Search results for: HCV viral load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3008

Search results for: HCV viral load

608 Mechanism of pH Sensitive Flocculation for Organic Load and Colour Reduction in Landfill Leachate

Authors: Brayan Daniel Riascos Arteaga, Carlos Costa Perez

Abstract:

Landfill leachate has an important fraction of humic substances, mainly humic acids (HAs), which often represent more than half value of COD, specially in liquids proceeded from composting processes of organic fraction of solid wastes. We propose in this article a new method of pH sensitive flocculation for COD and colour reduction in landfill leachate based on the chemical properties of HAs. Landfill leachate with a high content of humic acids can be efficiently treated by pH sensitive flocculation at pH 2.0, reducing COD value in 86.1% and colour in 84.7%. Mechanism of pH sensitive flocculation is based in protonation first of phenolic groups and later of carboxylic acid groups in the HAs molecules, resulting in a reduction of Zeta potential value. For pH over neutrality, carboxylic acid and phenolic groups are ionized and Zeta potential increases in absolute value, maintaining HAs in suspension as colloids and conducting flocculation to be obstructed. Ionized anionic groups (carboxylates) can interact electrostatically with cations abundant in leachate (site binding) aiding to maintain HAs in suspension. Simulation of this situation and ideal visualization of Zeta potential behavior is described in the paper and aggregation of molecules by H-bonds is proposed as the main step in separation of HAs from leachate and reduction of COD value in this complex liquid. CHNS analysis, FT-IR spectrometry and UV–VIS spectrophotometry show chemical elements content in the range of natural and commercial HAs, clear aromaticity and carboxylic acids and phenolic groups presence in the precipitate from landfill leachate

Keywords: landfill leachate, humic acids, COD, chemical treatment, flocculation

Procedia PDF Downloads 71
607 The Effects of Three Months of HIIT on Plasma Adiponectin on Overweight College Men

Authors: M. J. Pourvaghar, M. E. Bahram, M. Sayyah, Sh. Khoshemehry

Abstract:

Adiponectin is a cytokine secreted by the adipose tissue that functions as an anti-inflammatory, antiathrogenic and anti-diabetic substance. Its density is inversely correlated with body mass index. The purpose of this research was to examine the effect of 12 weeks of high intensity interval training (HIIT) with the level of serum adiponectin and some selected adiposity markers in overweight and fat college students. This was a clinical research in which 24 students with BMI between 25 kg/m2 to 30 kg/m2. The sample was purposefully selected and then randomly assigned into two groups of experimental (age =22.7±1.5 yr.; weight = 85.8±3.18 kg and height =178.7±3.29 cm) and control (age =23.1±1.1 yr.; weight = 79.1±2.4 kg and height =181.3±4.6 cm), respectively. The experimental group participated in an aerobic exercise program for 12 weeks, three sessions per weeks at a high intensity between 85% to 95% of maximum heart rate (considering the over load principle). Prior and after the termination of exercise protocol, the level of serum adiponectin, BMI, waist to hip ratio, and body fat percentages were calculated. The data were analyzed by using SPSS: PC 16.0 and statistical procedure such as ANCOVA, was used. The results indicated that 12 weeks of intensive interval training led to the increase of serum adiponectin level and decrease of body weight, body fat percent, body mass index and waist to hip ratio (P < 0.05). Based on the results of this research, it may be concluded that participation in intensive interval training for 12 weeks is a non-invasive treatment to increase the adiponectin level while decreasing some of the anthropometric indices associated with obesity or being overweight.

Keywords: adiponectin, cardiovascular, interval, overweight, training

Procedia PDF Downloads 318
606 Effect of Inspiratory Muscle Training on Diaphragmatic Strength Following Coronary Revascularization

Authors: Abeer Ahmed Abdelhamed

Abstract:

Introduction: Postoperative pulmonary complications (PPCs) are the most common complications observed and managed after abdominal or cardiothoracic surgery. Hypoxemia, atelectasis, pleural effusion, or diaphragmatic dysfunction, are often a source of morbidity in cardiac surgery patients, and are more common in patients receiving unilateral or bilateral internal mammary artery (IMT) grafts than patients receiving saphenous vein (SV) grafts alone. Purpose: The aim of this work was to investigate the effect of Threshold load inspiratory muscle training on pulmonary gas exchange and maximum inspiratory pressure (MIP) in patient undergoing coronary revascularization. Subject: Thirty three male patients eligible for coronary revascularization were selected to participate in the study. Method: They were divided into two groups(17 patients in the intervention group and 16 patients in the control group), the interventional group received inspiratory muscle training at 30% of their maximum inspiratory pressure throughout the hospitalization period in addition to routine post operative care. Result: The results of this study showed a significant improvement on maximum inspiratory pressure(MIP), Arterial-alveolar pressure gradient (A-a gradient) and oxygen saturation in the intervention group. Conclusion: Inspiratory muscle training using threshold mode significantly improves maximum inspiratory pressure, pulmonary gas exchange tested by alveolar-arterial gradient and oxygen saturation in Patients undergoing coronary revascularization.

