Search results for: signal intensity
991 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature
Procedia PDF Downloads 131990 Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Uses: Sources Evaluation Perspective
Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise
Abstract:
Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly as a result of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. Though with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson correlation coefficient (PCC) and cluster analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped as endocrine disruption substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along kinetically and thermodyanamically-favoured and those derived directly from plants product through biologically mediated processes used in source signature is about the predominance PAHs are likely to be. Therefore the observed PAHs in the studied stations have trace quantities of the vast majority of the sixteen un-substituted PAHs which may ultimately inhabit the actual source signature authentication. Type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as: salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.Keywords: comparative correlation, kinetically and thermodynamically-favored PAHs, pearson correlation coefficient, cluster analysis, sources evaluation
Procedia PDF Downloads 419989 EEG Analysis of Brain Dynamics in Children with Language Disorders
Authors: Hamed Alizadeh Dashagholi, Hossein Yousefi-Banaem, Mina Naeimi
Abstract:
Current study established for EEG signal analysis in patients with language disorder. Language disorder can be defined as meaningful delay in the use or understanding of spoken or written language. The disorder can include the content or meaning of language, its form, or its use. Here we applied Z-score, power spectrum, and coherence methods to discriminate the language disorder data from healthy ones. Power spectrum of each channel in alpha, beta, gamma, delta, and theta frequency bands was measured. In addition, intra hemispheric Z-score obtained by scoring algorithm. Obtained results showed high Z-score and power spectrum in posterior regions. Therefore, we can conclude that peoples with language disorder have high brain activity in frontal region of brain in comparison with healthy peoples. Results showed that high coherence correlates with irregularities in the ERP and is often found during complex task, whereas low coherence is often found in pathological conditions. The results of the Z-score analysis of the brain dynamics showed higher Z-score peak frequency in delta, theta and beta sub bands of Language Disorder patients. In this analysis there were activity signs in both hemispheres and the left-dominant hemisphere was more active than the right.Keywords: EEG, electroencephalography, coherence methods, language disorder, power spectrum, z-score
Procedia PDF Downloads 424988 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 155987 Inversion of Gravity Data for Density Reconstruction
Authors: Arka Roy, Chandra Prakash Dubey
Abstract:
Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation
Procedia PDF Downloads 212986 The Adoption of Leagility in Healthcare Services
Authors: Ana L. Martins, Luis Orfão
Abstract:
Healthcare systems have been subject to various research efforts aiming at process improvement under a lean approach. Another perspective, agility, has also been used, though in a lower scale, in order to analyse the ability of different hospital services to adapt to demand uncertainties. Both perspectives have a common denominator, the improvement of effectiveness and efficiency of the services in a healthcare setting context. Mixing the two approached allows, on one hand, to streamline the processes, and on the other hand the required flexibility to deal with demand uncertainty in terms of both volume and variety. The present research aims to analyse the impacts of the combination of both perspectives in the effectiveness and efficiency of an hospital service. The adopted methodology is based on a case study approach applied to the process of the ambulatory surgery service of Hospital de Lamego. Data was collected from direct observations, formal interviews and informal conversations. The analyzed process was selected according to three criteria: relevance of the process to the hospital, presence of human resources, and presence of waste. The customer of the process was identified as well as his perception of value. The process was mapped using flow chart, on a process modeling perspective, as well as through the use of Value Stream Mapping (VSM) and Process Activity Mapping. The Spaghetti Diagram was also used to assess flow intensity. The use of the lean tools enabled the identification of three main types of waste: movement, resource inefficiencies and process inefficiencies. From the use of the lean tools improvement suggestions were produced. The results point out that leagility cannot be applied to the process, but the application of lean and agility in specific areas of the process would bring benefits in both efficiency and effectiveness, and contribute to value creation if improvements are introduced in hospital’s human resources and facilities management.Keywords: case study, healthcare systems, leagility, lean management
Procedia PDF Downloads 200985 Utilizing Fiber-Based Modeling to Explore the Presence of a Soft Storey in Masonry-Infilled Reinforced Concrete Structures
Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili
Abstract:
Recent seismic events have underscored the significant influence of masonry infill walls on the resilience of structures. The irregular positioning of these walls exacerbates their adverse effects, resulting in substantial material and human losses. Research and post-earthquake evaluations emphasize the necessity of considering infill walls in both the design and assessment phases. This study delves into the presence of soft stories in reinforced concrete structures with infill walls. Employing an approximate method relying on pushover analysis results, fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings shed light on the presence of soft first stories, revealing a notable 240% enhancement in resistance for weak column—strong beam-designed frames due to infill walls. Conversely, the effect is more moderate at 38% for strong column—weak beam-designed frames. Interestingly, the uniform distribution of infill walls throughout the structure's height does not influence soft-story emergence in the same seismic zone, irrespective of column-beam strength. In regions with low seismic intensity, infill walls dissipate energy, resulting in consistent seismic behavior regardless of column configuration. Despite column strength, structures with open-ground stories remain vulnerable to soft first-story emergence, underscoring the crucial role of infill walls in reinforced concrete structural design.Keywords: masonry infill walls, soft Storey, pushover analysis, fiber section, macro-modeling
Procedia PDF Downloads 67984 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface
Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke
Abstract:
Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.Keywords: concanavalin A, FRET, sensor, biomimetic membrane
Procedia PDF Downloads 307983 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices
Authors: K. Swapna
Abstract:
A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.Keywords: glasses, J-O parameters, photoluminescence, I-H model
Procedia PDF Downloads 157982 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar
Procedia PDF Downloads 163981 Numerical Investigation of Turbulent Inflow Strategy in Wind Energy Applications
Authors: Arijit Saha, Hassan Kassem, Leo Hoening
Abstract:
Ongoing climate change demands the increasing use of renewable energies. Wind energy plays an important role in this context since it can be applied almost everywhere in the world. To reduce the costs of wind turbines and to make them more competitive, simulations are very important since experiments are often too costly if at all possible. The wind turbine on a vast open area experiences the turbulence generated due to the atmosphere, so it was of utmost interest from this research point of view to generate the turbulence through various Inlet Turbulence Generation methods like Precursor cyclic and Kaimal Spectrum Exponential Coherence (KSEC) in the computational simulation domain. To be able to validate computational fluid dynamic simulations of wind turbines with the experimental data, it is crucial to set up the conditions in the simulation as close to reality as possible. This present work, therefore, aims at investigating the turbulent inflow strategy and boundary conditions of KSEC and providing a comparative analysis alongside the Precursor cyclic method for Large Eddy Simulation within the context of wind energy applications. For the generation of the turbulent box through KSEC method, firstly, the constrained data were collected from an auxiliary channel flow, and later processing was performed with the open-source tool PyconTurb, whereas for the precursor cyclic, only the data from the auxiliary channel were sufficient. The functionality of these methods was studied through various statistical properties such as variance, turbulent intensity, etc with respect to different Bulk Reynolds numbers, and a conclusion was drawn on the feasibility of KSEC method. Furthermore, it was found necessary to verify the obtained data with DNS case setup for its applicability to use it as a real field CFD simulation.Keywords: Inlet Turbulence Generation, CFD, precursor cyclic, KSEC, large Eddy simulation, PyconTurb
Procedia PDF Downloads 96980 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional
Procedia PDF Downloads 229979 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 61978 Development of Automatic Farm Manure Spreading Machine for Orchards
Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce
Abstract:
Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.Keywords: automatic control system, conveyor belt application, orchard, solid farm manure
Procedia PDF Downloads 285977 Mitigation Strategies in the Urban Context of Sydney, Australia
Authors: Hamed Reza Heshmat Mohajer, Lan Ding, Mattheos Santamouris
Abstract:
One of the worst environmental dangers for people who live in cities is the Urban Heat Island (UHI) impact which is anticipated to become stronger in the coming years as a result of climate change. Accordingly, the key aim of this paper is to study the interaction between the urban configuration and mitigation strategies including increasing albedo of the urban environment (reflective material), implementation of Urban Green Infrastructure (UGI) and/or a combination thereof. To analyse the microclimate models of different urban categories in the metropolis of Sydney, this study will assess meteorological parameters using a 3D model simulation tool of computational fluid dynamics (CFD) named ENVI-met. In this study, four main parameters are taken into consideration while assessing the effectiveness of UHI mitigation strategies: ambient air temperature, wind speed/direction, and outdoor thermal comfort. Layouts with present condition simulation studies from the basic model (scenario one) are taken as the benchmark. A base model is used to calculate the relative percentage variations between each scenario. The findings showed that maximum cooling potential across different urban layouts can be decreased by 2.15 °C degrees by combining high-albedo material with flora; besides layouts with open arrangements(OT1) present a highly remarkable improvement in ambient air temperature and outdoor thermal comfort when mitigation technologies applied compare to compact counterparts. Besides all layouts present a higher intensity on the maximum ambient air temperature reduction rather than the minimum ambient air temperature. On the other hand, Scenarios associated with an increase in greeneries are anticipated to have a slight cooling effect, especially on high-rise layouts.Keywords: sustainable urban development, urban green infrastructure, high-albedo materials, heat island effect
Procedia PDF Downloads 94976 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines
Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto
Abstract:
Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.Keywords: aerial image, landcover, LiDAR, soil fertility degradation
Procedia PDF Downloads 252975 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 71974 Effects of Food Habits on Road Accidents Due to Micro-Sleepiness and Analysis of Attitudes to Develop a Food Product as a Preventive Measure
Authors: Rumesh Liyanage, S. B. Nawaratne, K. K. D. S. Ranaweera, Indira Wickramasinghe, K. G. S. C. Katukurunda
Abstract:
Study it was attempted to identify an effect of food habits and publics’ attitudes on micro-sleepiness and preventive measures to develop a food product to combat. Statistical data pertaining to road accidents were collected from, Sri Lanka Police Traffic Division and a pre-tested questionnaire was used to collect data from 250 respondents. They were selected representing drivers (especially highway drivers), private and public sector workers (shift based) and cramming students (university and school). Questionnaires were directed to fill independently and personally and collected data were analyzed statistically. Results revealed that 76.84, 96.39 and 80.93% out of total respondents consumed rice for all three meals which lead to ingesting higher glycemic meals. Taking two hyper glycemic meals before 14.00h was identified as a cause of micro-sleepiness within these respondents. Peak level of road accidents were observed at 14.00 - 20.00h (38.2%)and intensity of micro-sleepiness falls at the same time period (37.36%) while 14.00 to 16.00h was the peak time, 16.00 to 18.00h was the least; again 18.00 to 20.00h it reappears slightly. Even though respondents of the survey expressed that peak hours of micro- sleepiness is 14.00-16.00h, according to police reports, peak hours fall in between 18.00-20.00h. Out of the interviewees, 69.27% strongly wanted to avoid micro-sleepiness and intend to spend LKR 10-20 on a commercial product to combat micro sleepiness. As age-old practices to suppress micro-sleepiness are time taken, modern day respondents (51.64%) like to have a quick solution through a drink. Therefore, food habits of morning and noon may cause for micro- sleepiness while dinner may cause for both, natural and micro-sleepiness due to the heavy glycemic load of food. According to the study micro-sleepiness, can be categorized into three zones such as low-risk zone (08.00-10.00h and 18.00-20.00h), manageable zone (10.00-12.00h), and high- risk zone (14.00-16.00h).Keywords: food habits, glycemic load, micro-sleepiness, road accidents
Procedia PDF Downloads 543973 Experimental Research on the Effect of Activating Temperature on Combustion and Nox Emission Characteristics of Pulverized Coal in a Novel Purification-combustion Reaction System
Authors: Ziqu Ouyang, Kun Su
Abstract:
A novel efficient and clean coal combustion system, namely the purification-combustion system, was designed by the Institute of Engineering Thermal Physics, Chinese Academy of Science, in 2022. Among them, the purification system was composed of a mesothermal activating unit and a hyperthermal reductive unit, and the combustion system was composed of a mild combustion system. In the purification-combustion system, the deep in-situ removal of coal-N could be realized by matching the temperature and atmosphere in each unit, and thus the NOx emission was controlled effectively. To acquire the methods for realizing the efficient and clean coal combustion, this study investigated the effect of the activating temperature (including 822 °C, 858 °C, 933 °C, 991 °C), which was the key factor affecting the system operation, on combustion and NOx emission characteristics of pulverized coal in a 30 kW purification-combustion test bench. The research result turned out that the activating temperature affected the combustion and NOx emission characteristics significantly. As the activating temperature increased, the temperature increased first and then decreased