Search results for: wave function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6042

Search results for: wave function

6042 Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach

Authors: F. U. Rahman, R. Q. Zhang

Abstract:

This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future.

Keywords: Green’s function, hydrogen atom, Lippmann Schwinger equation, radial wave

Procedia PDF Downloads 355
6041 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: characteristic equation, interface waves, potential function, Stoneley waves, wave structure

Procedia PDF Downloads 292
6040 Modelling of the Linear Operator in the Representation of the Function of Wave of a Micro Particle

Authors: Mohammedi Ferhate

Abstract:

This paper deals with the generalized the notion of the function of wave a micro particle moving free, the concept of the linear operator in the representation function delta of Dirac which is a generalization of the symbol of Kronecker to the case of a continuous variation of the sizes concerned with the condition of orthonormation of the Eigen functions the use of linear operators and their Eigen functions in connection with the solution of given differential equations, it is of interest to study the properties of the operators themselves and determine which of them follow purely from the nature of the operators, without reference to specific forms of Eigen functions. The models simulation examples are also presented.

Keywords: function, operator, simulation, wave

Procedia PDF Downloads 106
6039 Coexistence of Superconductivity and Spin Density Wave in Ferropnictide Ba₁₋ₓKₓFe₂As₂

Authors: Tadesse Desta Gidey, Gebregziabher Kahsay, Pooran Singh

Abstract:

This work focuses on the theoretical investigation of the coexistence of superconductivity and Spin Density Wave (SDW)in Ferropnictide Ba₁₋ₓKₓFe₂As₂. By developing a model Hamiltonian for the system and by using quantum field theory Green’s function formalism, we have obtained mathematical expressions for superconducting transition temperature TC), spin density wave transition temperature (Tsdw), superconductivity order parameter (Sc), and spin density wave order parameter (sdw). By employing the experimental and theoretical values of the parameters in the obtained expressions, phase diagrams of superconducting transition temperature (TC) versus superconducting order parameter (Sc) and spin density wave transition temperature (Tsdw), versus spin density wave order parameter (sdw) have been plotted. By combining the two phase diagrams, we have demonstrated the possible coexistence of superconductivity and spin density wave (SDW) in ferropnictide Ba1−xKxFe2As2.

Keywords: Superconductivity, Spin density wave, Coexistence, Green function, Pnictides, Ba₁₋ₓKₓFe₂As₂

Procedia PDF Downloads 128
6038 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth

Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari

Abstract:

The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.

Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus

Procedia PDF Downloads 85
6037 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties

Procedia PDF Downloads 281
6036 Fast-Forward Problem in Asymmetric Double-Well Potential

Authors: Iwan Setiawan, Bobby Eka Gunara, Katshuhiro Nakamura

Abstract:

The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields.

Keywords: driving potential, Adiabatic Quantum Dynamics, regulation, electromagnetic field

Procedia PDF Downloads 295
6035 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids

Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario

Abstract:

Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.

Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods

Procedia PDF Downloads 434
6034 Surface Motion of Anisotropic Half Space Containing an Anisotropic Inclusion under SH Wave

Authors: Yuanda Ma, Zhiyong Zhang, Zailin Yang, Guanxixi Jiang

Abstract:

Anisotropy is very common in underground media, such as rock, sand, and soil. Hence, the dynamic response of anisotropy medium under elastic waves is significantly different from the isotropic one. Moreover, underground heterogeneities and structures, such as pipelines, cylinders, or tunnels, are usually made by composite materials, leading to the anisotropy of these heterogeneities and structures. Both the anisotropy of the underground medium and the heterogeneities have an effect on the surface motion of the ground. Aiming at providing theoretical references for earthquake engineering and seismology, the surface motion of anisotropic half-space with a cylindrical anisotropic inclusion embedded under the SH wave is investigated in this work. Considering the anisotropy of the underground medium, the governing equation with three elastic parameters of SH wave propagation is introduced. Then, based on the complex function method and multipolar coordinates system, the governing equation in the complex plane is obtained. With the help of a pair of transformation, the governing equation is transformed into a standard form. By means of the same methods, the governing equation of SH wave propagation in the cylindrical inclusion with another three elastic parameters is normalized as well. Subsequently, the scattering wave in the half-space and the standing wave in the inclusion is deduced. Different incident wave angle and anisotropy are considered to obtain the reflected wave. Then the unknown coefficients in scattering wave and standing wave are solved by utilizing the continuous condition at the boundary of the inclusion. Through truncating finite terms of the scattering wave and standing wave, the equation of boundary conditions can be calculated by programs. After verifying the convergence and the precision of the calculation, the validity of the calculation is verified by degrading the model of the problem as well. Some parameters which influence the surface displacement of the half-space is considered: dimensionless wave number, dimensionless depth of the inclusion, anisotropic parameters, wave number ratio, shear modulus ratio. Finally, surface displacement amplitude of the half space with different parameters is calculated and discussed.

Keywords: anisotropy, complex function method, sh wave, surface displacement amplitude

Procedia PDF Downloads 92
6033 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions

Authors: X. Wang, T. J. Craft, H. Iacovides

Abstract:

When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.

Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function

Procedia PDF Downloads 308
6032 Theoretical Analysis of the Solid State and Optical Characteristics of Calcium Sulpide Thin Film

Authors: Emmanuel Ifeanyi Ugwu

Abstract:

Calcium Sulphide which is one of Chalcogenide group of thin films has been analyzed in this work using a theoretical approach in which a scalar wave was propagated through the material thin film medium deposited on a glass substrate with the assumption that the dielectric medium has homogenous reference dielectric constant term, and a perturbed dielectric function, representing the deposited thin film medium on the surface of the glass substrate as represented in this work. These were substituted into a defined scalar wave equation that was solved first of all by transforming it into Volterra equation of second type and solved using the method of separation of variable on scalar wave and subsequently, Green’s function technique was introduced to obtain a model equation of wave propagating through the thin film that was invariably used in computing the propagated field, for different input wavelengths representing UV, Visible and Near-infrared regions of field considering the influence of the dielectric constants of the thin film on the propagating field. The results obtained were used in turn to compute the band gaps, solid state and optical properties of the thin film.

Keywords: scalar wave, dielectric constant, calcium sulphide, solid state, optical properties

Procedia PDF Downloads 63
6031 Induced Pulsation Attack Against Kalman Filter Driven Brushless DC Motor Control System

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

We use modeling and simulation tools, to introduce a novel bias injection attack, named the ’Induced Pulsation Attack’, which targets Cyber Physical Systems with closed-loop controlled Brushless DC (BLDC) motor and Kalman filter driver in the feedback loop. This attack involves engaging a linear function with a constant gradient to distort the coefficient of the injected bias, which falsifies the Kalman filter estimates of the rotor’s angular speed. As a result, this manipulation interaction inside the control system causes periodic pulsations in a form of asymmetric sine wave of both current and voltage in the circuit windings, with a high magnitude. It is shown that by varying the gradient of linear function, one can control both the frequency and structure of the induced pulsations. It is also demonstrated that terminating the attack at any point leads to additional compensating effort from the controller to restore the speed to its equilibrium value. This compensation effort produces an exponentially decaying wave, which we call the ’attack withdrawal syndrome’ wave. The conditions for maximizing or minimizing the impact of the attack withdrawal syndrome are determined. Linking the termination of the attack to the end of the full period of the induced pulsation wave has been shown to nullify the attack withdrawal syndrome wave, thereby improving the attack’s covertness.

Keywords: cyber-attack, induced pulsation, bias injection, Kalman filter, BLDC motor, control system, closed loop, P- controller, PID-controller, saw-function, cyber-physical system

Procedia PDF Downloads 42
6030 Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation

Authors: Yanpei Zhen

Abstract:

The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background.