Keywords: coronary revascularization, inspiratory muscle training, maximum inspiratory pressure, pulmonary gas exchange

Procedia PDF Downloads 301
605 Behavior of Composite Reinforced Concrete Circular Columns with Glass Fiber Reinforced Polymer I-Section

Authors: Hiba S. Ahmed, Abbas A. Allawi, Riyadh A. Hindi

Abstract:

Pultruded materials made of fiber-reinforced polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, and other structural sections. These FRP materials are starting to compete with steel as structural materials because of their great resistance, low self-weight, and cheap maintenance costs-especially in corrosive conditions. This study aimed to evaluate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) of the hybrid columns built by combining (GFRP) profiles with concrete columns because of their low cost and high structural efficiency. To achieve the aims of this study, nine circular columns with a diameter of (150 mm) and a height of (1000mm) were cast using normal concrete with compression strength equal to (35 MPa). The research involved three different types of reinforcement: hybrid circular columns type (IG) with GFRP I-section and 1% of the reinforcement ratio of steel bars, hybrid circular columns type (IS) with steel I-section and 1% of the reinforcement ratio of steel bars, (where the cross-section area of I-section for GFRP and steel was the same), compared with reference column (R) without I-section. To investigate the ultimate capacity, axial and lateral deformation, strain in longitudinal and transverse reinforcement, and failure mode of the circular column under different loading conditions (concentric and eccentric) with eccentricities of 25 mm and 50 mm, respectively. In the second part, an analytical finite element model will be performed using ABAQUS software to validate the experimental results.

Keywords: composite, columns, reinforced concrete, GFRP, axial load

Procedia PDF Downloads 57
604 The Safe Introduction of Tocilizumab for the Treatment of SARS-CoV-2 Pneumonia at an East London District General Hospital

Authors: Andrew Read, Alice Parry, Kate Woods

Abstract:

Since the advent of the SARS-CoV-2 pandemic, the search for medications that can reduce mortality and morbidity has been a global research priority. Several multi-center trials have recently demonstrated improved mortality associated with the use of Tocilizumab, an interleukin-6 receptor antagonist, in patients with severe SARS-CoV-2 pneumonia. Initial data supported the administration in patients requiring respiratory support (non-invasive or invasive ventilation), but more recent data has shown benefit in all hypoxic patients. At the height of the second wave of COVID-19 infections in London, our hospital introduced the use of Tocilizumab for patients with severe COVID-19. Tocilizumab is licensed for use in chronic inflammatory conditions and has been associated with an increased risk of severe bacterial and fungal infections, as well as reactivation of chronic viral infections (e.g., hepatitis B). It is a specialist drug that suppresses the formation of C-reactive protein (CRP) for 6 – 12 weeks. It is not widely used by the general medical community. We aimed to assess Tocilizumab use in our hospital and to implement changes to the protocol as required to ensure administration was safe and appropriate. A retrospective study design was used to assess prescriptions over an initial 3-week period in both intensive care and on the medical wards. This amounted to a total of 13 patients. The initial data collection identified four key areas of concern: adherence to national and local inclusion & exclusion criteria; a collection of appropriate screening blood prior to administration; documentation of informed consent or best interest decision and documentation of Tocilizumab administration on patient discharge information, to alert future healthcare providers that typical measures of inflammation and infection, such as CRP, are unreliable for up to 3-months. Data were collected from electronic notes, blood results and observation charts, and cross referenced with pharmacy data. Initial results showed that all four key areas were completed in approximately 50% of cases. Of particular concern was adherence to exclusion criteria, such as current evidence of bacterial infection, and ensuring the correct screening blood was sent to exclude infections such as hepatitis. To remedy this and improve patient safety, the initial data was presented to relevant healthcare professionals. Subsequently, three interventions were introduced and education on each provided to hospital staff. An electronic ‘order set’ collating the appropriate screening blood was created simplifying the screening process. Pre-formed electronic documentation which can be inserted into the notes was created to provide a framework for consent discussions and reduce the time needed for junior doctors to complete this task. Additionally, a ‘Tocilizumab’ administration card was created and administered via pharmacy. This was distributed to each patient on discharge to ensure future healthcare professionals were aware of the potential effects of Tocilizumab administration, including suppression of CRP. Following these changes, repeat data collection over two months illustrated that each of the 4 safety aspects was met with a 100% success rate in every patient. Although this demonstrates good progress and effective interventions the challenge will be to maintain this progress. The audit data collection is ongoing

Keywords: education, patient safety , SARS-CoV-2, Tocilizumab

Procedia PDF Downloads 175
603 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis

Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman

Abstract:

Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.

Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test

Procedia PDF Downloads 127
602 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 113
601 Proposing an Improved Managerial-Based Business Process Framework

Authors: Alireza Nikravanshallmani, Jamshid Dehmeshki, Mojtaba Ahmadi

Abstract:

Modeling of business processes, based on BPMN (Business Process Modeling Notation), helps analysts and managers to understand business processes, and, identify their shortages. These models provide a context to make rational decision of organizing business processes activities in an understandable manner. The purpose of this paper is to provide a framework for better understanding of business processes and their problems by reducing the cognitive load of displayed information for their audience at different managerial levels while keeping the essential information which are needed by them. For this reason, we integrate business process diagrams across the different managerial levels to develop a framework to improve the performance of business process management (BPM) projects. The proposed framework is entitled ‘Business process improvement framework based on managerial levels (BPIML)’. This framework, determine a certain type of business process diagrams (BPD) based on BPMN with respect to the objectives and tasks of the various managerial levels of organizations and their roles in BPM projects. This framework will make us able to provide the necessary support for making decisions about business processes. The framework is evaluated with a case study in a real business process improvement project, to demonstrate its superiority over the conventional method. A questionnaire consisted of 10 questions using Likert scale was designed and given to the participants (managers of Bank Refah Kargaran three managerial levels). By examining the results of the questionnaire, it can be said that the proposed framework provide support for correct and timely decisions by increasing the clarity and transparency of the business processes which led to success in BPM projects.