in the mild combustion unit, and the temperature change in the lower part was much higher than that in the upper part. Moreover, the main combustion region was always located at the top of the unit under different activating temperatures, and the combustion intensity along the unit was weakened gradually. Increasing the activating temperature excessively could destroy the reductive atmosphere early in the upper part of the unit, which wasn’t conducive to the full removal of coal-N in the reductive coal char. As the activating temperature increased, the combustion efficiency increased first and then decreased, while the NOx emission decreased first and then increased, illustrating that increasing the activating temperature properly promoted the efficient and clean coal combustion, but there was a limit to its growth. In this study, the optimal activating temperature was 858 °C. Hence, this research illustrated that increasing the activating temperature properly could realize the mutual matching of improving the combustion efficiency and reducing the NOx emission, and thus guaranteed the clean and efficient coal combustion well.Keywords: activating temperature, combustion characteristics, nox emission, purification-combustion system
Procedia PDF Downloads 89972 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 58971 Changes in When and Where People Are Spending Time in Response to COVID-19
Authors: Nicholas Reinicke, Brennan Borlaug, Matthew Moniot
Abstract:
The COVID-19 pandemic has resulted in a significant change in driving behavior as people respond to the new environment. However, existing methods for analyzing driver behavior, such as travel surveys and travel demand models, are not suited for incorporating abrupt environmental disruptions. To address this, we analyze a set of high-resolution trip data and introduce two new metrics for quantifying driving behavioral shifts as a function of time, allowing us to compare the time periods before and after the pandemic began. We apply these metrics to the Denver, Colorado metropolitan statistical area (MSA) to demonstrate the utility of the metrics. Then, we present a case study for comparing two distinct MSAs, Louisville, Kentucky, and Des Moines, Iowa, which exhibit significant differences in the makeup of their labor markets. The results indicate that although the regions of study exhibit certain unique driving behavioral shifts, emerging trends can be seen when comparing between seemingly distinct regions. For instance, drivers in all three MSAs are generally shown to have spent more time at residential locations and less time in workplaces in the time period after the pandemic started. In addition, workplaces that may be incompatible with remote working, such as hospitals and certain retail locations, generally retained much of their pre-pandemic travel activity.Keywords: COVID-19, driver behavior, GPS data, signal analysis, telework
Procedia PDF Downloads 111970 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect
Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan
Abstract:
Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearingKeywords: bearing, dipole, noise, sound
Procedia PDF Downloads 294969 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children
Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman
Abstract:
Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.Keywords: Automatic Speech Recognition System, children speech, adaptation, Malay
Procedia PDF Downloads 397968 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin
Abstract:
In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction
Procedia PDF Downloads 331967 Leisure Time Physical Activity during Pregnancy and the Associated Factors Based on Health Belief Model: A Cross Sectional Study
Authors: Xin Chen, Xiao Yang, Rongrong Han, Lu Chen, Lingling Gao
Abstract:
Background: Leisure time physical activity (LTPA) benefits both pregnant women and their fetuses. The guidelines recommended that pregnant women should do at least 150 minutes of moderate-intensity aerobic physical activity throughout the week. The aim of this study was to investigate the rate of LTPA participation among Chinese pregnant women and to identify its predictors based on the health belief model. Methods: A cross-sectional study was conducted from June 2019 to September 2019 in Changchun, China. A total of 225 pregnant women aged 18 years or older with no severe physical or mental disease were recruited in the obstetric clinic. Self-administered questionnaires were used to collect data. LTPA was assessed by a pregnant physical activity questionnaire (PPAQ). A revised pregnancy physical activity health belief scale and social-demographic and perinatal characteristics factors were collected and used to predict LTPA participation. Data were analyzed using descriptive statistics and multivariate logistic regression. Results: The participants had a high level of perceived susceptibility, perceived severity, perceived benefits, and action clues, with mean item scores above 3.5. The predictors of LTPA in Chinese pregnant women were pre-pregnancy exercise habits [OR 3.236 (95% CI:1.632, 6.416)], perceived susceptibility score [OR 2.083 (95% CI:1.002, 4.331)], and perceived barriers score [OR 3.113 (95%CI:1.462, 6.626)]. Conclusions: The results of this study will lead to better identification of pregnant women who may not participate in LTPA. Healthcare professionals should be cognizant of issues that may affect LTPA participation among pregnant women, including pre-pregnancy exercise habits, perceived susceptibility, and perceived barriers.Keywords: pregnancy, health belief model., leisure time physical activity, factors
