Search results for: multi variable decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12073

Search results for: multi variable decision making

9703 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm

Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim

Abstract:

The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.

Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost

Procedia PDF Downloads 378
9702 Genetic Algorithm for Bi-Objective Hub Covering Problem

Authors: Abbas Mirakhorli

Abstract:

A hub covering problem is a type of hub location problem that tries to maximize the coverage area with the least amount of installed hubs. There have not been many studies in the literature about multi-objective hubs covering location problems. Thus, in this paper, a bi-objective model for the hub covering problem is presented. The two objectives that are considered in this paper are the minimization of total transportation costs and the maximization of coverage of origin-destination nodes. A genetic algorithm is presented to solve the model when the number of nodes is increased. The genetic algorithm is capable of solving the model when the number of nodes increases by more than 20. Moreover, the genetic algorithm solves the model in less amount of time.

Keywords: facility location, hub covering, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 48
9701 Developing a Framework for Assessing and Fostering the Sustainability of Manufacturing Companies

Authors: Ilaria Barletta, Mahesh Mani, Björn Johansson

Abstract:

The concept of sustainability encompasses economic, environmental, social and institutional considerations. Sustainable manufacturing (SM) is, therefore, a multi-faceted concept. It broadly implies the development and implementation of technologies, projects and initiatives that are concerned with the life cycle of products and services, and are able to bring positive impacts to the environment, company stakeholders and profitability. Because of this, achieving SM-related goals requires a holistic, life-cycle-thinking approach from manufacturing companies. Further, such an approach must rely on a logic of continuous improvement and ease of implementation in order to be effective. Currently, there exists in the academic literature no comprehensively structured frameworks that support manufacturing companies in the identification of the issues and the capabilities that can either hinder or foster sustainability. This scarcity of support extends to difficulties in obtaining quantifiable measurements in order to objectively evaluate solutions and programs and identify improvement areas within SM for standards conformance. To bridge this gap, this paper proposes the concept of a framework for assessing and continuously improving the sustainability of manufacturing companies. The framework addresses strategies and projects for SM and operates in three sequential phases: analysis of the issues, design of solutions and continuous improvement. A set of interviews, observations and questionnaires are the research methods to be used for the implementation of the framework. Different decision-support methods - either already-existing or novel ones - can be 'plugged into' each of the phases. These methods can assess anything from business capabilities to process maturity. In particular, the authors are working on the development of a sustainable manufacturing maturity model (SMMM) as decision support within the phase of 'continuous improvement'. The SMMM, inspired by previous maturity models, is made up of four maturity levels stemming from 'non-existing' to 'thriving'. Aggregate findings from the use of the framework should ultimately reveal to managers and CEOs the roadmap for achieving SM goals and identify the maturity of their companies’ processes and capabilities. Two cases from two manufacturing companies in Australia are currently being employed to develop and test the framework. The use of this framework will bring two main benefits: enable visual, intuitive internal sustainability benchmarking and raise awareness of improvement areas that lead companies towards an increasingly developed SM.

Keywords: life cycle management, continuous improvement, maturity model, sustainable manufacturing

Procedia PDF Downloads 247
9700 The Effects of Social Capital and Empowering Leadership on Team Cohesion

Authors: Y. R. Lai, J. C. Jehng, T. T. Chang

Abstract:

Team is a popular job design in the management settings. Because people on a team need to work together to complete a lot of tasks, the interaction between team members strongly influences team effectiveness. The study examines the effect of social capital and empowering leadership on team cohesion. There are three facets of social capital: structural facet, relational facet, and cognitive facet. Empowering leadership includes enhancing the meaningfulness of work, fostering participation in decision making, expressing confidence in high performance, and providing autonomy from bureaucratic constraints. Data were collected from 181 team members of 47 teams in the real estate agency industry. The results show that the relational social capital, enhancing the meaningfulness of work, and providing autonomy from bureaucratic constraints are positively related to two dimensions of team cohesion: sense of belonging and feelings of moral. Additionally, expressing confidence in high performance is negatively related to sense of belonging.