Keywords: business process management (BPM), business process modeling, business process reengineering (BPR), business process optimizing, BPMN

Procedia PDF Downloads 453
600 Modeling Approach to Better Control Fouling in a Submerged Membrane Bioreactor for Wastewater Treatment: Development of Analytical Expressions in Steady-State Using ASM1

Authors: Benaliouche Hana, Abdessemed Djamal, Meniai Abdessalem, Lesage Geoffroy, Heran Marc

Abstract:

This paper presents a dynamic mathematical model of activated sludge which is able to predict the formation and degradation kinetics of SMP (Soluble microbial products) in membrane bioreactor systems. The model is based on a calibrated version of ASM1 with the theory of production and degradation of SMP. The model was calibrated on the experimental data from MBR (Mathematical modeling Membrane bioreactor) pilot plant. Analytical expressions have been developed, describing the concentrations of the main state variables present in the sludge matrix, with the inclusion of only six additional linear differential equations. The objective is to present a new dynamic mathematical model of activated sludge capable of predicting the formation and degradation kinetics of SMP (UAP and BAP) from the submerged membrane bioreactor (BRMI), operating at low organic load (C / N = 3.5), for two sludge retention times (SRT) fixed at 40 days and 60 days, to study their impact on membrane fouling, The modeling study was carried out under the steady-state condition. Analytical expressions were then validated by comparing their results with those obtained by simulations using GPS-X-Hydromantis software. These equations made it possible, by means of modeling approaches (ASM1), to identify the operating and kinetic parameters and help to predict membrane fouling.

Keywords: Activated Sludge Model No. 1 (ASM1), mathematical modeling membrane bioreactor, soluble microbial products, UAP, BAP, Modeling SMP, MBR, heterotrophic biomass

Procedia PDF Downloads 299
599 Host Preference, Impact of Host Transfer and Insecticide Susceptibility among Aphis gossypii Group (Order: Hemiptera) in Jamaica

Authors: Desireina Delancy, Tannice Hall, Eric Garraway, Dwight Robinson

Abstract:

Aphis gossypii, as a pest, directly damages its host plant by extracting phloem sap (sucking) and indirectly damages it by the transmission of viruses, ultimately affecting the yield of the host. Due to its polyphagous nature, this species affects a wide range of host plants, some of which may serve as a reservoir for colonisation of important crops. In Jamaica, there have been outbreaks of viral plant pathogens that were transmitted by Aphis gossypii. Three such examples are Citrus tristeza virus, the Watermelon mosaic virus, and Papaya ringspot virus. Aphis gossypii also heavily colonized economically significant host plants, including pepper, eggplant, watermelon, cucumber, and hibiscus. To facilitate integrated pest management, it is imperative to understand the biology of the aphid and its host preference. Preliminary work in Jamaica has indicated differences in biology and host preference, as well as host variety within the species. However, specific details of fecundity, colony growth, host preference, distribution, and insecticide resistance of Aphis gossypii were unknown to the best of our knowledge. The aim was to investigate the following in relation to Aphis gossypii: influence of the host plant on colonization, life span, fecundity, population size, and morphology; the impact of host transfer on fecundity and population size as a measure of host preference and host transfer success and susceptibility to four commonly used insecticides. Fecundity and colony size were documented daily from aphids acclimatized on Capsicum chinense Jacquin 1776, Cucumis sativus Linnaeus 1630, Gossypium hirsutum Linnaeus 1751 and Abelmoschus esculentus (L.) Moench 1794 for three generations. The same measures were used after third instar aphids were transferred among the hosts as a measure of suitability and success. Mortality, and fecundity of survivors, were determined after aphids were exposed to varying concentrations of Actara®, Diazinon™, Karate Zeon®, and Pegasus®. Host preference results indicated that, over a 24-day period, Aphis gossypii reached its largest colony size on G. hirsutum (x̄ 381.80), with January – February being the most fecund period. Host transfer experiments were all significantly different, with the most significant occurring between transfers from C. chinense to C. sativus (p < 0.05). Colony sizes were found to increase significantly every 5 days, which has implications for regimes implemented to monitor and evaluate plots. Insecticides ranked on lethality are Karate Zeon®> Actara®> Pegasus® > Diazinon™. The highest LC50 values were obtained for aphids on G. hirsutum and C. chinense was with Pegasus® and for those on C. sativus with Diazinon™. Survivors of insecticide treatments had colony sizes on average that were 98 % less than untreated aphids. Cotton was preferred both in the field and in the glasshouse. It is on cotton the aphids settled first, had the highest fecundity, and the lowest mortality. Cotton can serve as reservoir for (re)populating other cotton or different host species based on migration due to overcrowding, heavy showers, high wind, or ant attendance. Host transfer success between all three hosts is highly probable within an intercropping system. Survivors of insecticide treatments can successfully repopulate host plants.

