/or 250 deep anchors were tested. The stainless-steel anchors of diameter 16 mm were bonded with HIT-RE 500 V4 injection epoxy resin and were subjected to shear loading against partially supported edges. In addition, finite element models were constructed to validate the laboratory tests and explore the influence of key parameters such as anchor depth, anchor distance from the edge, and compressive strength on the stability of the block. Upon their validation experimentally, the numerical results were used to populate, develop and interpret a systematic parametric study based on the Design of Experiment approach through the Box-Behnken design and Response Surface Methodology. An empirical model has been derived based on this approach, which predicts the load capacity with the desirable intervals of confidence.Keywords: finite element modelling, design of experiment, response surface methodology, Box-Behnken design, empirical model, interval of confidence, load capacity
Procedia PDF Downloads 2413124 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay
Procedia PDF Downloads 24013123 A Computer-Aided System for Detection and Classification of Liver Cirrhosis
Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy
Abstract:
This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy
Procedia PDF Downloads 46113122 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present
Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Philippe Blanchard, Simon Richir
Abstract:
Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving
Procedia PDF Downloads 7413121 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images
Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat
Abstract:
Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA
Procedia PDF Downloads 7313120 Modern Seismic Design Approach for Buildings with Hysteretic Dampers
Authors: Vanessa A. Segovia, Sonia E. Ruiz
Abstract:
The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers
Procedia PDF Downloads 48313119 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs
Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro
Abstract:
This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression
Procedia PDF Downloads 44313118 The Use of Drones in Measuring Environmental Impacts of the Forest Garden Approach
Authors: Andrew J. Zacharias
Abstract:
The forest garden approach (FGA) was established by Trees for the Future (TREES) over the organization’s 30 years of agroforestry projects in Sub-Saharan Africa. This method transforms traditional agricultural systems into highly managed gardens that produce food and marketable products year-round. The effects of the FGA on food security, dietary diversity, and economic resilience have been measured closely, and TREES has begun to closely monitor the environmental impacts through the use of sensors mounted on unmanned aerial vehicles, commonly known as 'drones'. These drones collect thousands of pictures to create 3-D models in both the visible and the near-infrared wavelengths. Analysis of these models provides TREES with quantitative and qualitative evidence of improvements to the annual above-ground biomass and leaf area indices, as measured in-situ using NDVI calculations.Keywords: agroforestry, biomass, drones, NDVI
Procedia PDF Downloads 15713117 Learning Environments in the Early Years: A Case Study of an Early Childhood Centre in Australia
Authors: Mingxi Xiao
Abstract:
Children’s experiences in the early years build and shape the brain. The early years learning environment plays a significantly important role in children’s development. A well-constructed environment will facilitate children’s physical and mental well-being. This case study used an early learning centre in Australia called SDN Hurstville as an example, describing the learning environment in the centre, as well as analyzing the functions of the affordances. In addition, this report talks about the sustainability of learning in the centre, and how the environment supports cultural diversity and indigenous learning. The early years for children are significant. Different elements in the early childhood centre should work together to help children develop better. This case study found that the natural environment and the artificial environment are both critical to children; only when they work together can children have better development in physical and mental well-being and have a sense of belonging when playing and learning in the centre.Keywords: early childhood center, early childhood education, learning environment, Australia
Procedia PDF Downloads 24213116 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 7513115 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants
Authors: Coriolano Salvini
Abstract:
The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis
Procedia PDF Downloads 21413114 The Development Learning Module Physics based on Guided Inquiry Approach on Model Cooperative Learning Type STAD (Student Team Achievement Division) in the Main Subject of Temperature and Heat