Keywords: social capital, empowering leadership, team cohesion, team effectiveness

Procedia PDF Downloads 404
9699 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria

Procedia PDF Downloads 257
9698 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: cognitive radio, neural network, prediction, primary user

Procedia PDF Downloads 356
9697 Delays for Emergency Cesarean Sections and Neonatal Outcomes in Three Rural District Hospitals in Rwanda: A Retrospective Cross-Sectional Study

Authors: J. Niyitegeka, G. Nshimirimana, A. Silverstein, J. Odhiambo, Y. Lin, T. Nkurunziza, R. Riviello, S. Rulisa, P. Banguti, H. Magge, M. Macharia, J. P. Dushime, R. Habimana, B. Hedt-Gauthier

Abstract:

In low-resource settings, women needing an emergency cesarean section experiences various delays in both reaching and receiving care that is often linked to poor neonatal outcomes. In this study, we quantified different measures of delays and assessed the association between these delays and neonatal outcomes at three rural district hospitals in Rwanda. This retrospective study included 441 neonates and their mothers who underwent emergency cesarean sections in 2015 at Butaro, Kirehe and Rwinkwavu District Hospitals. Four possible delays were measured: Time from start of labor to district hospital admission, travel time from a health center to the district hospital, time from admission to surgical incision, and time from the decision for the emergency cesarean section to surgical incision. Neonatal outcomes were categorized as unfavorable (APGAR < 7 or death) and favorable (APGAR ≥ 7). We assessed the relationship between each type of delay and neonatal outcomes using multivariate logistic regression. In our study, 38.7% (108 out of 279) of neonates’ mothers labored for 12 to 24 hours before hospital admission and 44.7% (159 of 356) of mothers were transferred from health centers that required 30 to 60 minutes of travel time to reach the district hospital. 48.1% (178 of 370) of caesarean sections started within five hours after admission and 85.2% (288 of 338) started more than thirty minutes after the decision for the emergency cesarean section was made. Neonatal outcomes were significantly worse among mothers with more than 90 minutes of travel time from the health center to the district hospital compared to health centers attached to the hospital (OR = 5.12, p = 0.02). Neonatal outcomes were also significantly different depending on decision to incision intervals; neonates with cesarean deliveries starting more than thirty minutes after decision had better outcomes than those started immediately (OR = 0.32, p = 0.04). Interventions that decrease barriers to access to maternal health care services can improve neonatal outcome after emergency cesarean section. Triaging could explain the inverse relationship between time from decision to incision and neonatal outcome; this must be studied more in the future.

Keywords: Africa, emergency obstetric care, rural health delivery, maternal and child health

Procedia PDF Downloads 217
9696 Dynamic Response Analysis of Structure with Random Parameters

Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire

Abstract:

In this paper, we propose a method for the dynamic response of multi-storey structures with uncertain-but-bounded parameters. The effectiveness of the proposed method is demonstrated by a numerical example of three-storey structures. This equation is integrated numerically using Newmark’s method. The numerical results are obtained by the proposed method. The simulation accounting the interval analysis method results are compared with a probabilistic approach results. The interval analysis method provides a mean curve that is between an upper and lower bound obtained from the probabilistic approach.

Keywords: multi-storey structure, dynamic response, interval analysis method, random parameters

Procedia PDF Downloads 178
9695 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling

Authors: Ghita Benayad

Abstract:

Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.

Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market

Procedia PDF Downloads 34
9694 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment

Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan

Abstract:

With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.

Keywords: data sharing, cross-domain, data exchange, publish-subscribe

Procedia PDF Downloads 115
9693 Biological Expressions of Hamilton’s Rule in Human Populations: The Deep Psychological Influence of Defensive and Offensive Motivations Found in Human Conflicts and Sporting Events

Authors: Monty Vacura

Abstract:

Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need naturally selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Places Dawkins’s selfish gene as the r, relationship variable; 5) Flipping the equation variable themes (close relationship to distant relationship, and benefit to threat) the new equation can now be used to identify the offensive and defensive sides of conflict; 6) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 6) Pathway to reduce human sacrifice through manipulation of variables. This paper discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.