Keywords: Aphis gossypii, host-plant preference, colonization sequence, host transfers, insecticide susceptibility

Procedia PDF Downloads 98
598 Rapid Identification and Diagnosis of the Pathogenic Leptospiras through Comparison among Culture, PCR and Real Time PCR Techniques from Samples of Human and Mouse Feces

Authors: S. Rostampour Yasouri, M. Ghane, M. Doudi

Abstract:

Leptospirosis is one of the most significant infectious and zoonotic diseases along with global spreading. This disease is causative agent of economoic losses and human fatalities in various countries, including Northern provinces of Iran. The aim of this research is to identify and compare the rapid diagnostic techniques of pathogenic leptospiras, considering the multifacetedness of the disease from a clinical manifestation and premature death of patients. In the spring and summer of 2020-2022, 25 fecal samples were collected from suspected leptospirosis patients and 25 Fecal samples from mice residing in the rice fields and factories in Tonekabon city. Samples were prepared by centrifugation and passing through membrane filters. Culture technique was used in liquid and solid EMJH media during one month of incubation at 30°C. Then, the media were examined microscopically. DNA extraction was conducted by extraction Kit. Diagnosis of leptospiras was enforced by PCR and Real time PCR (SYBR Green) techniques using lipL32 specific primer. Out of the patients, 11 samples (44%) and 8 samples (32%) were determined to be pathogenic Leptospira by Real time PCR and PCR technique, respectively. Out of the mice, 9 Samples (36%) and 3 samples (12%) were determined to be pathogenic Leptospira by the mentioned techniques, respectively. Although the culture technique is considered to be the gold standard technique, but due to the slow growth of pathogenic Leptospira and lack of colony formation of some species, it is not a fast technique. Real time PCR allowed rapid diagnosis with much higher accuracy compared to PCR because PCR could not completely identify samples with lower microbial load.

Keywords: culture, pathogenic leptospiras, PCR, real time PCR

Procedia PDF Downloads 85
597 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network

Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir

Abstract:

Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.

Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS

Procedia PDF Downloads 404
596 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer

Authors: Fouzieh Rouzmehr, Mehdi Mousavi

Abstract:

Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results.

Keywords: flexible pavement, asphalt, FEM, viscoelastic, elastic, ANSYS, modeling

Procedia PDF Downloads 132
595 Seismic Response of Structures of Reinforced Concrete Buildings: Regular and Irregular Configurations

Authors: Abdelhammid Chibane

Abstract:

Often, for architectural reasons or designs, several buildings have a non-uniform profile in elevation. Depending on the configuration of the construction and the arrangements structural elements, the non-uniform profile in elevation (the recess) is considered concept of a combination of non-uniform distributions of strength, stiffness, weight and geometry along the height of irregular structures. Therefore, this type of configuration can induce irregular distribution load causing a serious concentration stresses at the discontinuity. This therefore requires a serious behavioral treatment buildings in an earthquake. If appropriate measures are not taken into account, structural irregularity may become a major source of damage during earthquakesEarth. In the past, several research investigations have identified differences in dynamic response of irregular and regular porches. Among the most notable differences are the increments of displacements and ductility applications in floors located above the level of the shoulder and an increase in the contribution of the higher modes cisaillement1 efforts, ..., 10. The para -ssismiques codes recommend the methods of analysis Dynamic (or modal history) to establish the forces of calculation instead of the static method equivalent, which is basically applicable only to regular structures without major discontinuities in the mass, rigidity and strength along the height 11, 12 .To investigate the effects of irregular profiles on the structures, the main objective of this study was the assessment of the inelastic response, in terms of applications of ductility four types of non-uniform multi-stage structures subjected to relatively severe earthquakes. In the This study, only the parallel responses are analyzed setback.

Keywords: buildings, concentration stresses, ductility, ductility, designs, irregular structures

Procedia PDF Downloads 262
594 Observation of the Orthodontic Tooth's Long-Term Movement Using Stereovision System

Authors: Hao-Yuan Tseng, Chuan-Yang Chang, Ying-Hui Chen, Sheng-Che Chen, Chih-Han Chang

Abstract:

Orthodontic tooth treatment has demonstrated a high success rate in clinical studies. It has been agreed upon that orthodontic tooth movement is based on the ability of surrounding bone and periodontal ligament (PDL) to react to a mechanical stimulus with remodeling processes. However, the mechanism of the tooth movement is still unclear. Recent studies focus on the simple principle compression-tension theory while rare studies directly measure tooth movement. Therefore, tracking tooth movement information during orthodontic treatment is very important in clinical practice. The aim of this study is to investigate the mechanism responses of the tooth movement during the orthodontic treatments. A stereovision system applied to track the tooth movement of the patient with the stamp brackets. The system was established by two cameras with their relative position calibrate. And the orthodontic force measured by 3D printing model with the six-axis load cell to determine the initial force application. The result shows that the stereovision system accuracy revealed the measurement presents a maximum error less than 2%. For the study on patient tracking, the incisor moved about 0.9 mm during 60 days tracking, and half of movement occurred in the first few hours. After removing the orthodontic force in 100 hours, the distance between before and after position incisor tooth decrease 0.5 mm consisted with the release of the phenomenon. Using the stereovision system can accurately locate the three-dimensional position of the teeth and superposition of 3D coordinate system for all the data to integrate the complex tooth movement.