Keywords: Darboux transformation, periodic wave, Rogue wave, separating the variables

Procedia PDF Downloads 145
6029 Time-Evolving Wave Packet in Phase Space

Authors: Mitsuyoshi Tomiya, Kentaro Kawamura, Shoichi Sakamoto

Abstract:

In chaotic billiard systems, scar-like localization has been found on time-evolving wave packet. We may call it the “dynamical scar” to separate it to the original scar in stationary states. It also comes out along the vicinity of classical unstable periodic orbits, when the wave packets are launched along the orbits, against the hypothesis that the waves become homogenous all around the billiard. Then time-evolving wave packets are investigated numerically in phase space. The Wigner function is adopted to detect the wave packets in phase space. The 2-dimensional Poincaré sections of the 4-dimensional phase space are introduced to clarify the dynamical behavior of the wave packets. The Poincaré sections of the coordinate (x or y) and the momentum (Px or Py) can visualize the dynamical behavior of the wave packets, including the behavior in the momentum degree also. For example, in “dynamical scar” states, a bit larger momentum component comes first, and then the a bit smaller and smaller components follow next. The sections made in the momentum space (Px or Py) elucidates specific trajectories that have larger contribution to the “dynamical scar” states. It is the fixed point observation of the momentum degrees at a specific fixed point(x0, y0) in the phase space. The accumulation are also calculated to search the “dynamical scar” in the Poincare sections. It is found the scars as bright spots in momentum degrees of the phase space.

Keywords: chaotic billiard, Poincaré section, scar, wave packet

Procedia PDF Downloads 414
6028 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves

Authors: Yingchen Yang

Abstract:

Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.

Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction

Procedia PDF Downloads 141
6027 Cubic Trigonometric B-Spline Approach to Numerical Solution of Wave Equation

Authors: Shazalina Mat Zin, Ahmad Abd. Majid, Ahmad Izani Md. Ismail, Muhammad Abbas

Abstract:

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

Keywords: collocation method, cubic trigonometric B-spline, finite difference, wave equation

Procedia PDF Downloads 497
6026 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 103
6025 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave

Authors: Swati Sharma, R. P. Sharma

Abstract:

We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.

Keywords: solar wind, turbulence, dispersive alfven wave

Procedia PDF Downloads 572
6024 Theoretical Analysis of the Optical and Solid State Properties of Thin Film

Authors: E. I. Ugwu

Abstract:

Theoretical analysis of the optical and Solid State properties of ZnS thin film using beam propagation technique in which a scalar wave is propagated through the material thin film deposited on a substrate with the assumption that the dielectric medium is section into a homogenous reference dielectric constant term, and a perturbed dielectric term, representing the deposited thin film medium is presented in this work. These two terms, constitute arbitrary complex dielectric function that describes dielectric perturbation imposed by the medium of for the system. This is substituted into a defined scalar wave equation in which the appropriate Green’s Function was defined on it and solved using series technique. The green’s value obtained from Green’s Function was used in Dyson’s and Lippmann Schwinger equations in conjunction with Born approximation method in computing the propagated field for different input regions of field wavelength during which the influence of the dielectric constants and mesh size of the thin film on the propagating field were depicted. The results obtained from the computed field were used in turn to generate the data that were used to compute the band gaps, solid state and optical properties of the thin film such as reflectance, Transmittance and reflectance with which the band gap obtained was found to be in close approximate to that of experimental value.

Keywords: scalar wave, optical and solid state properties, thin film, dielectric medium, perturbation, Lippmann Schwinger equations, Green’s Function, propagation

Procedia PDF Downloads 406
6023 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element

Procedia PDF Downloads 122
6022 Wave Energy: Efficient Conversion of the Big Waves

Authors: Md. Moniruzzaman

Abstract:

The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages.

Keywords: anchor, electricity, floating object, pump, ship city, wave energy

Procedia PDF Downloads 53
6021 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model

Authors: Tory Erickson

Abstract:

The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.

Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics

Procedia PDF Downloads 33
6020 Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater

Authors: Jin Song Gui, Han Li, Rui Jin Zhang, Heng Jiang Cai

Abstract:

There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided.

Keywords: overtopping wave, physical model experiment, vertical breakwater, wave forces

Procedia PDF Downloads 269
6019 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling

Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan

Abstract:

Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.