Keywords: psychology, Hamilton’s rule, evolution, human instincts

Procedia PDF Downloads 24
9692 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 546
9691 Evaluating The Effects of Fundamental Analysis on Earnings Per Share Concept in Stock Valuation in the Zimbabwe Stock Exchange Market

Authors: Brian Basvi

Abstract:

A technique for analyzing a security's intrinsic value is called fundamental analysis. It involves looking at relevant financial, economic, and other qualitative and quantitative aspects. Earnings Per Share (EPS), a crucial metric in fundamental analysis, is calculated by dividing a company's net income by the total number of outstanding shares. With more than 70 listed businesses, the Zimbabwe Stock Exchange (ZSE) is the primary stock exchange in Zimbabwe. This study applies the EPS financial ratio and stock valuation techniques to historical stock data from 68 companies listed on the Zimbabwe Stock Exchange. According to a ZSE study, EPS significantly affects share prices that are listed on the market. The study's objective was to assess how fundamental analysis affected the idea of EPS in ZSE stock valuation. It concluded that EPS is an important consideration for investors when they make judgments about their investments. According to the study's findings, fundamental analysis is a useful tool for ZSE investors since it offers insightful information about a company's financial performance and aids in decision-making. Investors can have a better understanding of a company's underlying worth and prospects for future growth by looking into EPS and other basic aspects.

Keywords: fundamental analysis, stock valuation, EPS, share pricing

Procedia PDF Downloads 14
9690 Suitability of Indonesia's Tax Administration with Abu Yusuf Thought

Authors: Dina Safrina

Abstract:

This paper aims to discuss the suitability of tax administration in Indonesia based on Islamic Shari'a by looking at Abu Yusuf's idea of taxation. This research is a qualitative research and using data collection method by library research, that is by studying, deepening and citing theories or concepts from a number of literature. The purpose of this paper is to find out whether taxation in Indonesia is consistent with the thinking of Islamic economists, namely Abu Yusuf's idea which became known by economists as the canons of taxation. The ability to pay, lax time giving for taxpayers and the centralization of decision-making in the tax administration are some of the principles it emphasizes. In taxation he recommends the use of the Muqassamah (Proportional Tax) system rather than the Mixed (Fixed Tax) system. In this case, the determination of tax rates in Indonesia there are using fixed tax system, proportional tax, progressive tax and regressive tax. Abu Yusuf opposed the existence of Qabalah institution (the guarantor of tax payments to the state) at the time and suggested a tax administration centered and paid directly to the state. This is in accordance with those already applied in Indonesia where tax collection is done centrally. The tax system in Indonesia using self assessment system, which is the authority and responsibility given by the government to the taxpayer to calculate, pay and report the tax itself becomes the gap for taxpayers to commit fraud. Prerequisites that must be met for the success of this system is with the tax consciousness, tax honesty, tax mindedness, and tax discipline.

Keywords: Abu Yusuf, Indonesia, tax, tax administration

Procedia PDF Downloads 407
9689 Social Representations: Unplanned and Unwanted Pregnancy in Adolescents from Leon-Mexico

Authors: Alejandra Sierra, Maria de los Angeles Covarrubias, Guillermo Julian Gonzalez, Noe Alfaro

Abstract:

The objective of this study was to identify the cultural dimensions of the terms unplanned pregnancy and unwanted pregnancy built by adolescent women, through the focus of the social representations. Two associative methods were used: free listings and the paired comparison. 72 female students between the ages of 15 and 19 were interviewed, from the downtown area of Leon Guanajuato, Mexico. Words related to inducer terms were classified into five thematic categories: facilitators, consequences, reactions, expectations, and lexicon. The results showed that the social representations of unplanned pregnancy highlighted elements related to economic difficulties and negative emotional aspects, while unwanted pregnancy was associated with negative emotional aspects such as anger, anxiety, and sadness. The meanings each person attributes to terms related to pregnancy are culturally constructed and differ between populations; therefore, more attention should be paid to understanding the cultural meanings and attitudes of people in fertility decision-making, including also the views of adolescent men and other types of population, stratified by age groups and social conditions.