Authors: Fani Firmahandari
Abstract:
The development learning module physics based on guided inquiry approach on model cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat. The research development aimed to produce physics learning module based on guided cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat to the student in X class. The research method used Research and Development approach. The development procedure of this module includes potential problems, data collection to meet the need, product design, and feasibility of this module. The impact of learning can be seen or observed clearly when the learning process takes place, the teachers or the students already implemented measures cooperative learning model type STAD, so that the learning process goes well, the interaction of teachers and students, students with student looks good, besides that students can interact and work together in group.Keywords: cooperative learning type STAD (student team achievement division), development, inquiry, interaction students
Procedia PDF Downloads 36013113 A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures
Authors: Djamal Hamadi, Oussama Temami, Abdallah Zatar, Sifeddine Abderrahmani
Abstract:
The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation.Keywords: displacement formulation, finite elements, strain based approach, shell structures
Procedia PDF Downloads 41913112 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 4713111 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 4713110 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis
Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec
Abstract:
The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design
Procedia PDF Downloads 23113109 Microscopic Simulation of Toll Plaza Safety and Operations
Authors: Bekir O. Bartin, Kaan Ozbay, Sandeep Mudigonda, Hong Yang
Abstract:
The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.Keywords: microscopic simulation, toll plaza, surrogate safety, application programming interface
Procedia PDF Downloads 18313108 Adopting a Comparative Cultural Studies Approach to Teaching Writing in the Global Classroom
Authors: Madhura Bandyopadhyay
Abstract:
Teaching writing within multicultural and multiethnic communities poses many unique challenges not the least of which is that of intercultural communication. When the writing is in English, pedagogical imperatives often encounter the universalizing tendencies of standardization of both language use and structural parameters which are often at odds with maintaining local practices which preserve cultural pluralism. English often becomes the contact zone within which individual identities of students play out against the standardization imperatives of the larger world. Writing classes can serve as places which become instruments of assimilation of ethnic minorities to a larger globalizing or nationalistic agenda. Hence, for those outside of the standard practices of writing English, adaptability towards a mastery of those practices valued as standard become the focus of teaching taking away from diversity of local English use and other modes of critical thinking. In a very multicultural and multiethnic context such as the US or Singapore, these dynamics become very important. This paper will argue that multiethnic writing classrooms can greatly benefit from taking up a cultural studies approach whereby the students’ lived environments and experiences are analyzed as cultural texts to produce writing. Such an approach eliminates limitations of using both literary texts as foci of discussion as in traditional approaches to teaching writing and the current trend in teaching composition without using texts at all. By bringing in students’ lived experiences into the classroom and analyzing them as cultural compositions stressing the ability to communicate across cultures, cultural competency is valued rather than adaptability while privileging pluralistic experiences as valuable even as universal shared experience are found. Specifically, while teaching writing in English in a multicultural classroom, a cultural studies approach makes both teacher and student aware of the diversity of the English language as it exists in our global context in the students’ experience while making space for diversity in critical thinking, structure and organization of writing effective in an intercultural context.Keywords: English, multicultural, teaching, writing
Procedia PDF Downloads 50813107 To Include or Not to Include: Resolving Ethical Concerns over the 20% High Quality Cassava Flour Inclusion in Wheat Flour Policy in Nigeria
Authors: Popoola I. Olayinka, Alamu E. Oladeji, B. Maziya-Dixon
Abstract:
Cassava, an indigenous crop grown locally by subsistence farmers in Nigeria has potential to bring economic benefits to the country. Consumption of bread and other confectionaries has been on the rise due to lifestyle changes of Nigerian consumers. However, wheat, being the major ingredient for bread and confectionery production does not thrive well under Nigerian climate hence the huge spending on wheat importation. To reduce spending on wheat importation, the Federal Government of Nigeria intends passing into law mandatory inclusion of 20% high-quality cassava flour (HQCF) in wheat flour. While the proposed policy may reduce post harvest loss of cassava, and also increase food security and domestic agricultural productivity, there are downsides to the policy which include reduction in nutritional quality and low sensory appeal of cassava-wheat bread, reluctance of flour millers to use HQCF, technology and processing challenges among others. The policy thus presents an ethical dilemma which must be resolved for its successful implementation. While inclusion of HQCF to wheat flour in bread and confectionery is a topic that may have been well addressed, resolving the ethical dilemma resulting from the act has not received much attention. This paper attempts to resolve this dilemma using various approaches in food ethics (cost benefits, utilitarianism, deontological and deliberative). The Cost-benefit approach did not provide adequate resolution of the dilemma as all the costs and benefits of the policy could not be stated in the quantitative term. The utilitarianism approach suggests that the policy delivers greatest good to the greatest number while the deontological approach suggests that the act (inclusion of HQCF to wheat flour) is right hence the policy is not utterly wrong. The deliberative approach suggests a win-win situation through deliberation with the parties involved.Keywords: HQCF, ethical dilemma, food security, composite flour, cassava bread
Procedia PDF Downloads 40613106 Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles
Authors: Hasan Jumaah Mrayeh, Fue-Sang Lien
Abstract:
ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle.Keywords: aerodynamic lens, divergent nozzle, ANSYS Fluent, Lagrange approach
Procedia PDF Downloads 30613105 Cycle Number Estimation Method on Fatigue Crack Initiation Using Voronoi Tessellation and the Tanaka Mura Model
Authors: Mohammad Ridzwan Bin Abd Rahim, Siegfried Schmauder, Yupiter HP Manurung, Peter Binkele, Meor Iqram B. Meor Ahmad, Kiarash Dogahe
Abstract:
This paper deals with the short crack initiation of the material P91 under cyclic loading at two different temperatures, concluded with the estimation of the short crack initiation Wöhler (S/N) curve. An artificial but representative model microstructure was generated using Voronoi tessellation and the Finite Element Method, and the non-uniform stress distribution was calculated accordingly afterward. The number of cycles needed for crack initiation is estimated on the basis of the stress distribution in the model by applying the physically-based Tanaka-Mura model. Initial results show that the number of cycles to generate crack initiation is strongly correlated with temperature.Keywords: short crack initiation, P91, Wöhler curve, Voronoi tessellation, Tanaka-Mura model
Procedia PDF Downloads 10113104 Applying Critical Realism to Qualitative Social Work Research: A Critical Realist Approach for Social Work Thematic Analysis Method
Authors: Lynne Soon-Chean Park
Abstract:
Critical Realism (CR) has emerged as an alternative to both the positivist and constructivist perspectives that have long dominated social work research. By unpacking the epistemic weakness of two dogmatic perspectives, CR provides a useful philosophical approach that incorporates the ontological objectivist and subjectivist stance. The CR perspective suggests an alternative approach for social work researchers who have long been looking to engage in the complex interplay between perceived reality at the empirical level and the objective reality that lies behind the empirical event as a causal mechanism. However, despite the usefulness of CR in informing social work research, little practical guidance is available about how CR can inform methodological considerations in social work research studies. This presentation aims to provide a detailed description of CR-informed thematic analysis by drawing examples from a social work doctoral research of Korean migrants’ experiences and understanding of trust associated with their settlement experience in New Zealand. Because of its theoretical flexibility and accessibility as a qualitative analysis method, thematic analysis can be applied as a method that works both to search for the demi-regularities of the collected data and to identify the causal mechanisms that lay behind the empirical data. In so doing, this presentation seeks to provide a concrete and detailed exemplar for social work researchers wishing to employ CR in their qualitative thematic analysis process.Keywords: critical Realism, data analysis, epistemology, research methodology, social work research, thematic analysis
Procedia PDF Downloads 21213103 Estimation of Rare and Clustered Population Mean Using Two Auxiliary Variables in Adaptive Cluster Sampling
Authors: Muhammad Nouman Qureshi, Muhammad Hanif
