Search results for: sensory processing patterns
4507 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 3084506 An Overview of the SIAFIM Connected Resources
Authors: Tiberiu Boros, Angela Ionita, Maria Visan
Abstract:
Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS
Procedia PDF Downloads 5814505 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa
Authors: Yohana Fessehazion
Abstract:
Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth
Procedia PDF Downloads 2234504 Preservation of High Quality Fruit Products: Microwave Freeze Drying as a Substitute for the Conventional Freeze Drying Process
Authors: Sabine Ambros, Ulrich Kulozik
Abstract:
Berries such as blue- and raspberries belong to the most valuable fruits. To preserve the characteristic flavor and the high contents of vitamins and anthocyanins, the very sensitive berries are usually dried by lyophilization. As this method is very time- and energy-consuming, the dried fruit is extremely expensive. However, healthy snack foods are growing in popularity. Especially dried fruit free of any additives or additional sugar are more and more asked for. To make these products affordable, the fruits have to be dried by a method that is more energy-efficient than freeze drying but reveals the same high product quality. The additional insertion of microwaves to a freeze drying process was examined in this work to overcome the inconveniences of freeze drying. As microwaves penetrate the product volumetrically, sublimation takes place simultaneously all over the product and leads to a many times shorter process duration. A range of microwave and pressure settings was applied to find the optimum drying condition. The influence of the process parameters microwave power and chamber pressure on drying kinetics, product temperature and product quality was investigated to find the best condition for an energy-efficient process with high product quality. The product quality was evaluated by rehydration capacitiy, crispiness, shrinkage, color, vitamin C content and antioxidative capacity. The conclusion could be drawn that microwave freeze dried berries were almost equal to freeze dried fruit in all measured quality parameters or even could overcome it. Additionally, sensory evaluations could confirm the analytical studies. Drying time could be reduced by more than 75% at much lower energy consumption rates. Thus, an energy-efficient and cost saving method compared to the conventional freeze drying technique for the gentle production of tasty fruit or vegetable snacks has been found. This technique will make dried high-quality snacks available for many of consumers.Keywords: blueberries, freeze drying, microwave freeze drying, process parameters, product quality
Procedia PDF Downloads 2394503 Food for Thought: Preparing the Brain to Eat New Foods through “Messy” Play
Authors: L. Bernabeo, T. Loftus
Abstract:
Many children often experience phases of picky eating, food aversions and/or avoidance. For families with children who have special needs, these experiences are often exacerbated, which can lead to feelings that negatively impact a caregiver’s relationship with their child. Within the scope of speech language pathology practice, knowledge of both emotional and feeding development is key. This paper will explore the significance of “messy play” within typical feeding development, and the challenges that may arise if a child does not have the opportunity to engage in this type of exploratory play. This paper will consider several contributing factors that can result in a “picky eater.” Further, research has shown that individuals with special needs, including autism, possess a neurological makeup that differs from that of a typical individual. Because autism is a disorder of relating and communicating due to differences in the limbic system, an individual with special needs may respond to a typical feeding experience as if it is a traumatic event. As a result, broadening one’s dietary repertoire may seem to be an insurmountable challenge. This paper suggests that introducing new foods through exploratory play can help broaden and strengthen diets, as well as improve the feeding experience, of individuals with autism. The DIRFloortimeⓇ methodology stresses the importance of following a child's lead. Within this developmental model, there is a special focus on a person’s individual differences, including the unique way they process the world around them, as well as the significance of therapy occurring within the context of a strong and motivating relationship. Using this child-centered approach, we can support our children in expanding their diets, while simultaneously building upon their cognitive and creative development through playful and respectful interactions that include exposure to foods that differ in color, texture, and smell. Further, this paper explores the importance of exploration, self-feeding and messy play on brain development, both in the context of typically developing individuals and those with disordered development.Keywords: development, feeding, floortime, sensory
Procedia PDF Downloads 1164502 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.Keywords: high value crop, LiDAR, OBIA, precision agriculture
Procedia PDF Downloads 4024501 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 1774500 The Design and Development of Online Infertility Prevention Education in the Frame of Mayer's Multimedia Learning Theory
Authors: B. Baran, S. N. Kaptanoglu, M. Ocal, Y. Kagnici, E. Esen, E. Siyez, D. M. Siyez
Abstract:
Infertility is the fact that couples cannot have children despite 1 year of unprotected sexual life. Infertility can be considered as an important problem affecting not only sexual life but also social and psychological conditions of couples. Learning about information about preventable factors related to infertility during university years plays an important role in preventing a possible infertility case in older ages. The possibility to facilitate access to information with the internet has provided the opportunity to reach a broad audience in the diverse learning environments and educational environment. Moreover, the internet has become a basic resource for the 21st-century learners. Providing information about infertility over the internet will enable more people to reach in a short time. When studies conducted abroad about infertility are examined, interactive websites and online education programs come to the fore. In Turkey, while there is no comprehensive online education program for university students, it seems that existing studies are aimed to make more advertisements for doctors or hospitals. In this study, it was aimed to design and develop online infertility prevention education for university students. Mayer’s Multimedia Learning Theory made up the framework for the online learning environment in this study. The results of the needs analysis collected from the university students in Turkey who were selected with sampling to represent the audience for online learning contributed to the design phase. In this study, an infertility prevention online education environment designed as a 4-week education was developed by explaining the theoretical basis and needs analysis results. As a result; in the development of the online environment, different kind of visual aids that will increase teaching were used in the environment of online education according to Mayer’s principles of extraneous processing (coherence, signaling, spatial contiguity, temporal contiguity, redundancy, expectation principles), essential processing (segmenting, pre-training, modality principles) and generative processing (multimedia, personalization, voice principles). For example, the important points in reproductive systems’ expression were emphasized by visuals in order to draw learners’ attention, and the presentation of the information was also supported by the human voice. In addition, because of the limited knowledge of university students in the subject, the issue of female reproductive and male reproductive systems was taught before preventable factors related to infertility. Furthermore, 3D video and augmented reality application were developed in order to embody female and male reproductive systems. In conclusion, this study aims to develop an interactive Online Infertility Prevention Education in which university students can easily access reliable information and evaluate their own level of knowledge about the subject. It is believed that the study will also guide the researchers who want to develop online education in this area as it contains design-stage decisions of interactive online infertility prevention education for university students.Keywords: infertility, multimedia learning theory, online education, reproductive health
Procedia PDF Downloads 1704499 Analyzing Claude Debussy’s Piano Preludes by Focusing on His Recordings
Authors: Parham Bakhtiari
Abstract:
Between 1910 and 1912, Claude Debussy recorded twelve of his solo piano pieces. Although Debussy frequently provided advice to his students on performing while they followed the written notes when performing, his personal recordings are characterized by creative liberties and unique freedom interpretations. Debussy's use of numerous interpretive gestures in these recordings is fascinating and corresponds with the techniques utilized by French Baroque keyboard performers. This paper will situate Debussy's presentation in the Baroque musical approach. Initially, we will discuss the recording by analyzing Welte-Mignon's used technology to guarantee the reliability of these recordings. Then, we will find commonalities in the intricate performances of harpsichord musicians who played in the 1600s and 1700s and recordings of Debussy. Finally, by drawing comparisons, we will review the patterns by contrasting Debussy's execution with recordings of the same pieces from the latter half of the 20th century as striving for improved presentations while limiting artistic freedom.Keywords: music, Debussy, piano, performance, prelude
Procedia PDF Downloads 464498 Foodborne Outbreak Calendar: Application of Time Series Analysis
Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova
Abstract:
The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality
Procedia PDF Downloads 1284497 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 1154496 Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure
Authors: Tokuei Sako, Paul-Antoine Hervieux
Abstract:
The energy-level structure of a pair of electron and positron confined in a quasi-one-dimensional nano-scale potential well has been investigated focusing on its trend in the small limit of confinement strength ω, namely, the Wigner molecular regime. An anisotropic Gaussian-type basis functions supplemented by high angular momentum functions as large as l = 19 has been used to obtain reliable full configuration interaction (FCI) wave functions. The resultant energy spectrum shows a band structure characterized by ω for the large ω regime whereas for the small ω regime it shows an energy-level pattern dominated by excitation into the in-phase motion of the two particles. The observed trend has been rationalized on the basis of the nodal patterns of the FCI wave functions.Keywords: confined systems, positron, wave function, Wigner molecule, quantum dots
Procedia PDF Downloads 3874495 Emotion Recognition in Video and Images in the Wild
Authors: Faizan Tariq, Moayid Ali Zaidi
Abstract:
Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.Keywords: face recognition, emotion recognition, deep learning, CNN
Procedia PDF Downloads 1874494 Types of Communication Strategies in Jainism: A Study of Jain Mendicants, Educators and Lay Persons
Authors: Bhumi Shah
Abstract:
The aim of the study is to create understanding of communication strategies followed by Jain mendicants, educators, and lay persons. Second objective of the study is to see ancient means of communication have reformed in this digital generation. For these purposes of the study, research was carried out among Jain lay persons, educators and mendicants. To understand how traditional methods of communication affect the understanding of Jain religion. The paper attempts further elaborate and analyse various degrees of involvement and expectations of Jain Lay persons and mendicants in the process of religious discourse. In doing so the paper would provide an in- depth debate and discussion about communication patterns and the actual impact to the original meaning of the religion. The study was carried out in the city of Ahmedabad India, where Jains are concentrated in urban settings. In depth interviews were carried out as to understand different communication strategies followed by them.Keywords: customs, ethics, Jainism, Jain mendicants, religious communication, traditions, rituals
Procedia PDF Downloads 1274493 Digital Revolution a Veritable Infrastructure for Technological Development
Authors: Osakwe Jude Odiakaosa
Abstract:
Today’s digital society is characterized by e-education or e-learning, e-commerce, and so on. All these have been propelled by digital revolution. Digital technology such as computer technology, Global Positioning System (GPS) and Geographic Information System (GIS) has been having a tremendous impact on the field of technology. This development has positively affected the scope, methods, speed of data acquisition, data management and the rate of delivery of the results (map and other map products) of data processing. This paper tries to address the impact of revolution brought by digital technology.Keywords: digital revolution, internet, technology, data management
Procedia PDF Downloads 4494492 Distributive School Leadership in Croatian Primary Schools
Authors: Iva Buchberger, Vesna Kovač
Abstract:
Global education policy trends and recommendations underline the importance of (distributive) school leadership as a school effectiveness key factor. In this context, the broader aim of this research (supported by the Croatian Science Foundation) is to identify school leadership characteristics in Croatian schools and to examine the correlation between school leadership and school effectiveness. The aim of the proposed conference paper is to focus on the school leadership characteristics which are additionally explained with school leadership facilitators that contribute to (distributive) school leadership development. The aforementioned school leadership characteristics include the following dimensions: (a) participation in the process of making different types of decisions, (b) influence in the decision making process, (c) social interactions between different stakeholders in the decision making process in schools. Further, the school leadership facilitators are categorized as follows: (a) principal’s activities (such as providing support to different stakeholders and developing mutual trust among them), (b) stakeholders’ characteristics (such as developed stakeholders’ interest and competence to participate in decision-making process), (c) organizational and material resources (such as school material conditions, the necessary information and time as resources for making decisions). The data were collected by a constructed and validated questionnaire for examining the school leadership characteristics and facilitators from teachers’ perspective. The main population in this study consists of all primary schools in Croatia while the sample is comprised of 100 primary schools, selected by random sampling. Furthermore, the sample of teachers was selected by an additional procedure taking into consideration the independent variables of sex, work experience, etc. Data processing was performed by standard statistical methods of descriptive and inferential statistics. Statistical program IBM SPSS 20.0 was used for data processing. The results of this study show that there is a (positive) correlation between school leadership characteristics and school leadership facilitators. Specifically, it is noteworthy to mention that all the dimensions of school leadership characteristics are in positive correlation with the categories of school leadership facilitators. These results are indicative for the education policy creators who should ensure positive and supportive environment for the school leadership development including the development of school leadership characteristics and school leadership facilitators.Keywords: distributive school leadership, school effectiveness , school leadership characteristics, school leadership facilitators
Procedia PDF Downloads 2494491 MicroRNA Expression Distinguishes Neutrophil Subtypes
Authors: R. I. You, C. L. Ho, M. S. Dai, H. M. Hung, S. F. Yen, C. S. Chen, T. Y. Chao
Abstract:
Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation.Keywords: tumor-associated neutrophil, miRNAs, neutrophil, ROS
Procedia PDF Downloads 4704490 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 724489 Effects of Partial Sleep Deprivation on Prefrontal Cognitive Functions in Adolescents
Authors: Nurcihan Kiris
Abstract:
Restricted sleep is common in young adults and adolescents. The results of a few objective studies of sleep deprivation on cognitive performance were not clarified. In particular, the effect of sleep deprivation on the cognitive functions associated with frontal lobe such as attention, executive functions, working memory is not well known. The aim of this study is to investigate the effect of partial sleep deprivation experimentally in adolescents on the cognitive tasks of frontal lobe including working memory, strategic thinking, simple attention, continuous attention, executive functions, and cognitive flexibility. Subjects of the study were recruited from voluntary students of Cukurova University. Eighteen adolescents underwent four consecutive nights of monitored sleep restriction (6–6.5 hr/night) and four nights of sleep extension (10–10.5 hr/night), in counterbalanced order, and separated by a washout period. Following each sleep period, cognitive performance was assessed, at a fixed morning time, using a computerized neuropsychological battery based on frontal lobe functions task, a timed test providing both accuracy and reaction time outcome measures. Only the spatial working memory performance of cognitive tasks was found to be statistically lower in a restricted sleep condition than the extended sleep condition. On the other hand, there was no significant difference in the performance of cognitive tasks evaluating simple attention, constant attention, executive functions, and cognitive flexibility. It is thought that especially the spatial working memory and strategic thinking skills of adolescents may be susceptible to sleep deprivation. On the other hand, adolescents are predicted to be optimally successful in ideal sleep conditions, especially in the circumstances requiring for the short term storage of visual information, processing of stored information, and strategic thinking. The findings of this study may also be associated with possible negative functional effects on the processing of academic social and emotional inputs in adolescents for partial sleep deprivation. Acknowledgment: This research was supported by Cukurova University Scientific Research Projects Unit.Keywords: attention, cognitive functions, sleep deprivation, working memory
Procedia PDF Downloads 1564488 Surveyed Emotional Responses to Musical Chord Progressions Imbued with Binaural Pulsations
Authors: Jachin Pousson, Valdis Bernhofs
Abstract:
Applications of the binaural sound experience are wide-ranged. This paper focuses on the interaction between binaural tones and human emotion with an aim to apply the resulting knowledge artistically. For the purpose of this study, binaural music is defined as musical arrangements of sound which are made of combinations of binaural difference tones. Here, the term ‘binaural difference tone’ refers to the pulsating tone heard within the brain which results from listening to slightly differing audio frequencies or pure pitches in each ear. The frequency or tempo of the pulsations is the sum of the precise difference between the frequencies two tones and is measured in beats per second. Polyrhythmic pulsations that can be heard within combinations of these differences tones have shown to be able to entrain or tune brainwave patterns to frequencies which have been linked to mental states which can be characterized by different levels of attention and mood.Keywords: binaural auditory pulsations, brainwave entrainment, emotion, music composition
Procedia PDF Downloads 1754487 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric
Authors: N. Najafi, Laleh Maleknia , M. E. Olya
Abstract:
An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings
Procedia PDF Downloads 4224486 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration
Authors: Danny Barash
Abstract:
Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods
Procedia PDF Downloads 2344485 Yacht DB Construction Based on Five Essentials of Sailing
Authors: Jae-Neung Lee, Myung-Won Lee, Jung-Su Han, Keun-Chang Kwak
Abstract:
The paper established DB on the basis of five sailing essentials in the real yachting environment. It obtained the yacht condition (tilt, speed and course), surrounding circumstances (wind direction and speed) and user motion. Gopro camera for image processing was used to recognize the user motion and tilt sensor was employed to see the yacht balance. In addition, GPS for course, wind speed and direction sensor and marked suit were employed.Keywords: DB consturuction, yacht, five essentials of sailing, marker, Gps
Procedia PDF Downloads 4624484 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 664483 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 4214482 Changing Emphases in Mental Health Research Methodology: Opportunities for Occupational Therapy
Authors: Jeffrey Chase
Abstract:
Historically the profession of Occupational Therapy was closely tied to the treatment of those suffering from mental illness; more recently, and especially in the U.S., the percentage of OTs identifying as working in the mental health area has declined significantly despite the estimate that by 2020 behavioral health disorders will surpass physical illnesses as the major cause of disability worldwide. In the U.S. less than 10% of OTs identify themselves as working with the mentally ill and/or practicing in mental health settings. Such a decline has implications for both those suffering from mental illness and the profession of Occupational Therapy. One reason cited for the decline of OT in mental health has been the limited research in the discipline addressing mental health practice. Despite significant advances in technology and growth in the field of neuroscience, major institutions and funding sources such as the National Institute of Mental Health (NIMH) have noted that research into the etiology and treatment of mental illness have met with limited success over the past 25 years. One major reason posited by NIMH is that research has been limited by how we classify individuals, that being mostly on what is observable. A new classification system being developed by NIMH, the Research Domain Criteria (RDoc), has the goal to look beyond just descriptors of disorders for common neural, genetic, and physiological characteristics that cut across multiple supposedly separate disorders. The hope is that by classifying individuals along RDoC measures that both reliability and validity will improve resulting in greater advances in the field. As a result of this change NIH and NIMH will prioritize research funding to those projects using the RDoC model. Multiple disciplines across many different setting will be required for RDoC or similar classification systems to be developed. During this shift in research methodology OT has an opportunity to reassert itself into the research and treatment of mental illness, both in developing new ways to more validly classify individuals, and to document the legitimacy of previously ill-defined and validated disorders such as sensory integration.Keywords: global mental health and neuroscience, research opportunities for ot, greater integration of ot in mental health research, research and funding opportunities, research domain criteria (rdoc)