Keywords: orthodontic treatment, tooth movement, stereovision system, long-term tracking

Procedia PDF Downloads 424
593 Wear Performance of SLM Fabricated 1.2709 Steel Nanocomposite Reinforced by TiC-WC for Mould and Tooling Applications

Authors: Daniel Ferreira, José M. Marques Oliveira, Filipe Oliveira

Abstract:

Wear phenomena is critical in injection moulding processes, causing failure of the components, and making the parts more expensive with an additional wasting time. When very abrasive materials are being injected inside the steel mould’s cavities, such as polymers reinforced with abrasive fibres, the consequences of the wear are more evident. Maraging steel (1.2709) is commonly employed in moulding components to resist in very aggressive injection conditions. In this work, the wear performance of the SLM produced 1.2709 maraging steel reinforced by ultrafine titanium and tungsten carbide (TiC-WC), was investigated using a pin-on-disk testing apparatus. A polypropylene reinforced with 40 wt.% fibreglass (PP40) disk, was used as the counterpart material. The wear tests were performed at 40 N constant load and 0.4 ms-1 sliding speed at room temperature and humidity conditions. The experimental results demonstrated that the wear rate in the 18Ni300-TiC-WC composite is lower than the unreinforced 18Ni300 matrix. The morphology and chemical composition of the worn surfaces was observed by 3D optical profilometry and scanning electron microscopy (SEM), respectively. The resulting debris, caused by friction, were also analysed by SEM and energy dispersive X-ray spectroscopy (EDS). Their morphology showed distinct shapes and sizes, which indicated that the wear mechanisms, may be different in maraging steel produced by casting and SLM. The coefficient of friction (COF) was recorded during the tests, which helped to elucidate the wear mechanisms involved.

Keywords: selective laser melting, nanocomposites, injection moulding, polypropylene with fibreglass

Procedia PDF Downloads 156
592 Heavy Metal Contamination of Mining-Impacted Mangrove Sediments and Its Correlation with Vegetation and Sediment Attributes

Authors: Jumel Christian P. Nicha, Severino G. Salmo III

Abstract:

This study investigated the concentration of heavy metals (HM) in mangrove sediments of Lake Uacon, Zambales, Philippines. The relationship among the studied HM (Cr, Ni, Pb, Cu, Cd, Fe) and the mangrove vegetation and sediment characteristics were assessed. Fourteen sampling plots were designated across the lake (10 vegetated and 4 un-vegetated) based on distance from the mining effluents. In each plot, three sediment cores were collected at 20 cm depth. Among the dominant mangrove species recorded were (in order of dominance): Sonneratia alba, Rhizophora stylosa, Avicennia marina, Excoecaria agallocha and Bruguiera gymnorrhiza. Sediment samples were digested with aqua regia, and the HM concentrations were quantified using Atomic Absorption Spectroscopy (AAS). Results showed that HM concentrations were higher in the vegetated plots as compared to the un-vegetated sites. Vegetated sites had high Ni (mean: 881.71 mg/kg) and Cr (mean: 776.36 mg/kg) that exceeded the threshold values (cf. by the United States Environmental Protection Agency; USEPA). Fe, Pb, Cu and Cd had a mean concentration of 2597.92 mg/kg, 40.94 mg/kg, 36.81 mg/kg and 2.22 mg/kg respectively. Vegetation variables were not significantly correlated with HM concentration. However, the HM concentration was significantly correlated with sediment variables particularly pH, redox, particle size, nitrogen, phosphorus, moisture and organic matter contents. The Pollution Load Index (PLI) indicated moderate to high pollution in the lake. Risk assessment and management should be designed in order to mitigate the ecological risk posed by HM. The need of a regular monitoring scheme for lake and mangrove rehabilitation programs and management should be designed.

Keywords: heavy metals, mangrove vegetation, mining, Philippines, sediment

Procedia PDF Downloads 160
591 Comparative Performance Study of Steel Plate Shear Wall with Reinforced Concrete Shear Wall

Authors: Amit S. Chauhan, S. Mandal

Abstract:

The structural response of shear walls subjected to various types of loads is difficult to predict precisely. They are incorporated in buildings to resist lateral forces and support the gravity loads. The steel plate shear walls (SPSWs) are used as lateral load resisting systems for buildings and acts as an alternative to reinforced concrete shear walls (RCSWs). This paper compares the behavior of SPSW with the RCSW incorporated in a building frame having G+6 storey, located in Zone III, using the technique of Equivalent Static Method (ESM) as per Indian Standard Criteria For Earthquake Resistant Design of Structures IS 1893:2002. This paper intends to evaluate several parameters such as lateral displacement at tip, inter-storey drift, weight of steel and volume of concrete with the alteration of the shear wall with respect to different types viz., SPSW and RCSW. The strip model employed in this study is a widely accepted analytical tool for SPSW analysis. SPSW can be modelled as truss members by using a series of diagonal tension strips positioned at 45-degree angles. In this paper, by replacing the SPSWs with the tension strips, the G+6 building has been analyzed using STAAD.Pro V8i. Based on the present study, it can be concluded that structure with SPSWs is much better then structure with RCSWs.