Procedia PDF Downloads 79966 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer
Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang
Abstract:
Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase
Procedia PDF Downloads 412965 Roughness Discrimination Using Bioinspired Tactile Sensors
Authors: Zhengkun Yi
Abstract:
Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination
Procedia PDF Downloads 312964 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds
Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain
Abstract:
World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.Keywords: buffalo, FSHR gene, bioinformatics, production
Procedia PDF Downloads 532963 Cybersecurity Engineering BS Degree Curricula Design Framework and Assessment
Authors: Atma Sahu
Abstract:
After 9/11, there will only be cyberwars. The cyberwars increase in intensity the country's cybersecurity workforce's hiring and retention issues. Currently, many organizations have unfilled cybersecurity positions, and to a lesser degree, their cybersecurity teams are understaffed. Therefore, there is a critical need to develop a new program to help meet the market demand for cybersecurity engineers (CYSE) and personnel. Coppin State University in the United States was responsible for developing a cybersecurity engineering BS degree program. The CYSE curriculum design methodology consisted of three parts. First, the ACM Cross-Cutting Concepts standard's pervasive framework helped curriculum designers and students explore connections among the core courses' knowledge areas and reinforce the security mindset conveyed in them. Second, the core course context was created to assist students in resolving security issues in authentic cyber situations involving cyber security systems in various aspects of industrial work while adhering to the NIST standards framework. The last part of the CYSE curriculum design aspect was the institutional student learning outcomes (SLOs) integrated and aligned in content courses, representing more detailed outcomes and emphasizing what learners can do over merely what they know. The CYSE program's core courses express competencies and learning outcomes using action verbs from Bloom's Revised Taxonomy. This aspect of the CYSE BS degree program's design is based on these three pillars: the ACM, NIST, and SLO standards, which all CYSE curriculum designers should know. This unique CYSE curriculum design methodology will address how students and the CYSE program will be assessed and evaluated. It is also critical that educators, program managers, and students understand the importance of staying current in this fast-paced CYSE field.Keywords: cyber security, cybersecurity engineering, systems engineering, NIST standards, physical systems
Procedia PDF Downloads 95962 Interorganizational Relationships in the Brazilian Milk Production Chain
Authors: Marcelo T. Okano, Oduvaldo Vendrametto, Osmildo S. Santos, Marcelo E. Fernandes, Heide Landi
Abstract:
The literature on the interorganizational relationship between companies and organizations has increased in recent years, but there are still doubts about the various settings. The interorganizational networks are important in economic life, the fact facilitate the complex interdependence between transactional and cooperative organizations. A need identified in the literature is the lack of indicators to measure and identify the types of existing networks. The objective of this research is to examine the interorganizational relationships of two milk chains through indicators proposed by the theories of the four authors, characterizing them as network or not and what the benefits obtained by the chain organization. To achieve the objective of this work was carried out a survey of milk producers in two regions of the state of São Paulo. To collect the information needed for the analysis, exploratory research, qualitative nature was used. The research instrument of this work consists of a roadmap of semistructured interviews with open questions. Some of the answers were directed by the interviewer in the form of performance notes aimed at detecting the degree of importance, according to the perception of intensity to that regard. The results showed that interorganizational relationships are small and largely limited to the sale of milk or dairy cooperatives. These relationships relate only to trade relations between the owner and purchaser of milk. But when the producers are organized in associations or networks, interorganizational relationships and increase benefits for all participants in the network. The various visits and interviews in several dairy farms in the regions of São Pau-lo (indicated that the inter-relationships are small and largely limited to the sale of milk to cooperatives or dairy. These relationships refer only to trade relations between the owner and the purchaser of milk. But when the producers are organized in associations or networks, interorganizational relationships increase and bring benefits to all participants in the network.Keywords: interorganizational networks, dairy chain, interorganizational system, São Pau-lo
Procedia PDF Downloads 580