Keywords: adolescent, qualitative research, unplanned pregnancy, unwanted pregnancy

Procedia PDF Downloads 199
9688 A Sequential Approach for Random-Effects Meta-Analysis

Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya

Abstract:

The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.

Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes

Procedia PDF Downloads 455
9687 Analgesia in Acute Traumatic Rib Fractures

Authors: A. Duncan, A. Blake, A. O'Gara, J. Fitzgerald

Abstract:

Introduction: Acute traumatic rib fractures have significant morbidity and mortality and are a commonly seen injury in trauma patients. Rib fracture pain can often be acute and can prove challenging to manage. We performed an audit on patients with acute traumatic rib fractures with the aim of composing a referral and treatment pathway for such patients. Methods: From January 2021 to January 2022, the pain medicine service encouraged early referral of all traumatic rib fractures to the pain service for a multi-modal management approach. A retrospective audit of analgesic management was performed on a select cohort of 24 patients, with a mean age of 67, of which 19 had unilateral rib fractures. Results: 17 of 24 patients (71%) underwent local, regional block as part of a multi-modal analgesia regime. Only one regional complication was observed, seen with hypotension occurring in one patient with a thoracic epidural. The group who did not undergo regional block had a length of stay (LOS) 17 days longer than those who did (27 vs. 10) and higher rates of pneumonia (29% vs. 18%). Conclusion: Early referral to pain specialists is an important component of the effective management of acute traumatic rib fractures. From our audit, it is evident that regional blocks can be effectively used in these cases as part of a multi-modal analgesia regime and may confer benefits in terms of respiratory complications and length of stay.

Keywords: rib fractures, regional blocks, thoracic epidural, erector spina block

Procedia PDF Downloads 66
9686 A New Prediction Model for Soil Compression Index

Authors: D. Mohammadzadeh S., J. Bolouri Bazaz

Abstract:

This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.

Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP

Procedia PDF Downloads 354
9685 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 24
9684 Perspective of Community Health Workers on The Sustainability of Primary Health Care

Authors: Dan Richard D. Fernandez

Abstract:

This study determined the perspectives of community health workers’ perspectives in the sustainability of primary health care. Eight community health workers, two community officials and a rural health midwife in a rural community in the in the Philippines were enjoined to share their perspectives in the sustainability of primary health care. The study utilized the critical research method. The critical research assumes that there are ‘dominated’ or ‘marginalized’ groups whose interests are not best served by existing societal structures. Their experiences highlighted that the challenges of their role include unkind and uncooperative patients, the lack of institutional support mechanisms and conflict of their roles with their family responsibilities. Their most revealing insight is the belief that primary health care is within their grasp. Finally, they believe that the burden to sustain primary health care rests on their shoulders alone. This study establishes that Multi-stakeholder participation is and Gender-sensitivity is integral to the sustainability of Primary Health Care. It also observed that the ingrained Expert-Novice or Top-down Management Culture and the marginalisation of BHWs within the system is a threat to PHC sustainability. This study also recommends to expand the study and to involve the local government units and academe in lobbying the integration of gender-sensitivity and multi-stake participatory approaches to health workforce policies. Finally, this study recognised that the CHWs’ role is indispensable to the sustainability of primary health care.

Keywords: community health workers, multi-stakeholder participation, sustainability, gender-sensitivity

Procedia PDF Downloads 532
9683 Multicollinearity and MRA in Sustainability: Application of the Raise Regression

Authors: Claudia García-García, Catalina B. García-García, Román Salmerón-Gómez

Abstract:

Much economic-environmental research includes the analysis of possible interactions by using Moderated Regression Analysis (MRA), which is a specific application of multiple linear regression analysis. This methodology allows analyzing how the effect of one of the independent variables is moderated by a second independent variable by adding a cross-product term between them as an additional explanatory variable. Due to the very specification of the methodology, the moderated factor is often highly correlated with the constitutive terms. Thus, great multicollinearity problems arise. The appearance of strong multicollinearity in a model has important consequences. Inflated variances of the estimators may appear, there is a tendency to consider non-significant regressors that they probably are together with a very high coefficient of determination, incorrect signs of our coefficients may appear and also the high sensibility of the results to small changes in the dataset. Finally, the high relationship among explanatory variables implies difficulties in fixing the individual effects of each one on the model under study. These consequences shifted to the moderated analysis may imply that it is not worth including an interaction term that may be distorting the model. Thus, it is important to manage the problem with some methodology that allows for obtaining reliable results. After a review of those works that applied the MRA among the ten top journals of the field, it is clear that multicollinearity is mostly disregarded. Less than 15% of the reviewed works take into account potential multicollinearity problems. To overcome the issue, this work studies the possible application of recent methodologies to MRA. Particularly, the raised regression is analyzed. This methodology mitigates collinearity from a geometrical point of view: the collinearity problem arises because the variables under study are very close geometrically, so by separating both variables, the problem can be mitigated. Raise regression maintains the available information and modifies the problematic variables instead of deleting variables, for example. Furthermore, the global characteristics of the initial model are also maintained (sum of squared residuals, estimated variance, coefficient of determination, global significance test and prediction). The proposal is implemented to data from countries of the European Union during the last year available regarding greenhouse gas emissions, per capita GDP and a dummy variable that represents the topography of the country. The use of a dummy variable as the moderator is a special variant of MRA, sometimes called “subgroup regression analysis.” The main conclusion of this work is that applying new techniques to the field can improve in a substantial way the results of the analysis. Particularly, the use of raised regression mitigates great multicollinearity problems, so the researcher is able to rely on the interaction term when interpreting the results of a particular study.

Keywords: multicollinearity, MRA, interaction, raise

Procedia PDF Downloads 95
9682 Clinical Training Simulation Experience of Medical Sector Students

Authors: Tahsien Mohamed Okasha

Abstract:

Simulation is one of the emerging educational strategies that depend on the creation of scenarios to imitate what could happen in real life. At the time of COVID, we faced big obstacles in medical education, specially the clinical part and how we could apply it, the simulation was the golden key. Simulation is a very important tool of education for medical sector students, through creating a safe, changeable, quiet environment with less anxiety level for students to practice and to have repeated trials on their competencies. That impacts the level of practice, achievement, and the way of acting in real situations and experiences. A blind Random sample of students from different specialties and colleges who came and finished their training in an integrated environment was collected and tested, and the responses were graded from (1-5). The results revealed that 77% of the studied subjects agreed that dealing and interacting with different medical sector candidates in the same place was beneficial. 77% of the studied subjects agreed that simulations were challenging in thinking and decision-making skills .75% agreed that using high-fidelity manikins was helpful. 75% agree .76% agreed that working in a safe, prepared environment is helpful for realistic situations.

Keywords: simulation, clinical training, education, medical sector students

Procedia PDF Downloads 16
9681 Cooperative Game Theory and Small Hold Farming: Towards A Conceptual Model

Authors: Abel Kahuni

Abstract:

Cooperative game theory (CGT) postulates that groups of players are crucial units of the decision-making and impose cooperative behaviour. Accordingly, cooperative games are regarded as competition between coalitions of players, rather than between individual players. However, the basic supposition in CGT is that the cooperative is formed by all players. One of the emerging questions in CGT is how to develop cooperatives and fairly allocate the payoff. Cooperative Game Theory (CGT) may provide a framework and insights into the ways small holder farmers in rural resettlements may develop competitive advantage through marketing cooperatives. This conceptual paper proposes a non-competition model for small holder farmers of homogenous agri-commodity under CGT conditions. This paper will also provide brief insights into to the theory of cooperative games in-order to generate an understanding of CGT, cooperative marketing gains and its application in small holder farming arrangements. Accordingly, the objective is to provide a basic introduction to this theory in connection with economic competitive theories in the context of small holder farmers. The key value proposition of CGT is the equitable and fair sharing of cooperative gains.

Keywords: game theory, cooperative game theory, cooperatives, competition

Procedia PDF Downloads 68
9680 Design and Development of Multi-Functional Intelligent Robot Arm Gripper

Authors: W. T. Asheber, L. Chyi-Yeu

Abstract:

An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.