Abstract:
Adaptive cluster sampling (ACS) is specifically developed for the estimation of highly clumped populations and applied to a wide range of situations like animals of rare and endangered species, uneven minerals, HIV patients and drug users. In this paper, we proposed a generalized semi-exponential estimator with two auxiliary variables under the framework of ACS design. The expressions of approximate bias and mean square error (MSE) of the proposed estimator are derived. Theoretical comparisons of the proposed estimator have been made with existing estimators. A numerical study is conducted on real and artificial populations to demonstrate and compare the efficiencies of the proposed estimator. The results indicate that the proposed generalized semi-exponential estimator performed considerably better than all the adaptive and non-adaptive estimators considered in this paper.Keywords: auxiliary information, adaptive cluster sampling, clustered populations, Hansen-Hurwitz estimation
Procedia PDF Downloads 23813102 Key Factors for Stakeholder Engagement and Sustainable Development
Authors: Jo Rhodes, Bruce Bergstrom, Peter Lok, Vincent Cheng
Abstract:
The aim of this study is to determine key factors and processes for multinationals (MNCs) to develop an effective stakeholder engagement and sustainable development framework. A qualitative multiple-case approach was used. A triangulation method was adopted (interviews, archival documents and observations) to collect data on three global firms (MNCs). 9 senior executives were interviewed for this study (3 from each firm). An initial literature review was conducted to explore possible practices and factors (the deductive approach) to sustainable development. Interview data were analysed using Nvivo to obtain appropriate nodes and themes for the framework. A comparison of findings from interview data and themes, factors developed from the literature review and cross cases comparison were used to develop the final conceptual framework (the inductive approach). The results suggested that stakeholder engagement is a key mediator between ‘stakeholder network’ (internal and external factors) and outcomes (corporate social responsibility, social capital, shared value and sustainable development). Key internal factors such as human capital/talent, technology, culture, leadership and processes such as collaboration, knowledge sharing and co-creation of value with stakeholders were identified. These internal factors and processes must be integrated and aligned with external factors such as social, political, cultural, environment and NGOs to achieve effective stakeholder engagement.Keywords: stakeholder, engagement, sustainable development, shared value, corporate social responsibility
Procedia PDF Downloads 51313101 Housing First, Not Housing Only: The Life Skills Project
Authors: Sara Cumming, Julianne DiSanto, Leah Burton
Abstract:
Homelessness in Canada is a persistent problem. It has been widely argued that the best tactic for eradicating homelessness is to approach social issues from a Housing First perspective—an approach that centers on quickly moving people into permanent and independent housing and then providing them additional support and services as needed. It is recognized that life skills training is both necessary and an effective way to reduce cyclical homelessness; however, there is a scarcity of research on effective ways to teach life skills; this problem was exacerbated in a pandemic context, where in-person delivery was severely restricted or no longer possible. Very little attention has been paid to the diverse cultural needs of clients in a multicultural context and the need to foster cultural knowledge/awareness in individuals to successfully contribute to the cultural safety of communities. This research attempts to fill these gaps in the literature and in practice by employing a community-engaged research (CER) approach. Academic, government, funders, front-line staff, and clients at 15 not-for-profits from across the Greater Toronto Area in Ontario, Canada, collaborated to co-create a virtual, client-centric, equity, diversity, and inclusion (EDI) informed life skill learning management system. We employed a triangulation methodology for this research. An environmental scan was conducted for best practices. Two separate Creative Problem Solving Sessions were held with over 100 front-line workers, managers, and executive directors who work with homeless populations. Quantitative and open-ended surveys were completed by over 200 individuals with experience with homelessness. All sections of this research aimed to discover the areas of skills that individuals need to maintain housing and to ascertain what a more client-driven EDI approach to life skills training should include. This research will showcase which life skills are deemed essential for homeless and precariously housed individuals.Keywords: homelessness, Housing First, life skills, community engaged research