Keywords: green infrastructure, wave attenuation, wave modeling, wetland

Procedia PDF Downloads 103
6018 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 39
6017 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization

Authors: Ramakrishna Rao Mamidi

Abstract:

It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.

Keywords: direct search, flux plot, fourier analysis, permanent magnets

Procedia PDF Downloads 186
6016 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline

Authors: Zuodong Liang, Dong-Sheng Jeng

Abstract:

Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.

Keywords: pore pressure, 3D wave model, seabed liquefaction, pipeline

Procedia PDF Downloads 333
6015 Extracorporeal Shock Wave Therapy versus Functional Electrical Stimulation on Spasticity, Function and Gait Parameters in Hemiplegic Cerebral Palsy

Authors: Mohamed A. Eid, Sobhy M. Aly

Abstract:

Background: About 75% of children with spastic hemiplegic cerebral palsy walk independently, but most still show abnormal gait patterns because of contractures across the joints and muscle spasticity. Objective: The purpose of this study was to investigate and compare the effects of extracorporeal shock wave therapy (ESWT) versus functional electrical stimulation (FES) on spasticity, function, and gait parameters in children with hemiplegic cerebral palsy (CP). Methods: A randomized controlled trail was conducted for 45 children with hemiplegic CP ranging in age from 6 to 9 years. They were assigned randomly using opaque envelopes into three groups. Physical Therapy (PT) group consisted of 15 children and received the conventional physical therapy program (CPTP) in addition to ankle foot orthosis (AFO). ESWT group consisted of 15 children and received the CPTP, AFO in addition to ESWT. FES group also consisted of 15 children and received the CPTP, AFO in addition to FES. All groups received the program of treatment 3 days/week for 12 weeks. Evaluation of spasticity by using the Modified Ashworth Scale (MAS), function by using the Pediatric Evaluation Disability Inventory (PEDI) and gait parameters by using the 3-D gait analysis was conducted at baseline and after 12 weeks of the treatment program. Results: Within groups, significant improvements in spasticity, function, and gait (P = 0.05) were observed in both ESWT and FES groups after treatment. While between groups, ESWT group showed significant improvements in all measured variables compared with FES and PT groups (P ˂ 0.05) after treatment. Conclusion: ESWT induced significant improvement than FES in decreasing spasticity and improving function and gait in children with hemiplegic CP. Therefore, ESWT should be included as an adjunctive therapy in the rehabilitation program of these children.

Keywords: cerebral palsy, extracorporeal shock wave therapy, functional electrical stimulation, function, gait, spasticity

Procedia PDF Downloads 104
6014 Numerical Investigation of Wave Run-Up on Curved Dikes

Authors: Suba Periyal Subramaniam, Babette Scheres, Altomare Corrado, Holger Schuttrumpf

Abstract:

Due to the climatic change and the usage of coastal areas, there is an increasing risk of dike failures along the coast worldwide. Wave run-up plays a key role in planning and design of a coastal structure. The coastal dike lines are bent either due to geological characteristics or due to influence of anthropogenic activities. The effect of the curvature of coastal dikes on wave run-up and overtopping is not yet investigated. The scope of this research is to find the effects of the dike curvature on wave run-up by employing numerical model studies for various dike opening angles. Numerical simulation is carried out using DualSPHysics, a meshless method, and OpenFOAM, a mesh-based method. The numerical results of the wave run-up on a curved dike and the wave transformation process for various opening angles, wave attacks, and wave parameters will be compared and discussed. This research aims to contribute a more precise analysis and understanding the influence of the curvature in the dike line and thus ensuring a higher level of protection in the future development of coastal structures.

Keywords: curved dikes, DualSPHysics, OpenFOAM, wave run-up

Procedia PDF Downloads 119
6013 Near Shore Wave Manipulation for Electricity Generation

Authors: K. D. R. Jagath-Kumara, D. D. Dias

Abstract:

The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine, in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque and the angular velocity.

Keywords: near-shore sea waves, renewable energy, wave energy conversion, wave manipulation

Procedia PDF Downloads 445