Keywords: equivalent static method, inter-storey drift, lateral displacement, Steel plate shear wall, strip model

Procedia PDF Downloads 246
590 Capacity Building for Tourism Infrastructure: A Case of Tourism Influenced Regions in Uttar Pradesh, India

Authors: Sayan Munshi, Subrajit Banerjee, Indrani Chakraborty

Abstract:

Tourism is a prime sector in the economic development of many countries in particular the Indian sub-continent. Tourism is considered an integral pillar in the Make in India Program under the Government of India. The statistics of tourism in India had evolved from a past with the formation of History. The sector had shown dynamic changes in the statistics since 1980. With the evolving tourism along with destinations, this sector has been converted into the prime industry, as it not only impacts the destination but on the other hand supports the periphery of the destination. Tourism boost revenue and creates varied economic possibilities for the residents. Due to the influx of tourism in the cities, a load on the infrastructure and services can be observed, specifically in the Physical Infrastructure sectors. Due to the floating population in the designated tourism core of the Urban / Peri-Urban area, issues pertaining to Solid waste management and Transportation are highly observed. Thus, a need for capacity building arises for the infrastructure impacted by tourism, which may result in the upgradation of the lifestyle of the city and its permanent users. As tourism of a region has a dependency on the infrastructure, the paper here focuses on the relationship between tourism potential of a region and the infrastructural determinants of the city or region and hence to derive a structural equation supporting the relationship, further determine a coefficient and suggest the domain of in need of upgradation or retrofitting possibilities. The outcome of the paper is to suggest possible recommendations towards the formation of policies on an urban level to support the tourism potential of the region.

Keywords: urban planning, tourism planning, infrastructure, transportation, solid waste management

Procedia PDF Downloads 126
589 User-Awareness from Eye Line Tracing During Specification Writing to Improve Specification Quality

Authors: Yoshinori Wakatake

Abstract:

Many defects after the release of software packages are caused due to omissions of sufficient test items in test specifications. Poor test specifications are detected by manual review, which imposes a high human load. The prevention of omissions depends on the end-user awareness of test specification writers. If test specifications were written while envisioning the behavior of end-users, the number of omissions in test items would be greatly reduced. The paper pays attention to the point that writers who can achieve it differ from those who cannot in not only the description richness but also their gaze information. It proposes a method to estimate the degree of user-awareness of writers through the analysis of their gaze information when writing test specifications. We conduct an experiment to obtain the gaze information of a writer of the test specifications. Test specifications are automatically classified using gaze information. In this method, a Random Forest model is constructed for the classification. The classification is highly accurate. By looking at the explanatory variables which turn out to be important variables, we know behavioral features to distinguish test specifications of high quality from others. It is confirmed they are pupil diameter size and the number and the duration of blinks. The paper also investigates test specifications automatically classified with gaze information to discuss features in their writing ways in each quality level. The proposed method enables us to automatically classify test specifications. It also prevents test item omissions, because it reveals writing features that test specifications of high quality should satisfy.

Keywords: blink, eye tracking, gaze information, pupil diameter, quality improvement, specification document, user-awareness

Procedia PDF Downloads 65
588 Bench Tests of Two-Stroke Opposed Piston Aircraft Diesel Engine under Propeller Characteristics Conditions

Authors: A. Majczak, G. Baranski, K. Pietrykowski

Abstract:

Due to the growing popularity of light aircraft, it has become necessary to develop aircraft engines for this type of construction. One of engine system, designed to increase efficiency and reduce weight, is the engine with opposed pistons. In such an engine, the combustion chamber is formed by two pistons moving in one cylinder. Therefore, this type of engines run in a two-stroke cycle, so they have many advantages such as high power and torque, high efficiency, or a favorable power-to-weight ratio. Tests of one of the available aircraft engines with opposing piston system fueled with diesel oil were carried out on an engine dynamometer equipped with an eddy current brake and the necessary measuring and testing equipment. In order to get to know the basic parameters of the engine, the tests were carried out under partial load conditions for the following torque values: 40, 60, 80, 100 Nm. The rotational speed was changed from 1600 to 2500 rpm. Measurements were also taken for designated points of propeller characteristics. During the tests, the engine torque, engine power, fuel consumption, intake manifold pressure, and oil pressure were recorded. On the basis of the measurements carried out for particular loads, the power curve, hourly and specific fuel consumption curves were determined. Characteristics of charge pressure as a function of rotational speed as well as power, torque, hourly and specific fuel consumption curves for propeller characteristics were also prepared. The obtained characteristics make it possible to select the optimal points of engine operation.