Procedia PDF Downloads 6513100 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 10013099 Complexity in Managing Higher Education Institutions in Mexico: A System Dynamics Approach
Authors: José Carlos Rodríguez, Mario Gómez, Medardo Serna
Abstract:
This paper analyses managing higher education institutions in emerging economies. The paper investigates the case of postgraduate studies development at public universities. In so doing, it adopts the complex theory approach to evaluate how postgraduate studies have evolved in these countries. The investigation suggests that the postgraduate studies sector at public universities can be seen as a complex adaptive system (CAS). Therefore, the paper adopts system dynamics (SD) methods to develop this analysis. The case of postgraduate studies at Universidad Michoacana de San Nicolás de Hidalgo in Mexico is investigated in this paper.Keywords: complex adaptive systems, higher education institutions, Mexico, system dynamics
Procedia PDF Downloads 31813098 Determining the Causality Variables in Female Genital Mutilation: A Factor Screening Approach
Authors: Ekele Alih, Enejo Jalija
Abstract:
Female Genital Mutilation (FGM) is made up of three types namely: Clitoridectomy, Excision and Infibulation. In this study, we examine the factors responsible for FGM in order to identify the causality variables in a logistic regression approach. From the result of the survey conducted by the Public Health Division, Nigeria Institute of Medical Research, Yaba, Lagos State, the tau statistic, τ was used to screen 9 factors that causes FGM in order to select few of the predictors before multiple regression equation is obtained. The need for this may be that the sample size may not be able to sustain having a regression with all the predictors or to avoid multi-collinearity. A total of 300 respondents, comprising 150 adult males and 150 adult females were selected for the household survey based on the multi-stage sampling procedure. The tau statistic,Keywords: female genital mutilation, logistic regression, tau statistic, African society
Procedia PDF Downloads 26113097 DURAFILE: A Collaborative Tool for Preserving Digital Media Files
Authors: Santiago Macho, Miquel Montaner, Raivo Ruusalepp, Ferran Candela, Xavier Tarres, Rando Rostok
Abstract:
During our lives, we generate a lot of personal information such as photos, music, text documents and videos that link us with our past. This data that used to be tangible is now digital information stored in our computers, which implies a software dependence to make them accessible in the future. Technology, however, constantly evolves and goes through regular shifts, quickly rendering various file formats obsolete. The need for accessing data in the future affects not only personal users but also organizations. In a digital environment, a reliable preservation plan and the ability to adapt to fast changing technology are essential for maintaining data collections in the long term. We present in this paper the European FP7 project called DURAFILE that provides the technology to preserve media files for personal users and organizations while maintaining their quality.Keywords: artificial intelligence, digital preservation, social search, digital preservation plans
Procedia PDF Downloads 44513096 Prefabricated Integral Design of Building Services
Authors: Mina Mortazavi
Abstract:
The common approach in the construction industry for restraint requirements in existing structures or new constructions is to have Non-Structural Components (NSCs) assembled and installed on-site by different MEP subcontractors. This leads to a lack of coordination and higher costs, construction time, and complications due to inaccurate building information modelling (BIM) systems. Introducing NSCs to a consistent BIM system from the beginning of the design process and considering their seismic loads in the analysis and design process can improve coordination and reduce costs and time. One solution is to use prefabricated mounts with attached MEPs delivered as an integral module. This eliminates the majority of coordination complications and reduces design and installation costs and time. An advanced approach is to have as many NSCs as possible installed in the same prefabricated module, which gives the structural engineer the opportunity to consider the involved component weights and locations in the analysis and design of the prefabricated support. This efficient approach eliminates coordination and access issues, leading to enhanced quality control. This research will focus on the existing literature on modular sub-assemblies that are integrated with architectural and structural components. Modular MEP systems take advantage of the precision provided by BIM tools to meet exact requirements and achieve a buildable design every time. Modular installations that include MEP systems provide efficient solutions for the installation of MEP services or components.Keywords: building services, modularisation, prefabrication, integral building design
Procedia PDF Downloads 72