Keywords: gripper, intelligent gripper, transmissivity, vision sensor

Procedia PDF Downloads 347
9679 A Pathway of Collaborative Platform to Assess the Sustainable University

Authors: S. K. Ashiquer Rahman

Abstract:

The paper concentrates on the importance of Sustainable Campus Strategies, emphasizing the significance of mobilizing Innovative technological tools for constructing effectiveness of higher education strategy and institutional cooperation for sustainable campus at the university level and preparing the university’s authority to face the upcoming higher education strategy and institutional cooperation difficulties to the Sustainable Campus Plan. Within a framework of Sustainable Campus Strategies and institutional cooperation, the paper discusses the significance of a set of reference points that will lead to operational activities for multi-stakeholder multi-criteria evaluation of Higher Education and Research Institutions relative to the Sustainable Campus criteria and potential action plan for the University’s Strategy and Institutional Cooperation. It makes mention of the emergence of the effectiveness of Higher Education Strategy and Institutional Cooperation as well as the necessity of mobilizing innovative technological methods and tools for constructing the effectiveness of this Process. The paper outlines the conceptual framing of a Sustainable Campus Strategy, Institutional Cooperation and Action Plan for a sustainable campus. Optimistically, these will be a milestone in higher education, a pathway to meet the imminent Sustainable Campus Strategy and Institutional Cooperation of the completive world, and be able to manage the required criteria for a Sustainable University.

Keywords: higher education strategy, institutional cooperation, sustainable campus, multi-criteria evaluation, innovative method and tools

Procedia PDF Downloads 74
9678 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)

Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat

Abstract:

The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.

Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring

Procedia PDF Downloads 385
9677 Case Study: Optimization of Contractor’s Financing through Allocation of Subcontractors

Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.

Keywords: cash flow optimization, payment plan, procurement management, subcontracting plan

Procedia PDF Downloads 117
9676 Consequence of Multi-Templating of Closely Related Structural Analogues on a Chitosan-Methacryllic Acid Molecularly Imprinted Polymer Matrix-Thermal and Chromatographic Traits

Authors: O.Ofoegbu, S. Roongnapa, A.N. Eboatu

Abstract:

Most polluted environments, most challengingly, aerosol types, contain a cocktail of different toxicants. Multi-templating of matrices have been the recent target by researchers in a bid to solving complex mixed-toxicant challenges using single or common remediation systems. This investigation looks at the effect of such multi-templated system vis-a-vis the synthesis by non-covalent interaction, of a molecularly imprinted polymer architecture using nicotine and its structural analogue Phenylalanine amide individually and, in the blend, (50:50), as template materials in a Chitosan-Methacrylic acid functional monomer matrix. The temperature for polymerization is 60OC and time for polymerization, 12hrs (water bath heating), 4mins for (microwave heating). The characteristic thermal properties of the molecularly imprinted materials are investigated using Simultaneous Thermal Analysis (STA) profiling, while the absorption and separation efficiencies based on the relative retention times and peak areas of templates were studied amongst other properties. Transmission Electron Microscopy (TEM) results obtained, show the creation of heterogeneous nanocavities, regardless, the introduction of Caffeine a close structural analogue presented near-zero perfusion. This confirms the selectivity and specificity of the templated polymers despite its dual-templated nature. The STA results presented the materials as having decomposition temperatures above 250OC and a relative loss in mass of less than19% over a period within 50mins of heating. Consequent to this outcome, multi-templated systems can be fabricated to sequester specifically and selectively targeted toxicants in a mixed toxicant populated system effectively.

Keywords: chitosan, dual-templated, methacrylic acid, mixed-toxicants, molecularly-imprinted-polymer

Procedia PDF Downloads 109
9675 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation

Procedia PDF Downloads 428
9674 Fully Autonomous Vertical Farm to Increase Crop Production

Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek

Abstract:

New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.

Keywords: automation, vertical farming, robot, artificial intelligence, vision, control

Procedia PDF Downloads 23