Keywords: aircraft, diesel, engine testing, opposed piston

Procedia PDF Downloads 155
587 Interaction of Dietary Protein and Vitamin E Supplementation on Gastrointestinal Nematode (Gnt) Parasitism of Naturally Infected Lambs

Authors: Ayobami Adeyemo, Michael Chimonyo, Munyaradzi Marufu

Abstract:

Gastrointestinal nematode (GNT) infection significantly hinder sustainable and profitable sheep production on rangelands. While vitamin E and protein supplementation have individually proven to improve host immunity to parasitism in lambs, to our knowledge, there is no information on the interaction of dietary vitamin E and protein supplementation on lamb growth and GIN faecal egg counts in naturally infected lambs. Therefore, the current study investigated the interaction of dietary protein and vitamin E supplementation on faecal egg counts (FEC) and growth performance of lambs. Twenty four Dohne Merino lambs aged 12 months were allocated equally to each of four treatment combinations, with six lambs in each treatment group for a period of eight weeks. Treatment one lambs received dietary protein and vitamin E (PE), treatment two lambs received dietary protein and no vitamin E (PNE), treatment three received dietary vitamin E and no protein (NPE), and treatment four received no dietary protein and vitamin E supplementation (NPNE). The lambs were allowed to graze on Pennisetum clandestinum contaminated with a heavy load of nematodes. Dietary protein supplementation increased (P < 0.01) average daily gain (ADG) and body condition scores (BCS). Dietary vitamin E supplementation had no effect (P > 0.05) on ADG and BCS. There was no interaction (P > 0.05) between dietary protein and vitamin E supplementation on ADG and BCS. Combined supplementation of dietary protein and vitamin E supplementation significantly reduced (P < 0.01) faecal egg counts and larval counts, respectively. Also, dietary protein and vitamin E supplementation reduced GNT faecal egg counts over the exposure period. The current findings support the hypothesis that the interaction of dietary protein and vitamin E supplementation reduced faecal egg counts and larval counts in lambs. This necessitates future findings on the interaction of dietary protein and vitamin E supplementation on blood associated profiles.

Keywords: gastrointestinal nematodes, nematode eggs, Haemonchus, Trichostrongylus

Procedia PDF Downloads 210
586 3D Interactions in Under Water Acoustic Simulationseffect of Green Synthesized Metal Nanoparticles on Gene Expression in an In-Vitro Model of Non-alcoholic Steatohepatitis

Authors: Nendouvhada Livhuwani Portia, Nicole Sibuyi, Kwazikwakhe Gabuza, Adewale Fadaka

Abstract:

Metabolic dysfunction-associated liver disease (MASLD) is a chronic condition characterized by excessive fat accumulation in the liver, distinct from conditions caused by alcohol, viral hepatitis, or medications. MASLD is often linked with metabolic syndrome, including obesity, diabetes, hyperlipidemia, and hypertriglyceridemia. This disease can progress to metabolic dysfunction-associated steatohepatitis (MASH), marked by liver inflammation and scarring, potentially leading to cirrhosis. However, only 43-44% of patients with steatosis develop MASH, and 7-30% of those with MASH progress to cirrhosis. The exact mechanisms underlying MASLD and its progression remain unclear, and there are currently no specific therapeutic strategies for MASLD/MASH. While anti-obesity and anti-diabetic medications can reduce progression, they do not fully treat or reverse the disease. As an alternative, green-synthesized metal nanoparticles (MNPs) are emerging as potential treatments for liver diseases due to their anti-diabetic, anti-inflammatory, and anti-obesity properties with minimal side effects. MNPs like gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have been shown to improve metabolic processes by lowering blood glucose, body fat, and inflammation. The study aimed to explore the effects of green-synthesized MNPs on gene expression in an in vitro model of MASH using C3A/HepG2 liver cells. The MASH model was created by exposing these cells to free fatty acids (FFAs) followed by lipopolysaccharide (LPS) to induce inflammation. Cell viability was assessed with the Water-Soluble Tetrazolium (WST)-1 assay, and lipid accumulation was measured using the Oil Red O (ORO) assay. Additionally, mitochondrial membrane potential was assessed by the tetramethyl rhodamine, methyl ester (TMRE) assay, and inflammation was measured with an Enzyme-Linked Immunosorbent Assay (ELISA). The study synthesized AuNPs from Carpobrotus edulis fruit (CeF) and avocado seed (AvoSE) and AgNPs from Salvia africana-lutea (SAL) using optimized conditions. The MNPs were characterized by UV-Vis spectrophotometry and Dynamic Light Scattering (DLS). The nanoparticles were tested at various concentrations for their impact on the C3A/HepG2-induced MASH model. Among the MNPs tested, AvoSE-AuNPs showed the most promise. They reduced cell proliferation and intracellular lipid content more effectively than CeFE-AuNPs and SAL-AgNPs. Molecular analysis using real-time polymerase chain reaction revealed that AvoSE-AuNPs could potentially reverse MASH effects by reducing the expression of key pro-inflammatory and metabolic genes, including tumor necrosis factor-alpha (TNF-α), Fas cell surface death receptor (FAS), Peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, and Sterol regulatory element-binding protein (SREBPF)-1. Further research is needed to confirm the molecular mechanisms behind the effects of these MNPs and to identify the specific phytochemicals responsible for their synthesis and bioactivities.