Procedia PDF Downloads 2754481 Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis
Authors: Jian Xu, Xiaochun Yun, Yongzheng Zhang, Yafei Sang, Zhenyu Cheng
Abstract:
Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces.Keywords: attribution trace, probabilistic relevance, network attack, attacker identification
Procedia PDF Downloads 3664480 The Research of 'Rope Coiling' Effect in Near-Field Electrospinning
Authors: Feiyu Fang, Han Wang, Xin Chen, Jun Zeng, Feng Liang, Peixuan Wu
Abstract:
The 'rope coiling' effect is a normal instability phenomenon widespread exists in viscous fluid, elastic rods and polymeric fibers owing to compressive stress when they fall into a moving belt. Near-field electro-spinning is the modified electro-spinning technique has the ability to direct write micro fibers. In this research, we study the “rope coiling” effect in near-field electro-spinning. By changing the distance between nozzle and collector or the speed ratio between the charge jet speed and the platform moving speed, we obtain a pile of different models coils including the meandering, alternating and coiling patterns. Therefore, this instability can be used to direct write micro structured fibers with a one-step process.Keywords: rope coiling effects, near-field electrospinning, direct write, micro structure
Procedia PDF Downloads 3544479 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links
Authors: Ahmed Bakry, Moustafa Ahmed
Abstract:
We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.Keywords: bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser
Procedia PDF Downloads 6414478 Diversity of Rhopalocera in Different Vegetation Types of PC Hills, Philippines
Authors: Sean E. Gregory P. Igano, Ranz Brendan D. Gabor, Baron Arthur M. Cabalona, Numeriano Amer E. Gutierrez
Abstract:
Distribution patterns and abundance of butterflies respond in the long term to variations in habitat quality. Studying butterfly populations would give evidence on how vegetation types influence their diversity. In this research, the Rhopalocera diversity of PC Hills was assessed to provide information on diversity trends in varying vegetation types. PC Hills, located in Palo, Leyte, Philippines, is a relatively undisturbed area having forests and rivers. Despite being situated nearby inhabited villages; the area is observed to have a possible rich butterfly population. To assess the Rhopalocera species richness and diversity, transect sampling technique was applied to monitor and document butterflies. Transects were placed in locations that can be mapped, described and relocated easily. Three transects measuring three hundred meters each with a 5-meter diameter were established based on the different vegetation types present. The three main vegetation types identified were the agroecosystem (transect 1), dipterocarp forest (transect 2), and riparian (transect 3). Sample collections were done only from 9:00 A.M to 3:00 P.M. under warm and bright weather, with no more than moderate winds and when it was not raining. When weather conditions did not permit collection, it was moved to another day. A GPS receiver was used to record the location of the selected sample sites and the coordinates of where each sample was collected. Morphological analysis was done for the first phase of the study to identify the voucher specimen to the lowest taxonomic level possible using books about butterfly identification guides and species lists as references. For the second phase, DNA barcoding will be used to further identify the voucher specimen into the species taxonomic level. After eight (8) sampling sessions, seven hundred forty-two (742) individuals were seen, and twenty-two (22) Rhopalocera genera were identified through morphological identification. Nymphalidae family of genus Ypthima and the Pieridae family of genera Eurema and Leptosia were the most dominant species observed. Twenty (20) of the thirty-one (31) voucher specimen were already identified to their species taxonomic level using DNA Barcoding. Shannon-Weiner index showed that the highest diversity level was observed in the third transect (H’ = 2.947), followed by the second transect (H’ = 2.6317) and the lowest being in the first transect (H’ = 1.767). This indicates that butterflies are likely to inhabit dipterocarp and riparian vegetation types than agroecosystem, which influences their species composition and diversity. Moreover, the appearance of a river in the riparian vegetation supported its diversity value since butterflies have the tendency to fly into areas near rivers. Species identification of other voucher specimen will be done in order to compute the overall species richness in PC Hills. Further butterfly sampling sessions of PC Hills is recommended for a more reliable diversity trend and to discover more butterfly species. Expanding the research by assessing the Rhopalocera diversity in other locations should be considered along with studying factors that affect butterfly species composition other than vegetation types.Keywords: distribution patterns, DNA barcoding, morphological analysis, Rhopalocera
Procedia PDF Downloads 154