Keywords: gold nanoparticles, green nanotechnology, metal nanoparticles, obesity

Procedia PDF Downloads 28
585 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 228
584 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: deep learning, artificial neural networks, energy price forecasting, turkey

Procedia PDF Downloads 294
583 Integrating Cost-Benefit Assessment and Contract Design to Support Industrial Symbiosis Deployment

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) is the realization of Industrial Ecology (I.E) principles in production systems in function. I.S consists in the use of waste materials, fatal energy, recirculated utilities and infrastructure/service sharing as resources for production. Environmental benefits can be achieved from resource conservation but economic profitability is required by the participating actors. I.S indeed involves several actors with their own objectives and resources so that each one must be satisfied by ex-ante arrangements to commit toward I.S execution (investments and transactions). Following the Resource-Based View of transactions we build a modular framework to assess global I.S profitability and to specify each actor’s contributions to costs and benefits in line with their resource endowments and performance requirements formulations. I.S projects specificities implied by the need for customization (asset specificity, non-homogeneity) induce the use of long-term contracts for transactions following Transaction costs economics arguments. Thus we propose first a taxonomy of costs and value drivers for I.S and an assignment to each actor of I.S specific risks that we identified as load profiles mismatch, quality problems and value fluctuations. Then appropriate contractual guidelines (pricing, cost sharing and warranties) that support mutual profitability are derived from the detailed identification of contributions by the cost-benefits model. This analytical framework helps identifying what points to focus on when bargaining over contracting for transactions and investments. Our methodology is applied to I.S archetypes raised from a literature survey on eco-industrial parks initiatives and practitioners interviews.

Keywords: contracts, cost-benefit analysis, industrial symbiosis, risks

Procedia PDF Downloads 340
582 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications

Authors: Farhad Salek, Shahaboddin Resalati

Abstract:

The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.

Keywords: second life battery, electric vehicles, degradation, neural network

Procedia PDF Downloads 66
581 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism

Authors: Lizhi Ma, Dan Liu

Abstract:

Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.

Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning

Procedia PDF Downloads 19
580 Influence of Counterface and Environmental Conditions on the Lubricity of Multilayer Graphene Coatings Produced on Nickel by Chemical Vapour Deposition

Authors: Iram Zahra

Abstract:

Friction and wear properties of multilayer graphene coatings (MLG) on nickel substrate were investigated at the macroscale, and different failure mechanisms working at the interface of nickel-graphene coatings were evaluated. Multilayer graphene coatings were produced on a nickel substrate using the atmospheric chemical vapour deposition (CVD) technique. Wear tests were performed on the pin-on-disk tribometer apparatus under dry air conditions, and using the saltwater solution, distilled water, and mineral oil lubricants and counterparts used in these wear tests were fabricated of stainless steel, chromium, and silicon nitride. The wear test parameters such as rotational speed, wear track diameter, temperature, relative humidity, and load were 60 rpm, 6 mm, 22˚C, 45%, and 2N, respectively. To analyse the friction and wear behaviour, coefficient of friction (COF) vs time curves were plotted, and the sliding surfaces of the samples and counterparts were examined using the optical microscope. Results indicated that graphene-coated nickel in mineral oil lubrication and dry conditions gave the minimum average value of COP (0.05) and wear track width ( ̴151 µm) against the three different types of counterparts. In contrast, uncoated nickel samples indicated a maximum wear track width ( ̴411 µm) and COF (0.5). Thorough investigation and analysis concluded that graphene-coated samples have two times lower COF and three times lower wear than the bare nickel samples. Furthermore, mechanical failures were significantly lower in the case of graphene-coated nickel. The overall findings suggested that multilayer graphene coatings have drastically decreased wear and friction on nickel substrate at the macroscale under various lubricating conditions and against different counterparts.

Keywords: friction, lubricity, multilayer graphene, sliding, wear

Procedia PDF Downloads 140
579 Assessment of Landfill Pollution Load on Hydroecosystem by Use of Heavy Metal Bioaccumulation Data in Fish

Authors: Gintarė Sauliutė, Gintaras Svecevičius

Abstract:

Landfill leachates contain a number of persistent pollutants, including heavy metals. They have the ability to spread in ecosystems and accumulate in fish which most of them are classified as top-consumers of trophic chains. Fish are freely swimming organisms; but perhaps, due to their species-specific ecological and behavioral properties, they often prefer the most suitable biotopes and therefore, did not avoid harmful substances or environments. That is why it is necessary to evaluate the persistent pollutant dispersion in hydroecosystem using fish tissue metal concentration. In hydroecosystems of hybrid type (e.g. river-pond-river) the distance from the pollution source could be a perfect indicator of such a kind of metal distribution. The studies were carried out in the Kairiai landfill neighboring hybrid-type ecosystem which is located 5 km east of the Šiauliai City. Fish tissue (gills, liver, and muscle) metal concentration measurements were performed on two types of ecologically-different fishes according to their feeding characteristics: benthophagous (Gibel carp, roach) and predatory (Northern pike, perch). A number of mathematical models (linear, non-linear, using log and other transformations) have been applied in order to identify the most satisfactorily description of the interdependence between fish tissue metal concentration and the distance from the pollution source. However, the only one log-multiple regression model revealed the pattern that the distance from the pollution source is closely and positively correlated with metal concentration in all predatory fish tissues studied (gills, liver, and muscle).

Keywords: bioaccumulation in fish, heavy metals, hydroecosystem, landfill leachate, mathematical model

Procedia PDF Downloads 288